| //===- InstructionCombining.cpp - Combine multiple instructions -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // InstructionCombining - Combine instructions to form fewer, simple |
| // instructions. This pass does not modify the CFG. This pass is where |
| // algebraic simplification happens. |
| // |
| // This pass combines things like: |
| // %Y = add i32 %X, 1 |
| // %Z = add i32 %Y, 1 |
| // into: |
| // %Z = add i32 %X, 2 |
| // |
| // This is a simple worklist driven algorithm. |
| // |
| // This pass guarantees that the following canonicalizations are performed on |
| // the program: |
| // 1. If a binary operator has a constant operand, it is moved to the RHS |
| // 2. Bitwise operators with constant operands are always grouped so that |
| // shifts are performed first, then or's, then and's, then xor's. |
| // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible |
| // 4. All cmp instructions on boolean values are replaced with logical ops |
| // 5. add X, X is represented as (X*2) => (X << 1) |
| // 6. Multiplies with a power-of-two constant argument are transformed into |
| // shifts. |
| // ... etc. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "instcombine" |
| #include "llvm/Transforms/Scalar.h" |
| #include "InstCombine.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Operator.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/PatternMatch.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| #include <climits> |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| STATISTIC(NumCombined , "Number of insts combined"); |
| STATISTIC(NumConstProp, "Number of constant folds"); |
| STATISTIC(NumDeadInst , "Number of dead inst eliminated"); |
| STATISTIC(NumSunkInst , "Number of instructions sunk"); |
| |
| |
| char InstCombiner::ID = 0; |
| static RegisterPass<InstCombiner> |
| X("instcombine", "Combine redundant instructions"); |
| |
| void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addPreservedID(LCSSAID); |
| AU.setPreservesCFG(); |
| } |
| |
| |
| // getPromotedType - Return the specified type promoted as it would be to pass |
| // though a va_arg area. |
| static const Type *getPromotedType(const Type *Ty) { |
| if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { |
| if (ITy->getBitWidth() < 32) |
| return Type::getInt32Ty(Ty->getContext()); |
| } |
| return Ty; |
| } |
| |
| /// ShouldChangeType - Return true if it is desirable to convert a computation |
| /// from 'From' to 'To'. We don't want to convert from a legal to an illegal |
| /// type for example, or from a smaller to a larger illegal type. |
| bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const { |
| assert(isa<IntegerType>(From) && isa<IntegerType>(To)); |
| |
| // If we don't have TD, we don't know if the source/dest are legal. |
| if (!TD) return false; |
| |
| unsigned FromWidth = From->getPrimitiveSizeInBits(); |
| unsigned ToWidth = To->getPrimitiveSizeInBits(); |
| bool FromLegal = TD->isLegalInteger(FromWidth); |
| bool ToLegal = TD->isLegalInteger(ToWidth); |
| |
| // If this is a legal integer from type, and the result would be an illegal |
| // type, don't do the transformation. |
| if (FromLegal && !ToLegal) |
| return false; |
| |
| // Otherwise, if both are illegal, do not increase the size of the result. We |
| // do allow things like i160 -> i64, but not i64 -> i160. |
| if (!FromLegal && !ToLegal && ToWidth > FromWidth) |
| return false; |
| |
| return true; |
| } |
| |
| /// getBitCastOperand - If the specified operand is a CastInst, a constant |
| /// expression bitcast, or a GetElementPtrInst with all zero indices, return the |
| /// operand value, otherwise return null. |
| static Value *getBitCastOperand(Value *V) { |
| if (Operator *O = dyn_cast<Operator>(V)) { |
| if (O->getOpcode() == Instruction::BitCast) |
| return O->getOperand(0); |
| if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) |
| if (GEP->hasAllZeroIndices()) |
| return GEP->getPointerOperand(); |
| } |
| return 0; |
| } |
| |
| |
| |
| // SimplifyCommutative - This performs a few simplifications for commutative |
| // operators: |
| // |
| // 1. Order operands such that they are listed from right (least complex) to |
| // left (most complex). This puts constants before unary operators before |
| // binary operators. |
| // |
| // 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2)) |
| // 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) |
| // |
| bool InstCombiner::SimplifyCommutative(BinaryOperator &I) { |
| bool Changed = false; |
| if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) |
| Changed = !I.swapOperands(); |
| |
| if (!I.isAssociative()) return Changed; |
| |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0))) |
| if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) { |
| if (isa<Constant>(I.getOperand(1))) { |
| Constant *Folded = ConstantExpr::get(I.getOpcode(), |
| cast<Constant>(I.getOperand(1)), |
| cast<Constant>(Op->getOperand(1))); |
| I.setOperand(0, Op->getOperand(0)); |
| I.setOperand(1, Folded); |
| return true; |
| } |
| |
| if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1))) |
| if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) && |
| Op->hasOneUse() && Op1->hasOneUse()) { |
| Constant *C1 = cast<Constant>(Op->getOperand(1)); |
| Constant *C2 = cast<Constant>(Op1->getOperand(1)); |
| |
| // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) |
| Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2); |
| Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0), |
| Op1->getOperand(0), |
| Op1->getName(), &I); |
| Worklist.Add(New); |
| I.setOperand(0, New); |
| I.setOperand(1, Folded); |
| return true; |
| } |
| } |
| return Changed; |
| } |
| |
| // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction |
| // if the LHS is a constant zero (which is the 'negate' form). |
| // |
| Value *InstCombiner::dyn_castNegVal(Value *V) const { |
| if (BinaryOperator::isNeg(V)) |
| return BinaryOperator::getNegArgument(V); |
| |
| // Constants can be considered to be negated values if they can be folded. |
| if (ConstantInt *C = dyn_cast<ConstantInt>(V)) |
| return ConstantExpr::getNeg(C); |
| |
| if (ConstantVector *C = dyn_cast<ConstantVector>(V)) |
| if (C->getType()->getElementType()->isInteger()) |
| return ConstantExpr::getNeg(C); |
| |
| return 0; |
| } |
| |
| // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the |
