| //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements an idiom recognizer that transforms simple loops into a |
| // non-loop form. In cases that this kicks in, it can be a significant |
| // performance win. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "loop-idiom" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/IRBuilder.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| // TODO: Recognize "N" size array multiplies: replace with call to blas or |
| // something. |
| |
| namespace { |
| class LoopIdiomRecognize : public LoopPass { |
| Loop *CurLoop; |
| const TargetData *TD; |
| ScalarEvolution *SE; |
| public: |
| static char ID; |
| explicit LoopIdiomRecognize() : LoopPass(ID) { |
| initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM); |
| |
| bool processLoopStore(StoreInst *SI, const SCEV *BECount); |
| |
| bool processLoopStoreOfSplatValue(StoreInst *SI, unsigned StoreSize, |
| Value *SplatValue, |
| const SCEVAddRecExpr *Ev, |
| const SCEV *BECount); |
| |
| /// This transformation requires natural loop information & requires that |
| /// loop preheaders be inserted into the CFG. |
| /// |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LoopInfo>(); |
| AU.addPreserved<LoopInfo>(); |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addRequiredID(LCSSAID); |
| AU.addPreservedID(LCSSAID); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addRequired<ScalarEvolution>(); |
| AU.addPreserved<ScalarEvolution>(); |
| AU.addPreserved<DominatorTree>(); |
| } |
| }; |
| } |
| |
| char LoopIdiomRecognize::ID = 0; |
| INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| INITIALIZE_PASS_DEPENDENCY(LCSSA) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", |
| false, false) |
| |
| Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); } |
| |
| /// DeleteDeadInstruction - Delete this instruction. Before we do, go through |
| /// and zero out all the operands of this instruction. If any of them become |
| /// dead, delete them and the computation tree that feeds them. |
| /// |
| static void DeleteDeadInstruction(Instruction *I, ScalarEvolution &SE) { |
| SmallVector<Instruction*, 32> NowDeadInsts; |
| |
| NowDeadInsts.push_back(I); |
| |
| // Before we touch this instruction, remove it from SE! |
| do { |
| Instruction *DeadInst = NowDeadInsts.pop_back_val(); |
| |
| // This instruction is dead, zap it, in stages. Start by removing it from |
| // SCEV. |
| SE.forgetValue(DeadInst); |
| |
| for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) { |
| Value *Op = DeadInst->getOperand(op); |
| DeadInst->setOperand(op, 0); |
| |
| // If this operand just became dead, add it to the NowDeadInsts list. |
| if (!Op->use_empty()) continue; |
| |
| if (Instruction *OpI = dyn_cast<Instruction>(Op)) |
| if (isInstructionTriviallyDead(OpI)) |
| NowDeadInsts.push_back(OpI); |
| } |
| |
| DeadInst->eraseFromParent(); |
| |
| } while (!NowDeadInsts.empty()); |
| } |
| |
| bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { |
| CurLoop = L; |
| |
| // We only look at trivial single basic block loops. |
| // TODO: eventually support more complex loops, scanning the header. |
| if (L->getBlocks().size() != 1) |
| return false; |
| |
| // The trip count of the loop must be analyzable. |
| SE = &getAnalysis<ScalarEvolution>(); |
| if (!SE->hasLoopInvariantBackedgeTakenCount(L)) |
| return false; |
| const SCEV *BECount = SE->getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(BECount)) return false; |
| |
| // We require target data for now. |
| TD = getAnalysisIfAvailable<TargetData>(); |
| if (TD == 0) return false; |
| |
| BasicBlock *BB = L->getHeader(); |
| DEBUG(dbgs() << "loop-idiom Scanning: F[" << BB->getParent()->getName() |
| << "] Loop %" << BB->getName() << "\n"); |
| |
| bool MadeChange = false; |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { |
| // Look for store instructions, which may be memsets. |
| StoreInst *SI = dyn_cast<StoreInst>(I++); |
| if (SI == 0 || SI->isVolatile()) continue; |
| |
| WeakVH InstPtr(SI); |
| if (!processLoopStore(SI, BECount)) continue; |
| |
| MadeChange = true; |
| |
| // If processing the store invalidated our iterator, start over from the |
| // head of the loop. |
| if (InstPtr == 0) |
| I = BB->begin(); |
| } |
| |
| return MadeChange; |
| } |
| |
