blob: fddbebddfe7274e103c7160c873683de45ca33cc [file] [log] [blame]
//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements optimizer and code generation miscompilation debugging
// support.
//
//===----------------------------------------------------------------------===//
#include "BugDriver.h"
#include "ListReducer.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Linker.h"
#include "Support/CommandLine.h"
#include "Support/FileUtilities.h"
using namespace llvm;
namespace llvm {
extern cl::list<std::string> InputArgv;
}
namespace {
class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
BugDriver &BD;
public:
ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
std::vector<const PassInfo*> &Suffix);
};
}
ReduceMiscompilingPasses::TestResult
ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
std::vector<const PassInfo*> &Suffix) {
// First, run the program with just the Suffix passes. If it is still broken
// with JUST the kept passes, discard the prefix passes.
std::cout << "Checking to see if '" << getPassesString(Suffix)
<< "' compile correctly: ";
std::string BytecodeResult;
if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
std::cerr << " Error running this sequence of passes"
<< " on the input program!\n";
BD.setPassesToRun(Suffix);
BD.EmitProgressBytecode("pass-error", false);
exit(BD.debugOptimizerCrash());
}
// Check to see if the finished program matches the reference output...
if (BD.diffProgram(BytecodeResult, "", true /*delete bytecode*/)) {
std::cout << "nope.\n";
return KeepSuffix; // Miscompilation detected!
}
std::cout << "yup.\n"; // No miscompilation!
if (Prefix.empty()) return NoFailure;
// Next, see if the program is broken if we run the "prefix" passes first,
// then separately run the "kept" passes.
std::cout << "Checking to see if '" << getPassesString(Prefix)
<< "' compile correctly: ";
// If it is not broken with the kept passes, it's possible that the prefix
// passes must be run before the kept passes to break it. If the program
// WORKS after the prefix passes, but then fails if running the prefix AND
// kept passes, we can update our bytecode file to include the result of the
// prefix passes, then discard the prefix passes.
//
if (BD.runPasses(Prefix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
std::cerr << " Error running this sequence of passes"
<< " on the input program!\n";
BD.setPassesToRun(Prefix);
BD.EmitProgressBytecode("pass-error", false);
exit(BD.debugOptimizerCrash());
}
// If the prefix maintains the predicate by itself, only keep the prefix!
if (BD.diffProgram(BytecodeResult)) {
std::cout << "nope.\n";
removeFile(BytecodeResult);
return KeepPrefix;
}
std::cout << "yup.\n"; // No miscompilation!
// Ok, so now we know that the prefix passes work, try running the suffix
// passes on the result of the prefix passes.
//
Module *PrefixOutput = ParseInputFile(BytecodeResult);
if (PrefixOutput == 0) {
std::cerr << BD.getToolName() << ": Error reading bytecode file '"
<< BytecodeResult << "'!\n";
exit(1);
}
removeFile(BytecodeResult); // No longer need the file on disk
std::cout << "Checking to see if '" << getPassesString(Suffix)
<< "' passes compile correctly after the '"
<< getPassesString(Prefix) << "' passes: ";
Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
if (BD.runPasses(Suffix, BytecodeResult, false/*delete*/, true/*quiet*/)) {
std::cerr << " Error running this sequence of passes"
<< " on the input program!\n";
BD.setPassesToRun(Suffix);
BD.EmitProgressBytecode("pass-error", false);
exit(BD.debugOptimizerCrash());
}
// Run the result...
if (BD.diffProgram(BytecodeResult, "", true/*delete bytecode*/)) {
std::cout << "nope.\n";
delete OriginalInput; // We pruned down the original input...
return KeepSuffix;
}
// Otherwise, we must not be running the bad pass anymore.
std::cout << "yup.\n"; // No miscompilation!
delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
return NoFailure;
}
namespace {
class ReduceMiscompilingFunctions : public ListReducer<Function*> {
BugDriver &BD;
bool (*TestFn)(BugDriver &, Module *, Module *);
public:
ReduceMiscompilingFunctions(BugDriver &bd,
bool (*F)(BugDriver &, Module *, Module *))
: BD(bd), TestFn(F) {}
virtual TestResult doTest(std::vector<Function*> &Prefix,
std::vector<Function*> &Suffix) {
if (!Suffix.empty() && TestFuncs(Suffix))
return KeepSuffix;
if (!Prefix.empty() && TestFuncs(Prefix))
return KeepPrefix;
return NoFailure;
}
bool TestFuncs(const std::vector<Function*> &Prefix);
};
}
/// TestMergedProgram - Given two modules, link them together and run the
/// program, checking to see if the program matches the diff. If the diff
/// matches, return false, otherwise return true. If the DeleteInputs argument
/// is set to true then this function deletes both input modules before it
/// returns.
static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
bool DeleteInputs) {
// Link the two portions of the program back to together.
std::string ErrorMsg;
if (!DeleteInputs) M1 = CloneModule(M1);
if (LinkModules(M1, M2, &ErrorMsg)) {
std::cerr << BD.getToolName() << ": Error linking modules together:"
<< ErrorMsg << "\n";
exit(1);
}
if (DeleteInputs) delete M2; // We are done with this module...
Module *OldProgram = BD.swapProgramIn(M1);
// Execute the program. If it does not match the expected output, we must
// return true.
bool Broken = BD.diffProgram();
// Delete the linked module & restore the original
BD.swapProgramIn(OldProgram);
delete M1;
return Broken;
}
bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
// Test to see if the function is misoptimized if we ONLY run it on the
// functions listed in Funcs.
std::cout << "Checking to see if the program is misoptimized when "
<< (Funcs.size()==1 ? "this function is" : "these functions are")
<< " run through the pass"
<< (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
PrintFunctionList(Funcs);
std::cout << "\n";
// Split the module into the two halves of the program we want.
Module *ToNotOptimize = CloneModule(BD.getProgram());
Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs);
// Run the predicate, not that the predicate will delete both input modules.
return TestFn(BD, ToOptimize, ToNotOptimize);
}
/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
/// check to see if we can extract the loops in the region without obscuring the
/// bug. If so, it reduces the amount of code identified.
static bool ExtractLoops(BugDriver &BD,
bool (*TestFn)(BugDriver &, Module *, Module *),
std::vector<Function*> &MiscompiledFunctions) {
bool MadeChange = false;
while (1) {
Module *ToNotOptimize = CloneModule(BD.getProgram());
Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
MiscompiledFunctions);
Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
if (!ToOptimizeLoopExtracted) {
// If the loop extractor crashed or if there were no extractible loops,
// then this chapter of our odyssey is over with.
delete ToNotOptimize;
delete ToOptimize;
return MadeChange;
}
std::cerr << "Extracted a loop from the breaking portion of the program.\n";
delete ToOptimize;
// Bugpoint is intentionally not very trusting of LLVM transformations. In
// particular, we're not going to assume that the loop extractor works, so
// we're going to test the newly loop extracted program to make sure nothing
// has broken. If something broke, then we'll inform the user and stop
// extraction.
AbstractInterpreter *AI = BD.switchToCBE();
if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
BD.switchToInterpreter(AI);
// Merged program doesn't work anymore!
std::cerr << " *** ERROR: Loop extraction broke the program. :("
<< " Please report a bug!\n";
std::cerr << " Continuing on with un-loop-extracted version.\n";
delete ToNotOptimize;
delete ToOptimizeLoopExtracted;
return MadeChange;
}
BD.switchToInterpreter(AI);
std::cout << " Testing after loop extraction:\n";
// Clone modules, the tester function will free them.
Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
Module *TNOBackup = CloneModule(ToNotOptimize);
if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
std::cout << "*** Loop extraction masked the problem. Undoing.\n";
// If the program is not still broken, then loop extraction did something
// that masked the error. Stop loop extraction now.
delete TOLEBackup;
delete TNOBackup;
return MadeChange;
}
ToOptimizeLoopExtracted = TOLEBackup;
ToNotOptimize = TNOBackup;
std::cout << "*** Loop extraction successful!\n";
// Okay, great! Now we know that we extracted a loop and that loop
// extraction both didn't break the program, and didn't mask the problem.