| // instruction if the LHS is a constant negative zero (which is the 'negate' |
| // form). |
| // |
| Value *InstCombiner::dyn_castFNegVal(Value *V) const { |
| if (BinaryOperator::isFNeg(V)) |
| return BinaryOperator::getFNegArgument(V); |
| |
| // Constants can be considered to be negated values if they can be folded. |
| if (ConstantFP *C = dyn_cast<ConstantFP>(V)) |
| return ConstantExpr::getFNeg(C); |
| |
| if (ConstantVector *C = dyn_cast<ConstantVector>(V)) |
| if (C->getType()->getElementType()->isFloatingPoint()) |
| return ConstantExpr::getFNeg(C); |
| |
| return 0; |
| } |
| |
| /// isFreeToInvert - Return true if the specified value is free to invert (apply |
| /// ~ to). This happens in cases where the ~ can be eliminated. |
| static inline bool isFreeToInvert(Value *V) { |
| // ~(~(X)) -> X. |
| if (BinaryOperator::isNot(V)) |
| return true; |
| |
| // Constants can be considered to be not'ed values. |
| if (isa<ConstantInt>(V)) |
| return true; |
| |
| // Compares can be inverted if they have a single use. |
| if (CmpInst *CI = dyn_cast<CmpInst>(V)) |
| return CI->hasOneUse(); |
| |
| return false; |
| } |
| |
| static inline Value *dyn_castNotVal(Value *V) { |
| // If this is not(not(x)) don't return that this is a not: we want the two |
| // not's to be folded first. |
| if (BinaryOperator::isNot(V)) { |
| Value *Operand = BinaryOperator::getNotArgument(V); |
| if (!isFreeToInvert(Operand)) |
| return Operand; |
| } |
| |
| // Constants can be considered to be not'ed values... |
| if (ConstantInt *C = dyn_cast<ConstantInt>(V)) |
| return ConstantInt::get(C->getType(), ~C->getValue()); |
| return 0; |
| } |
| |
| |
| |
| // dyn_castFoldableMul - If this value is a multiply that can be folded into |
| // other computations (because it has a constant operand), return the |
| // non-constant operand of the multiply, and set CST to point to the multiplier. |
| // Otherwise, return null. |
| // |
| static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { |
| if (V->hasOneUse() && V->getType()->isInteger()) |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| if (I->getOpcode() == Instruction::Mul) |
| if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) |
| return I->getOperand(0); |
| if (I->getOpcode() == Instruction::Shl) |
| if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) { |
| // The multiplier is really 1 << CST. |
| uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); |
| uint32_t CSTVal = CST->getLimitedValue(BitWidth); |
| CST = ConstantInt::get(V->getType()->getContext(), |
| APInt(BitWidth, 1).shl(CSTVal)); |
| return I->getOperand(0); |
| } |
| } |
| return 0; |
| } |
| |
| /// AddOne - Add one to a ConstantInt. |
| static Constant *AddOne(Constant *C) { |
| return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); |
| } |
| /// SubOne - Subtract one from a ConstantInt. |
| static Constant *SubOne(ConstantInt *C) { |
| return ConstantInt::get(C->getContext(), C->getValue()-1); |
| } |
| |
| |
| static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, |
| InstCombiner *IC) { |
| if (CastInst *CI = dyn_cast<CastInst>(&I)) |
| return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); |
| |
| // Figure out if the constant is the left or the right argument. |
| bool ConstIsRHS = isa<Constant>(I.getOperand(1)); |
| Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); |
| |
| if (Constant *SOC = dyn_cast<Constant>(SO)) { |
| if (ConstIsRHS) |
| return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); |
| return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); |
| } |
| |
| Value *Op0 = SO, *Op1 = ConstOperand; |
| if (!ConstIsRHS) |
| std::swap(Op0, Op1); |
| |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) |
| return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, |
| SO->getName()+".op"); |
| if (ICmpInst *CI = dyn_cast<ICmpInst>(&I)) |
| return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, |
| SO->getName()+".cmp"); |
| if (FCmpInst *CI = dyn_cast<FCmpInst>(&I)) |
| return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, |
| SO->getName()+".cmp"); |
| llvm_unreachable("Unknown binary instruction type!"); |
| } |
| |
| // FoldOpIntoSelect - Given an instruction with a select as one operand and a |
| // constant as the other operand, try to fold the binary operator into the |
| // select arguments. This also works for Cast instructions, which obviously do |
| // not have a second operand. |
| Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { |
| // Don't modify shared select instructions |
| if (!SI->hasOneUse()) return 0; |
| Value *TV = SI->getOperand(1); |
| Value *FV = SI->getOperand(2); |
| |
| if (isa<Constant>(TV) || isa<Constant>(FV)) { |
| // Bool selects with constant operands can be folded to logical ops. |
| if (SI->getType() == Type::getInt1Ty(SI->getContext())) return 0; |
| |
| Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); |
| Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); |
| |
| return SelectInst::Create(SI->getCondition(), SelectTrueVal, |
| SelectFalseVal); |
| } |
| return 0; |
| } |
| |
| |
| /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which |
| /// has a PHI node as operand #0, see if we can fold the instruction into the |
| /// PHI (which is only possible if all operands to the PHI are constants). |
| /// |
| /// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms |
| /// that would normally be unprofitable because they strongly encourage jump |
| /// threading. |
| Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I, |
| bool AllowAggressive) { |
| AllowAggressive = false; |
| PHINode *PN = cast<PHINode>(I.getOperand(0)); |
| unsigned NumPHIValues = PN->getNumIncomingValues(); |
| if (NumPHIValues == 0 || |
| // We normally only transform phis with a single use, unless we're trying |
| // hard to make jump threading happen. |
| (!PN->hasOneUse() && !AllowAggressive)) |
| return 0; |
| |
| |
| // Check to see if all of the operands of the PHI are simple constants |
| // (constantint/constantfp/undef). If there is one non-constant value, |
| // remember the BB it is in. If there is more than one or if *it* is a PHI, |
| // bail out. We don't do arbitrary constant expressions here because moving |
| // their computation can be expensive without a cost model. |
| BasicBlock *NonConstBB = 0; |