| /// scanBlock - Look over a block to see if we can promote anything out of it. |
| bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) { |
| Value *StoredVal = SI->getValueOperand(); |
| Value *StorePtr = SI->getPointerOperand(); |
| |
| // Check to see if the store updates all bits in memory. We don't want to |
| // process things like a store of i3. We also require that the store be a |
| // multiple of a byte. |
| uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType()); |
| if ((SizeInBits & 7) || (SizeInBits >> 32) != 0 || |
| SizeInBits != TD->getTypeStoreSizeInBits(StoredVal->getType())) |
| return false; |
| |
| // See if the pointer expression is an AddRec like {base,+,1} on the current |
| // loop, which indicates a strided store. If we have something else, it's a |
| // random store we can't handle. |
| const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); |
| if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine()) |
| return false; |
| |
| // Check to see if the stride matches the size of the store. If so, then we |
| // know that every byte is touched in the loop. |
| unsigned StoreSize = (unsigned)SizeInBits >> 3; |
| const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); |
| if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) |
| return false; |
| |
| // If the stored value is a byte-wise value (like i32 -1), then it may be |
| // turned into a memset of i8 -1, assuming that all the consequtive bytes |
| // are stored. A store of i32 0x01020304 can never be turned into a memset. |
| if (Value *SplatValue = isBytewiseValue(StoredVal)) |
| return processLoopStoreOfSplatValue(SI, StoreSize, SplatValue, Ev, BECount); |
| |
| // Handle the memcpy case here. |
| errs() << "Found strided store: " << *Ev << "\n"; |
| |
| |
| return false; |
| } |
| |
| /// processLoopStoreOfSplatValue - We see a strided store of a memsetable value. |
| /// If we can transform this into a memset in the loop preheader, do so. |
| bool LoopIdiomRecognize:: |
| processLoopStoreOfSplatValue(StoreInst *SI, unsigned StoreSize, |
| Value *SplatValue, |
| const SCEVAddRecExpr *Ev, const SCEV *BECount) { |
| // Okay, we have a strided store "p[i]" of a splattable value. We can turn |
| // this into a memset in the loop preheader now if we want. However, this |
| // would be unsafe to do if there is anything else in the loop that may read |
| // or write to the aliased location. Check for an alias. |
| |
| // FIXME: Need to get a base pointer that is valid. |
| // if (LoopCanModRefLocation(SI->getPointerOperand()) |
| |
| |
| // FIXME: TODO safety check. |
| |
| // Okay, everything looks good, insert the memset. |
| BasicBlock *Preheader = CurLoop->getLoopPreheader(); |
| |
| IRBuilder<> Builder(Preheader->getTerminator()); |
| |
| // The trip count of the loop and the base pointer of the addrec SCEV is |
| // guaranteed to be loop invariant, which means that it should dominate the |
| // header. Just insert code for it in the preheader. |
| SCEVExpander Expander(*SE); |
| |
| unsigned AddrSpace = SI->getPointerAddressSpace(); |
| Value *BasePtr = |
| Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace), |
| Preheader->getTerminator()); |
| |
| // The # stored bytes is (BECount+1)*Size. Expand the trip count out to |
| // pointer size if it isn't already. |
| const Type *IntPtr = TD->getIntPtrType(SI->getContext()); |
| unsigned BESize = SE->getTypeSizeInBits(BECount->getType()); |
| if (BESize < TD->getPointerSizeInBits()) |
| BECount = SE->getZeroExtendExpr(BECount, IntPtr); |
| else if (BESize > TD->getPointerSizeInBits()) |
| BECount = SE->getTruncateExpr(BECount, IntPtr); |
| |
| const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), |
| true, true /*nooverflow*/); |
| if (StoreSize != 1) |
| NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), |
| true, true /*nooverflow*/); |
| |
| Value *NumBytes = |
| Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); |
| |
| Value *NewCall = |
| Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, SI->getAlignment()); |
| |
| DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" |
| << " from store to: " << *Ev << " at: " << *SI << "\n"); |
| |
| // Okay, the memset has been formed. Zap the original store and anything that |
| // feeds into it. |
| DeleteDeadInstruction(SI, *SE); |
| return true; |
| } |
| |