// Replace the current program with the loop extracted version, and try to
// extract another loop.
std::string ErrorMsg;
if (LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)) {
std::cerr << BD.getToolName() << ": Error linking modules together:"
<< ErrorMsg << "\n";
exit(1);
}
// All of the Function*'s in the MiscompiledFunctions list are in the old
// module. Update this list to include all of the functions in the
// optimized and loop extracted module.
MiscompiledFunctions.clear();
for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
E = ToOptimizeLoopExtracted->end(); I != E; ++I) {
if (!I->isExternal()) {
Function *NewF = ToNotOptimize->getFunction(I->getName(),
I->getFunctionType());
assert(NewF && "Function not found??");
MiscompiledFunctions.push_back(NewF);
}
}
delete ToOptimizeLoopExtracted;
BD.setNewProgram(ToNotOptimize);
MadeChange = true;
}
}
/// DebugAMiscompilation - This is a generic driver to narrow down
/// miscompilations, either in an optimization or a code generator.
static std::vector<Function*>
DebugAMiscompilation(BugDriver &BD,
bool (*TestFn)(BugDriver &, Module *, Module *)) {
// Okay, now that we have reduced the list of passes which are causing the
// failure, see if we can pin down which functions are being
// miscompiled... first build a list of all of the non-external functions in
// the program.
std::vector<Function*> MiscompiledFunctions;
Module *Prog = BD.getProgram();
for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
if (!I->isExternal())
MiscompiledFunctions.push_back(I);
// Do the reduction...
ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
std::cout << "\n*** The following function"
<< (MiscompiledFunctions.size() == 1 ? " is" : "s are")
<< " being miscompiled: ";
PrintFunctionList(MiscompiledFunctions);
std::cout << "\n";
// See if we can rip any loops out of the miscompiled functions and still
// trigger the problem.
if (ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
// Okay, we extracted some loops and the problem still appears. See if we
// can eliminate some of the created functions from being candidates.
// Do the reduction...
ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
std::cout << "\n*** The following function"
<< (MiscompiledFunctions.size() == 1 ? " is" : "s are")
<< " being miscompiled: ";
PrintFunctionList(MiscompiledFunctions);
std::cout << "\n";
}
return MiscompiledFunctions;
}
/// TestOptimizer - This is the predicate function used to check to see if the
/// "Test" portion of the program is misoptimized. If so, return true. In any
/// case, both module arguments are deleted.
static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
// Run the optimization passes on ToOptimize, producing a transformed version
// of the functions being tested.
std::cout << " Optimizing functions being tested: ";
Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
/*AutoDebugCrashes*/true);
std::cout << "done.\n";
delete Test;
std::cout << " Checking to see if the merged program executes correctly: ";
bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
std::cout << (Broken ? " nope.\n" : " yup.\n");
return Broken;
}
/// debugMiscompilation - This method is used when the passes selected are not
/// crashing, but the generated output is semantically different from the
/// input.
///
bool BugDriver::debugMiscompilation() {
// Make sure something was miscompiled...
if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
std::cerr << "*** Optimized program matches reference output! No problem "
<< "detected...\nbugpoint can't help you with your problem!\n";
return false;
}
std::cout << "\n*** Found miscompiling pass"
<< (getPassesToRun().size() == 1 ? "" : "es") << ": "
<< getPassesString(getPassesToRun()) << "\n";
EmitProgressBytecode("passinput");
std::vector<Function*> MiscompiledFunctions =
DebugAMiscompilation(*this, TestOptimizer);
// Output a bunch of bytecode files for the user...
std::cout << "Outputting reduced bytecode files which expose the problem:\n";
Module *ToNotOptimize = CloneModule(getProgram());
Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
MiscompiledFunctions);
std::cout << " Non-optimized portion: ";
ToNotOptimize = swapProgramIn(ToNotOptimize);
EmitProgressBytecode("tonotoptimize", true);
setNewProgram(ToNotOptimize); // Delete hacked module.
std::cout << " Portion that is input to optimizer: ";
ToOptimize = swapProgramIn(ToOptimize);
EmitProgressBytecode("tooptimize");
setNewProgram(ToOptimize); // Delete hacked module.
return false;
}
/// CleanupAndPrepareModules - Get the specified modules ready for code
/// generator testing.
static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
Module *Safe) {
// Clean up the modules, removing extra cruft that we don't need anymore...