| for (unsigned i = 0; i != NumPHIValues; ++i) |
| if (!isa<Constant>(PN->getIncomingValue(i)) || |
| isa<ConstantExpr>(PN->getIncomingValue(i))) { |
| if (NonConstBB) return 0; // More than one non-const value. |
| if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi. |
| NonConstBB = PN->getIncomingBlock(i); |
| |
| // If the incoming non-constant value is in I's block, we have an infinite |
| // loop. |
| if (NonConstBB == I.getParent()) |
| return 0; |
| } |
| |
| // If there is exactly one non-constant value, we can insert a copy of the |
| // operation in that block. However, if this is a critical edge, we would be |
| // inserting the computation one some other paths (e.g. inside a loop). Only |
| // do this if the pred block is unconditionally branching into the phi block. |
| if (NonConstBB != 0 && !AllowAggressive) { |
| BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); |
| if (!BI || !BI->isUnconditional()) return 0; |
| } |
| |
| // Okay, we can do the transformation: create the new PHI node. |
| PHINode *NewPN = PHINode::Create(I.getType(), ""); |
| NewPN->reserveOperandSpace(PN->getNumOperands()/2); |
| InsertNewInstBefore(NewPN, *PN); |
| NewPN->takeName(PN); |
| |
| // Next, add all of the operands to the PHI. |
| if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { |
| // We only currently try to fold the condition of a select when it is a phi, |
| // not the true/false values. |
| Value *TrueV = SI->getTrueValue(); |
| Value *FalseV = SI->getFalseValue(); |
| BasicBlock *PhiTransBB = PN->getParent(); |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| BasicBlock *ThisBB = PN->getIncomingBlock(i); |
| Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); |
| Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); |
| Value *InV = 0; |
| if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { |
| InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; |
| } else { |
| assert(PN->getIncomingBlock(i) == NonConstBB); |
| InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred, |
| FalseVInPred, |
| "phitmp", NonConstBB->getTerminator()); |
| Worklist.Add(cast<Instruction>(InV)); |
| } |
| NewPN->addIncoming(InV, ThisBB); |
| } |
| } else if (I.getNumOperands() == 2) { |
| Constant *C = cast<Constant>(I.getOperand(1)); |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InV = 0; |
| if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { |
| if (CmpInst *CI = dyn_cast<CmpInst>(&I)) |
| InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); |
| else |
| InV = ConstantExpr::get(I.getOpcode(), InC, C); |
| } else { |
| assert(PN->getIncomingBlock(i) == NonConstBB); |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) |
| InV = BinaryOperator::Create(BO->getOpcode(), |
| PN->getIncomingValue(i), C, "phitmp", |
| NonConstBB->getTerminator()); |
| else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) |
| InV = CmpInst::Create(CI->getOpcode(), |
| CI->getPredicate(), |
| PN->getIncomingValue(i), C, "phitmp", |
| NonConstBB->getTerminator()); |
| else |
| llvm_unreachable("Unknown binop!"); |
| |
| Worklist.Add(cast<Instruction>(InV)); |
| } |
| NewPN->addIncoming(InV, PN->getIncomingBlock(i)); |
| } |
| } else { |
| CastInst *CI = cast<CastInst>(&I); |
| const Type *RetTy = CI->getType(); |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InV; |
| if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { |
| InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); |
| } else { |
| assert(PN->getIncomingBlock(i) == NonConstBB); |
| InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i), |
| I.getType(), "phitmp", |
| NonConstBB->getTerminator()); |
| Worklist.Add(cast<Instruction>(InV)); |
| } |
| NewPN->addIncoming(InV, PN->getIncomingBlock(i)); |
| } |
| } |
| return ReplaceInstUsesWith(I, NewPN); |
| } |
| |
| |
| /// WillNotOverflowSignedAdd - Return true if we can prove that: |
| /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) |
| /// This basically requires proving that the add in the original type would not |
| /// overflow to change the sign bit or have a carry out. |
| bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) { |
| // There are different heuristics we can use for this. Here are some simple |
| // ones. |
| |
| // Add has the property that adding any two 2's complement numbers can only |
| // have one carry bit which can change a sign. As such, if LHS and RHS each |
| // have at least two sign bits, we know that the addition of the two values |
| // will sign extend fine. |
| if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1) |
| return true; |
| |
| |
| // If one of the operands only has one non-zero bit, and if the other operand |
| // has a known-zero bit in a more significant place than it (not including the |
| // sign bit) the ripple may go up to and fill the zero, but won't change the |
| // sign. For example, (X & ~4) + 1. |
| |
| // TODO: Implement. |
| |
| return false; |
| } |
| |
| |
| Instruction *InstCombiner::visitAdd(BinaryOperator &I) { |
| bool Changed = SimplifyCommutative(I); |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| |
| if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), |
| I.hasNoUnsignedWrap(), TD)) |
| return ReplaceInstUsesWith(I, V); |
| |
| |
| if (Constant *RHSC = dyn_cast<Constant>(RHS)) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) { |
| // X + (signbit) --> X ^ signbit |
| const APInt& Val = CI->getValue(); |
| uint32_t BitWidth = Val.getBitWidth(); |
| if (Val == APInt::getSignBit(BitWidth)) |
| return BinaryOperator::CreateXor(LHS, RHS); |
| |
| // See if SimplifyDemandedBits can simplify this. This handles stuff like |
| // (X & 254)+1 -> (X&254)|1 |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| // zext(bool) + C -> bool ? C + 1 : C |
| if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) |
| if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext())) |
| return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); |
| } |
| |
| if (isa<PHINode>(LHS)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| |
| ConstantInt *XorRHS = 0; |
| Value *XorLHS = 0; |
| if (isa<ConstantInt>(RHSC) && |
| match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { |
| uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); |
| const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue(); |
| |
| uint32_t Size = TySizeBits / 2; |
| APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1)); |
| APInt CFF80Val(-C0080Val); |
| do { |
| if (TySizeBits > Size) { |
| // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. |
| // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. |
| if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) || |
| (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) { |
| // This is a sign extend if the top bits are known zero. |
| if (!MaskedValueIsZero(XorLHS, |
| APInt::getHighBitsSet(TySizeBits, TySizeBits - Size))) |
| Size = 0; // Not a sign ext, but can't be any others either. |
| break; |
| } |
| } |
| Size >>= 1; |
| C0080Val = APIntOps::lshr(C0080Val, Size); |
| CFF80Val = APIntOps::ashr(CFF80Val, Size); |
| } while (Size >= 1); |
| |
| // FIXME: This shouldn't be necessary. When the backends can handle types |
| // with funny bit widths then this switch statement should be removed. It |
| // is just here to get the size of the "middle" type back up to something |
| // that the back ends can handle. |
| const Type *MiddleType = 0; |
| switch (Size) { |
| default: break; |
| case 32: |
| case 16: |
| case 8: MiddleType = IntegerType::get(I.getContext(), Size); break; |
| } |
| if (MiddleType) { |
| Value *NewTrunc = Builder->CreateTrunc(XorLHS, MiddleType, "sext"); |
| return new SExtInst(NewTrunc, I.getType(), I.getName()); |
| } |
| } |
| } |
| |
| if (I.getType() == Type::getInt1Ty(I.getContext())) |
| return BinaryOperator::CreateXor(LHS, RHS); |
| |
| if (I.getType()->isInteger()) { |
| // X + X --> X << 1 |
| if (LHS == RHS) |
| return BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); |
| |
| if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) { |
| if (RHSI->getOpcode() == Instruction::Sub) |
| if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B |
| return ReplaceInstUsesWith(I, RHSI->getOperand(0)); |
| } |
| if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) { |
| if (LHSI->getOpcode() == Instruction::Sub) |
| if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B |
| return ReplaceInstUsesWith(I, LHSI->getOperand(0)); |
| } |
| } |
| |
| // -A + B --> B - A |
| // -A + -B --> -(A + B) |
| if (Value *LHSV = dyn_castNegVal(LHS)) { |
| if (LHS->getType()->isIntOrIntVector()) { |
| if (Value *RHSV = dyn_castNegVal(RHS)) { |
| Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); |
| return BinaryOperator::CreateNeg(NewAdd); |
| } |
| } |
| |
| return BinaryOperator::CreateSub(RHS, LHSV); |
| } |
| |
| // A + -B --> A - B |
| if (!isa<Constant>(RHS)) |
| if (Value *V = dyn_castNegVal(RHS)) |
| return BinaryOperator::CreateSub(LHS, V); |
| |
| |
| ConstantInt *C2; |
| if (Value *X = dyn_castFoldableMul(LHS, C2)) { |
| if (X == RHS) // X*C + X --> X * (C+1) |
| return BinaryOperator::CreateMul(RHS, AddOne(C2)); |
| |
| // X*C1 + X*C2 --> X * (C1+C2) |
| ConstantInt *C1; |
| if (X == dyn_castFoldableMul(RHS, C1)) |
| return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2)); |
| } |
| |
| // X + X*C --> X * (C+1) |
| if (dyn_castFoldableMul(RHS, C2) == LHS) |
| return BinaryOperator::CreateMul(LHS, AddOne(C2)); |
| |
| // X + ~X --> -1 since ~X = -X-1 |
| if (dyn_castNotVal(LHS) == RHS || |
| dyn_castNotVal(RHS) == LHS) |
| return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); |
| |
| |
| // A+B --> A|B iff A and B have no bits set in common. |
| if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { |
| APInt Mask = APInt::getAllOnesValue(IT->getBitWidth()); |
| APInt LHSKnownOne(IT->getBitWidth(), 0); |
| APInt LHSKnownZero(IT->getBitWidth(), 0); |
| ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); |
| if (LHSKnownZero != 0) { |
| APInt RHSKnownOne(IT->getBitWidth(), 0); |
| APInt RHSKnownZero(IT->getBitWidth(), 0); |
| ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); |
| |
| // No bits in common -> bitwise or. |
| if ((LHSKnownZero|RHSKnownZero).isAllOnesValue()) |
| return BinaryOperator::CreateOr(LHS, RHS); |
| } |
| } |
| |
| // W*X + Y*Z --> W * (X+Z) iff W == Y |
| if (I.getType()->isIntOrIntVector()) { |
| Value *W, *X, *Y, *Z; |
| if (match(LHS, m_Mul(m_Value(W), m_Value(X))) && |
| match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) { |
| if (W != Y) { |
| if (W == Z) { |
| std::swap(Y, Z); |
| } else if (Y == X) { |
| std::swap(W, X); |
| } else if (X == Z) { |
| std::swap(Y, Z); |
| std::swap(W, X); |
| } |
| } |
| |
| if (W == Y) { |
| Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName()); |
| return BinaryOperator::CreateMul(W, NewAdd); |
| } |
| } |
| } |
| |
| if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { |
| Value *X = 0; |
| if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X |
| return BinaryOperator::CreateSub(SubOne(CRHS), X); |
| |
| // (X & FF00) + xx00 -> (X+xx00) & FF00 |
| if (LHS->hasOneUse() && |
| match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) { |
| Constant *Anded = ConstantExpr::getAnd(CRHS, C2); |
| if (Anded == CRHS) { |
| // See if all bits from the first bit set in the Add RHS up are included |
| // in the mask. First, get the rightmost bit. |
| const APInt &AddRHSV = CRHS->getValue(); |
| |
| // Form a mask of all bits from the lowest bit added through the top. |
| APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); |
| |
| // See if the and mask includes all of these bits. |
| APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); |
| |
| if (AddRHSHighBits == AddRHSHighBitsAnd) { |
| // Okay, the xform is safe. Insert the new add pronto. |
| Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); |
| return BinaryOperator::CreateAnd(NewAdd, C2); |
| } |
| } |
| } |
| |
| // Try to fold constant add into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| } |
| |
| // add (select X 0 (sub n A)) A --> select X A n |
| { |
| SelectInst *SI = dyn_cast<SelectInst>(LHS); |
| Value *A = RHS; |
| if (!SI) { |
| SI = dyn_cast<SelectInst>(RHS); |
| A = LHS; |
| } |
| if (SI && SI->hasOneUse()) { |
| Value *TV = SI->getTrueValue(); |
| Value *FV = SI->getFalseValue(); |
| Value *N; |
| |
| // Can we fold the add into the argument of the select? |
| // We check both true and false select arguments for a matching subtract. |
| if (match(FV, m_Zero()) && |
| match(TV, m_Sub(m_Value(N), m_Specific(A)))) |
| // Fold the add into the true select value. |
| return SelectInst::Create(SI->getCondition(), N, A); |
| if (match(TV, m_Zero()) && |