Test = BD.performFinalCleanups(Test);
// If we are executing the JIT, we have several nasty issues to take care of.
if (!BD.isExecutingJIT()) return;
// First, if the main function is in the Safe module, we must add a stub to
// the Test module to call into it. Thus, we create a new function `main'
// which just calls the old one.
if (Function *oldMain = Safe->getNamedFunction("main"))
if (!oldMain->isExternal()) {
// Rename it
oldMain->setName("llvm_bugpoint_old_main");
// Create a NEW `main' function with same type in the test module.
Function *newMain = new Function(oldMain->getFunctionType(),
GlobalValue::ExternalLinkage,
"main", Test);
// Create an `oldmain' prototype in the test module, which will
// corresponds to the real main function in the same module.
Function *oldMainProto = new Function(oldMain->getFunctionType(),
GlobalValue::ExternalLinkage,
oldMain->getName(), Test);
// Set up and remember the argument list for the main function.
std::vector<Value*> args;
for (Function::aiterator I = newMain->abegin(), E = newMain->aend(),
OI = oldMain->abegin(); I != E; ++I, ++OI) {
I->setName(OI->getName()); // Copy argument names from oldMain
args.push_back(I);
}
// Call the old main function and return its result
BasicBlock *BB = new BasicBlock("entry", newMain);
CallInst *call = new CallInst(oldMainProto, args);
BB->getInstList().push_back(call);
// If the type of old function wasn't void, return value of call
new ReturnInst(oldMain->getReturnType() != Type::VoidTy ? call : 0, BB);
}
// The second nasty issue we must deal with in the JIT is that the Safe
// module cannot directly reference any functions defined in the test
// module. Instead, we use a JIT API call to dynamically resolve the
// symbol.
// Add the resolver to the Safe module.
// Prototype: void *getPointerToNamedFunction(const char* Name)
Function *resolverFunc =
Safe->getOrInsertFunction("getPointerToNamedFunction",
PointerType::get(Type::SByteTy),
PointerType::get(Type::SByteTy), 0);
// Use the function we just added to get addresses of functions we need.
for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F){
if (F->isExternal() && !F->use_empty() && &*F != resolverFunc &&
F->getIntrinsicID() == 0 /* ignore intrinsics */) {
Function *TestFn =Test->getFunction(F->getName(), F->getFunctionType());
// Don't forward functions which are external in the test module too.
if (TestFn && !TestFn->isExternal()) {
// 1. Add a string constant with its name to the global file
Constant *InitArray = ConstantArray::get(F->getName());
GlobalVariable *funcName =
new GlobalVariable(InitArray->getType(), true /*isConstant*/,
GlobalValue::InternalLinkage, InitArray,
F->getName() + "_name", Safe);
// 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
// sbyte* so it matches the signature of the resolver function.
// GetElementPtr *funcName, ulong 0, ulong 0
std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::IntTy));
Value *GEP =
ConstantExpr::getGetElementPtr(ConstantPointerRef::get(funcName),
GEPargs);
std::vector<Value*> ResolverArgs;
ResolverArgs.push_back(GEP);
// 3. Replace all uses of `func' with calls to resolver by:
// (a) Iterating through the list of uses of this function
// (b) Insert a cast instruction in front of each use
// (c) Replace use of old call with new call
// Insert code at the beginning of the function
while (!F->use_empty())
if (Instruction *Inst = dyn_cast<Instruction>(F->use_back())) {
// call resolver(GetElementPtr...)
CallInst *resolve = new CallInst(resolverFunc, ResolverArgs,
"resolver", Inst);
// cast the result from the resolver to correctly-typed function
CastInst *castResolver =
new CastInst(resolve, PointerType::get(F->getFunctionType()),
"resolverCast", Inst);
// actually use the resolved function
Inst->replaceUsesOfWith(F, castResolver);
} else {
// FIXME: need to take care of cases where a function is used by
// something other than an instruction; e.g., global variable
// initializers and constant expressions.
std::cerr << "UNSUPPORTED: Non-instruction is using an external "
<< "function, " << F->getName() << "().\n";
abort();
}
}
}
}
if (verifyModule(*Test) || verifyModule(*Safe)) {
std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
abort();
}
}
/// TestCodeGenerator - This is the predicate function used to check to see if
/// the "Test" portion of the program is miscompiled by the code generator under
/// test. If so, return true. In any case, both module arguments are deleted.
static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
CleanupAndPrepareModules(BD, Test, Safe);
std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
if (BD.writeProgramToFile(TestModuleBC, Test)) {
std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
exit(1);
}
delete Test;
// Make the shared library
std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
if (BD.writeProgramToFile(SafeModuleBC, Safe)) {
std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
exit(1);
}
std::string SharedObject = BD.compileSharedObject(SafeModuleBC);
delete Safe;
// Run the code generator on the `Test' code, loading the shared library.
// The function returns whether or not the new output differs from reference.
int Result = BD.diffProgram(TestModuleBC, SharedObject, false);
if (Result)
std::cerr << ": still failing!\n";
else
std::cerr << ": didn't fail.\n";
removeFile(TestModuleBC);
removeFile(SafeModuleBC);
removeFile(SharedObject);
return Result;
}
static void DisambiguateGlobalSymbols(Module *M) {
// Try not to cause collisions by minimizing chances of renaming an
// already-external symbol, so take in external globals and functions as-is.
// The code should work correctly without disambiguation (assuming the same
// mangler is used by the two code generators), but having symbols with the
// same name causes warnings to be emitted by the code generator.
Mangler Mang(*M);
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
I->setName(Mang.getValueName(I));
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
I->setName(Mang.getValueName(I));
}
bool BugDriver::debugCodeGenerator() {
if ((void*)cbe == (void*)Interpreter) {
std::string Result = executeProgramWithCBE("bugpoint.cbe.out");
std::cout << "\n*** The C backend cannot match the reference diff, but it "
<< "is used as the 'known good'\n code generator, so I can't"
<< " debug it. Perhaps you have a front-end problem?\n As a"
<< " sanity check, I left the result of executing the program "
<< "with the C backend\n in this file for you: '"
<< Result << "'.\n";
return true;
}
DisambiguateGlobalSymbols(Program);
std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
// Split the module into the two halves of the program we want.
Module *ToNotCodeGen = CloneModule(getProgram());
Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs);
// Condition the modules
CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
std::string TestModuleBC = getUniqueFilename("bugpoint.test.bc");
if (writeProgramToFile(TestModuleBC, ToCodeGen)) {
std::cerr << "Error writing bytecode to `" << TestModuleBC << "'\nExiting.";
exit(1);
}
delete ToCodeGen;
// Make the shared library
std::string SafeModuleBC = getUniqueFilename("bugpoint.safe.bc");
if (writeProgramToFile(SafeModuleBC, ToNotCodeGen)) {
std::cerr << "Error writing bytecode to `" << SafeModuleBC << "'\nExiting.";
exit(1);
}
std::string SharedObject = compileSharedObject(SafeModuleBC);
delete ToNotCodeGen;
std::cout << "You can reproduce the problem with the command line: \n";
if (isExecutingJIT()) {
std::cout << " lli -load " << SharedObject << " " << TestModuleBC;
} else {
std::cout << " llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n";
std::cout << " gcc " << SharedObject << " " << TestModuleBC
<< ".s -o " << TestModuleBC << ".exe -Wl,-R.\n";
std::cout << " " << TestModuleBC << ".exe";
}
for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
std::cout << " " << InputArgv[i];
std::cout << "\n";
std::cout << "The shared object was created with:\n llc -march=c "
<< SafeModuleBC << " -o temporary.c\n"
<< " gcc -xc temporary.c -O2 -o " << SharedObject
#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
<< " -G" // Compile a shared library, `-G' for Sparc
#else
<< " -shared" // `-shared' for Linux/X86, maybe others
#endif
<< " -fno-strict-aliasing\n";
return false;
}