| match(FV, m_Sub(m_Value(N), m_Specific(A)))) |
| // Fold the add into the false select value. |
| return SelectInst::Create(SI->getCondition(), A, N); |
| } |
| } |
| |
| // Check for (add (sext x), y), see if we can merge this into an |
| // integer add followed by a sext. |
| if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { |
| // (add (sext x), cst) --> (sext (add x, cst')) |
| if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { |
| Constant *CI = |
| ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); |
| if (LHSConv->hasOneUse() && |
| ConstantExpr::getSExt(CI, I.getType()) == RHSC && |
| WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { |
| // Insert the new, smaller add. |
| Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), |
| CI, "addconv"); |
| return new SExtInst(NewAdd, I.getType()); |
| } |
| } |
| |
| // (add (sext x), (sext y)) --> (sext (add int x, y)) |
| if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { |
| // Only do this if x/y have the same type, if at last one of them has a |
| // single use (so we don't increase the number of sexts), and if the |
| // integer add will not overflow. |
| if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& |
| (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && |
| WillNotOverflowSignedAdd(LHSConv->getOperand(0), |
| RHSConv->getOperand(0))) { |
| // Insert the new integer add. |
| Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), |
| RHSConv->getOperand(0), "addconv"); |
| return new SExtInst(NewAdd, I.getType()); |
| } |
| } |
| } |
| |
| return Changed ? &I : 0; |
| } |
| |
| Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { |
| bool Changed = SimplifyCommutative(I); |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| |
| if (Constant *RHSC = dyn_cast<Constant>(RHS)) { |
| // X + 0 --> X |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { |
| if (CFP->isExactlyValue(ConstantFP::getNegativeZero |
| (I.getType())->getValueAPF())) |
| return ReplaceInstUsesWith(I, LHS); |
| } |
| |
| if (isa<PHINode>(LHS)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| } |
| |
| // -A + B --> B - A |
| // -A + -B --> -(A + B) |
| if (Value *LHSV = dyn_castFNegVal(LHS)) |
| return BinaryOperator::CreateFSub(RHS, LHSV); |
| |
| // A + -B --> A - B |
| if (!isa<Constant>(RHS)) |
| if (Value *V = dyn_castFNegVal(RHS)) |
| return BinaryOperator::CreateFSub(LHS, V); |
| |
| // Check for X+0.0. Simplify it to X if we know X is not -0.0. |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) |
| if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS)) |
| return ReplaceInstUsesWith(I, LHS); |
| |
| // Check for (add double (sitofp x), y), see if we can merge this into an |
| // integer add followed by a promotion. |
| if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { |
| // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) |
| // ... if the constant fits in the integer value. This is useful for things |
| // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer |
| // requires a constant pool load, and generally allows the add to be better |
| // instcombined. |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { |
| Constant *CI = |
| ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); |
| if (LHSConv->hasOneUse() && |
| ConstantExpr::getSIToFP(CI, I.getType()) == CFP && |
| WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { |
| // Insert the new integer add. |
| Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), |
| CI, "addconv"); |
| return new SIToFPInst(NewAdd, I.getType()); |
| } |
| } |
| |
| // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) |
| if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { |
| // Only do this if x/y have the same type, if at last one of them has a |
| // single use (so we don't increase the number of int->fp conversions), |
| // and if the integer add will not overflow. |
| if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& |
| (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && |
| WillNotOverflowSignedAdd(LHSConv->getOperand(0), |
| RHSConv->getOperand(0))) { |
| // Insert the new integer add. |
| Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), |
| RHSConv->getOperand(0),"addconv"); |
| return new SIToFPInst(NewAdd, I.getType()); |
| } |
| } |
| } |
| |
| return Changed ? &I : 0; |
| } |
| |
| |
| /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the |
| /// code necessary to compute the offset from the base pointer (without adding |
| /// in the base pointer). Return the result as a signed integer of intptr size. |
| Value *InstCombiner::EmitGEPOffset(User *GEP) { |
| TargetData &TD = *getTargetData(); |
| gep_type_iterator GTI = gep_type_begin(GEP); |
| const Type *IntPtrTy = TD.getIntPtrType(GEP->getContext()); |
| Value *Result = Constant::getNullValue(IntPtrTy); |
| |
| // Build a mask for high order bits. |
| unsigned IntPtrWidth = TD.getPointerSizeInBits(); |
| uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); |
| |
| for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e; |
| ++i, ++GTI) { |
| Value *Op = *i; |
| uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask; |
| if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) { |
| if (OpC->isZero()) continue; |
| |
| // Handle a struct index, which adds its field offset to the pointer. |
| if (const StructType *STy = dyn_cast<StructType>(*GTI)) { |
| Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); |
| |
| Result = Builder->CreateAdd(Result, |
| ConstantInt::get(IntPtrTy, Size), |
| GEP->getName()+".offs"); |
| continue; |
| } |
| |
| Constant *Scale = ConstantInt::get(IntPtrTy, Size); |
| Constant *OC = |
| ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/); |
| Scale = ConstantExpr::getMul(OC, Scale); |
| // Emit an add instruction. |
| Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs"); |
| continue; |
| } |
| // Convert to correct type. |
| if (Op->getType() != IntPtrTy) |
| Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c"); |
| if (Size != 1) { |
| Constant *Scale = ConstantInt::get(IntPtrTy, Size); |
| // We'll let instcombine(mul) convert this to a shl if possible. |
| Op = Builder->CreateMul(Op, Scale, GEP->getName()+".idx"); |
| } |
| |
| // Emit an add instruction. |
| Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs"); |
| } |
| return Result; |
| } |
| |
| |
| |
| |
| /// Optimize pointer differences into the same array into a size. Consider: |
| /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer |
| /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. |
| /// |
| Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, |
| const Type *Ty) { |
| assert(TD && "Must have target data info for this"); |
| |
| // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize |
| // this. |
| bool Swapped = false; |
| GetElementPtrInst *GEP = 0; |
| ConstantExpr *CstGEP = 0; |
| |
| // TODO: Could also optimize &A[i] - &A[j] -> "i-j", and "&A.foo[i] - &A.foo". |
| // For now we require one side to be the base pointer "A" or a constant |
| // expression derived from it. |
| if (GetElementPtrInst *LHSGEP = dyn_cast<GetElementPtrInst>(LHS)) { |
| // (gep X, ...) - X |
| if (LHSGEP->getOperand(0) == RHS) { |
| GEP = LHSGEP; |
| Swapped = false; |
| } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(RHS)) { |
| // (gep X, ...) - (ce_gep X, ...) |
| if (CE->getOpcode() == Instruction::GetElementPtr && |
| LHSGEP->getOperand(0) == CE->getOperand(0)) { |
| CstGEP = CE; |
| GEP = LHSGEP; |
| Swapped = false; |
| } |
| } |
| } |
| |
| if (GetElementPtrInst *RHSGEP = dyn_cast<GetElementPtrInst>(RHS)) { |
| // X - (gep X, ...) |
| if (RHSGEP->getOperand(0) == LHS) { |
| GEP = RHSGEP; |
| Swapped = true; |
| } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(LHS)) { |
| // (ce_gep X, ...) - (gep X, ...) |
| if (CE->getOpcode() == Instruction::GetElementPtr && |
| RHSGEP->getOperand(0) == CE->getOperand(0)) { |
| CstGEP = CE; |
| GEP = RHSGEP; |
| Swapped = true; |
| } |
| } |
| } |
| |
| if (GEP == 0) |
| return 0; |
| |
| // Emit the offset of the GEP and an intptr_t. |
| Value *Result = EmitGEPOffset(GEP); |
| |
| // If we had a constant expression GEP on the other side offsetting the |
| // pointer, subtract it from the offset we have. |
| if (CstGEP) { |
| Value *CstOffset = EmitGEPOffset(CstGEP); |
| Result = Builder->CreateSub(Result, CstOffset); |
| } |
| |
| |
| // If we have p - gep(p, ...) then we have to negate the result. |
| if (Swapped) |
| Result = Builder->CreateNeg(Result, "diff.neg"); |
| |
| return Builder->CreateIntCast(Result, Ty, true); |
| } |
| |
| |
| Instruction *InstCombiner::visitSub(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Op0 == Op1) // sub X, X -> 0 |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| |
| // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW. |
| if (Value *V = dyn_castNegVal(Op1)) { |
| BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); |
| Res->setHasNoSignedWrap(I.hasNoSignedWrap()); |
| Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); |
| return Res; |
| } |
| |
| if (isa<UndefValue>(Op0)) |
| return ReplaceInstUsesWith(I, Op0); // undef - X -> undef |
| if (isa<UndefValue>(Op1)) |
| return ReplaceInstUsesWith(I, Op1); // X - undef -> undef |
| if (I.getType() == Type::getInt1Ty(I.getContext())) |
| return BinaryOperator::CreateXor(Op0, Op1); |
| |
| if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { |
| // Replace (-1 - A) with (~A). |
| if (C->isAllOnesValue()) |
| return BinaryOperator::CreateNot(Op1); |
| |
| // C - ~X == X + (1+C) |
| Value *X = 0; |
| if (match(Op1, m_Not(m_Value(X)))) |
| return BinaryOperator::CreateAdd(X, AddOne(C)); |
| |
| // -(X >>u 31) -> (X >>s 31) |
| // -(X >>s 31) -> (X >>u 31) |
| if (C->isZero()) { |
| if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) { |
| if (SI->getOpcode() == Instruction::LShr) { |
| if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) { |
| // Check to see if we are shifting out everything but the sign bit. |
| if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) == |
| SI->getType()->getPrimitiveSizeInBits()-1) { |
| // Ok, the transformation is safe. Insert AShr. |
| return BinaryOperator::Create(Instruction::AShr, |
| SI->getOperand(0), CU, SI->getName()); |
| } |
| } |
| } else if (SI->getOpcode() == Instruction::AShr) { |
| if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) { |
| // Check to see if we are shifting out everything but the sign bit. |
| if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) == |
| SI->getType()->getPrimitiveSizeInBits()-1) { |
| // Ok, the transformation is safe. Insert LShr. |
| return BinaryOperator::CreateLShr( |
| SI->getOperand(0), CU, SI->getName()); |
| } |
| } |
| } |
| } |
| } |
| |
| // Try to fold constant sub into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| // C - zext(bool) -> bool ? C - 1 : C |
| if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1)) |
| if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext())) |
| return SelectInst::Create(ZI->getOperand(0), SubOne(C), C); |
| } |
| |
| if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) { |
| if (Op1I->getOpcode() == Instruction::Add) { |
| if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y |
| return BinaryOperator::CreateNeg(Op1I->getOperand(1), |
| I.getName()); |
| else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y |
| return BinaryOperator::CreateNeg(Op1I->getOperand(0), |
| I.getName()); |
| else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) { |
| if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1))) |
| // C1-(X+C2) --> (C1-C2)-X |
| return BinaryOperator::CreateSub( |
| ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0)); |
| } |
| } |
| |
| if (Op1I->hasOneUse()) { |
| // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression |
| // is not used by anyone else... |
| // |
| if (Op1I->getOpcode() == Instruction::Sub) { |
| // Swap the two operands of the subexpr... |
| Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1); |
| Op1I->setOperand(0, IIOp1); |
| Op1I->setOperand(1, IIOp0); |
| |
| // Create the new top level add instruction... |
| return BinaryOperator::CreateAdd(Op0, Op1); |
| } |
| |
| // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)... |
| // |
| if (Op1I->getOpcode() == Instruction::And && |
| (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) { |
| Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0); |
| |
| Value *NewNot = Builder->CreateNot(OtherOp, "B.not"); |
| return BinaryOperator::CreateAnd(Op0, NewNot); |
| } |
| |
| // 0 - (X sdiv C) -> (X sdiv -C) |
| if (Op1I->getOpcode() == Instruction::SDiv) |
| if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) |
| if (CSI->isZero()) |
| if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1))) |
| return BinaryOperator::CreateSDiv(Op1I->getOperand(0), |
| ConstantExpr::getNeg(DivRHS)); |
| |
| // X - X*C --> X * (1-C) |
| ConstantInt *C2 = 0; |
| if (dyn_castFoldableMul(Op1I, C2) == Op0) { |
| Constant *CP1 = |
| ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), |
| C2); |
| return BinaryOperator::CreateMul(Op0, CP1); |
| } |
| } |
| } |
| |
| if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { |
| if (Op0I->getOpcode() == Instruction::Add) { |
| if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X |
| return ReplaceInstUsesWith(I, Op0I->getOperand(1)); |
| else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X |
| return ReplaceInstUsesWith(I, Op0I->getOperand(0)); |
| } else if (Op0I->getOpcode() == Instruction::Sub) { |
| if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y |
| return BinaryOperator::CreateNeg(Op0I->getOperand(1), |
| I.getName()); |
| } |
| } |
| |
| ConstantInt *C1; |
| if (Value *X = dyn_castFoldableMul(Op0, C1)) { |
| if (X == Op1) // X*C - X --> X * (C-1) |
| return BinaryOperator::CreateMul(Op1, SubOne(C1)); |
| |
| ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) |
| if (X == dyn_castFoldableMul(Op1, C2)) |
| return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2)); |
| } |
| |
| // Optimize pointer differences into the same array into a size. Consider: |
| // &A[10] - &A[0]: we should compile this to "10". |
| if (TD) { |
| Value *LHSOp, *RHSOp; |
| if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && |
| match(Op1, m_PtrToInt(m_Value(RHSOp)))) |
| if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) |
| return ReplaceInstUsesWith(I, Res); |
| |
| // trunc(p)-trunc(q) -> trunc(p-q) |
| if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && |
| match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) |
| if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) |
| return ReplaceInstUsesWith(I, Res); |
| } |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitFSub(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // If this is a 'B = x-(-A)', change to B = x+A... |
| if (Value *V = dyn_castFNegVal(Op1)) |
| return BinaryOperator::CreateFAdd(Op0, V); |
| |
| if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) { |
| if (Op1I->getOpcode() == Instruction::FAdd) { |
| if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y |
| return BinaryOperator::CreateFNeg(Op1I->getOperand(1), |
| I.getName()); |
| else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y |
| return BinaryOperator::CreateFNeg(Op1I->getOperand(0), |
| I.getName()); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// getICmpCode - Encode a icmp predicate into a three bit mask. These bits |
| /// are carefully arranged to allow folding of expressions such as: |
| /// |
| /// (A < B) | (A > B) --> (A != B) |
| /// |
| /// Note that this is only valid if the first and second predicates have the |
| /// same sign. Is illegal to do: (A u< B) | (A s> B) |
| /// |
| /// Three bits are used to represent the condition, as follows: |
| /// 0 A > B |
| /// 1 A == B |
| /// 2 A < B |
| /// |
| /// <=> Value Definition |
| /// 000 0 Always false |
| /// 001 1 A > B |
| /// 010 2 A == B |
| /// 011 3 A >= B |
| /// 100 4 A < B |
| /// 101 5 A != B |
| /// 110 6 A <= B |
| /// 111 7 Always true |
| /// |
| static unsigned getICmpCode(const ICmpInst *ICI) { |
| switch (ICI->getPredicate()) { |
| // False -> 0 |
| case ICmpInst::ICMP_UGT: return 1; // 001 |
| case ICmpInst::ICMP_SGT: return 1; // 001 |
| case ICmpInst::ICMP_EQ: return 2; // 010 |
| case ICmpInst::ICMP_UGE: return 3; // 011 |
| case ICmpInst::ICMP_SGE: return 3; // 011 |
| case ICmpInst::ICMP_ULT: return 4; // 100 |
| case ICmpInst::ICMP_SLT: return 4; // 100 |
| case ICmpInst::ICMP_NE: return 5; // 101 |
| case ICmpInst::ICMP_ULE: return 6; // 110 |
| case ICmpInst::ICMP_SLE: return 6; // 110 |
| // True -> 7 |
| default: |
| llvm_unreachable("Invalid ICmp predicate!"); |
| return 0; |
| } |
| } |
| |
| /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp |
| /// predicate into a three bit mask. It also returns whether it is an ordered |
| /// predicate by reference. |
| static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) { |
| isOrdered = false; |
| switch (CC) { |
| case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000 |
| case FCmpInst::FCMP_UNO: return 0; // 000 |
| case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001 |
| case FCmpInst::FCMP_UGT: return 1; // 001 |
| case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010 |
| case FCmpInst::FCMP_UEQ: return 2; // 010 |
| case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011 |
| case FCmpInst::FCMP_UGE: return 3; // 011 |
| case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100 |
| case FCmpInst::FCMP_ULT: return 4; // 100 |
| case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101 |
| case FCmpInst::FCMP_UNE: return 5; // 101 |
| case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110 |
| case FCmpInst::FCMP_ULE: return 6; // 110 |
| // True -> 7 |
| default: |
| // Not expecting FCMP_FALSE and FCMP_TRUE; |
| llvm_unreachable("Unexpected FCmp predicate!"); |
| return 0; |
| } |
| } |
| |
| /// getICmpValue - This is the complement of getICmpCode, which turns an |
| /// opcode and two operands into either a constant true or false, or a brand |
| /// new ICmp instruction. The sign is passed in to determine which kind |
| /// of predicate to use in the new icmp instruction. |
| static Value *getICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS) { |
| switch (Code) { |
| default: assert(0 && "Illegal ICmp code!"); |
| case 0: |
| return ConstantInt::getFalse(LHS->getContext()); |
| case 1: |
| if (Sign) |
| return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS); |
| return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS); |
| case 2: |
| return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS); |
| case 3: |
| if (Sign) |
| return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS); |
| return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS); |
| case 4: |
| if (Sign) |
| return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS); |
| return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS); |
| case 5: |
| return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS); |
| case 6: |
| if (Sign) |
| return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS); |
| return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS); |
| case 7: |
| return ConstantInt::getTrue(LHS->getContext()); |
| } |
| } |
| |
| /// getFCmpValue - This is the complement of getFCmpCode, which turns an |
| /// opcode and two operands into either a FCmp instruction. isordered is passed |
| /// in to determine which kind of predicate to use in the new fcmp instruction. |
| static Value *getFCmpValue(bool isordered, unsigned code, |
| Value *LHS, Value *RHS) { |
| switch (code) { |
| default: llvm_unreachable("Illegal FCmp code!"); |
| case 0: |
| if (isordered) |
| return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS); |
| else |
| return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS); |
| case 1: |
| if (isordered) |
| return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS); |
| else |
| return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS); |
| case 2: |
| if (isordered) |
| return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS); |
| else |
| return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS); |
| case 3: |
| if (isordered) |
| return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS); |
| else |
| return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS); |
| case 4: |
| if (isordered) |
| return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS); |
| else |
| return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS); |
| case 5: |
| if (isordered) |
| return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS); |
| else |
| return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS); |
| case 6: |
| if (isordered) |
| return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS); |
| else |
| return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS); |
| case 7: return ConstantInt::getTrue(LHS->getContext()); |
| } |
| } |
| |
| /// PredicatesFoldable - Return true if both predicates match sign or if at |
| /// least one of them is an equality comparison (which is signless). |
| static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) { |
| return (CmpInst::isSigned(p1) == CmpInst::isSigned(p2)) || |
| (CmpInst::isSigned(p1) && ICmpInst::isEquality(p2)) || |
| (CmpInst::isSigned(p2) && ICmpInst::isEquality(p1)); |
| } |
| |
| // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where |
| // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is |
| // guaranteed to be a binary operator. |
| Instruction *InstCombiner::OptAndOp(Instruction *Op, |
| ConstantInt *OpRHS, |
| ConstantInt *AndRHS, |
| BinaryOperator &TheAnd) { |
| Value *X = Op->getOperand(0); |
| Constant *Together = 0; |
| if (!Op->isShift()) |
| Together = ConstantExpr::getAnd(AndRHS, OpRHS); |
| |
| switch (Op->getOpcode()) { |
| case Instruction::Xor: |
| if (Op->hasOneUse()) { |
| // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) |
| Value *And = Builder->CreateAnd(X, AndRHS); |
| And->takeName(Op); |
| return BinaryOperator::CreateXor(And, Together); |
| } |
| break; |
| case Instruction::Or: |
| if (Together == AndRHS) // (X | C) & C --> C |
| return ReplaceInstUsesWith(TheAnd, AndRHS); |
| |
| if (Op->hasOneUse() && Together != OpRHS) { |
| // (X | C1) & C2 --> (X | (C1&C2)) & C2 |
| Value *Or = Builder->CreateOr(X, Together); |
| Or->takeName(Op); |
| return BinaryOperator::CreateAnd(Or, AndRHS); |
| } |
| break; |
| case Instruction::Add: |
| if (Op->hasOneUse()) { |
| // Adding a one to a single bit bit-field should be turned into an XOR |
| // of the bit. First thing to check is to see if this AND is with a |
| // single bit constant. |
| const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue(); |
| |
| // If there is only one bit set. |
| if (AndRHSV.isPowerOf2()) { |
| // Ok, at this point, we know that we are masking the result of the |
| // ADD down to exactly one bit. If the constant we are adding has |
| // no bits set below this bit, then we can eliminate the ADD. |
| const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue(); |
| |
| // Check to see if any bits below the one bit set in AndRHSV are set. |
| if ((AddRHS & (AndRHSV-1)) == 0) { |
| // If not, the only thing that can effect the output of the AND is |
| // the bit specified by AndRHSV. If that bit is set, the effect of |
| // the XOR is to toggle the bit. If it is clear, then the ADD has |
| // no effect. |
| if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop |
| TheAnd.setOperand(0, X); |
| return &TheAnd; |
| } else { |
| // Pull the XOR out of the AND. |
| Value *NewAnd = Builder->CreateAnd(X, AndRHS); |
| NewAnd->takeName(Op); |
| return BinaryOperator::CreateXor(NewAnd, AndRHS); |
| } |
| } |
| } |
| } |
| break; |
| |
| case Instruction::Shl: { |
| // We know that the AND will not produce any of the bits shifted in, so if |
| // the anded constant includes them, clear them now! |
| // |
| uint32_t BitWidth = AndRHS->getType()->getBitWidth(); |
| uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); |
| APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal)); |
| ConstantInt *CI = ConstantInt::get(AndRHS->getContext(), |
| AndRHS->getValue() & ShlMask); |
| |
| if (CI->getValue() == ShlMask) { |
| // Masking out bits that the shift already masks |
| return ReplaceInstUsesWith(TheAnd, Op); // No need for the and. |
| } else if (CI != AndRHS) { // Reducing bits set in and. |
| TheAnd.setOperand(1, CI); |
| return &TheAnd; |
| } |
| break; |
| } |
| case Instruction::LShr: { |
| // We know that the AND will not produce any of the bits shifted in, so if |
| // the anded constant includes them, clear them now! This only applies to |
| // unsigned shifts, because a signed shr may bring in set bits! |
| // |
| uint32_t BitWidth = AndRHS->getType()->getBitWidth(); |
| uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); |
| APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); |
| ConstantInt *CI = ConstantInt::get(Op->getContext(), |
| AndRHS->getValue() & ShrMask); |
| |
| if (CI->getValue() == ShrMask) { |
| // Masking out bits that the shift already masks. |
| return ReplaceInstUsesWith(TheAnd, Op); |
| } else if (CI != AndRHS) { |
| TheAnd.setOperand(1, CI); // Reduce bits set in and cst. |
| return &TheAnd; |
| } |
| break; |
| } |
| case Instruction::AShr: |
| // Signed shr. |
| // See if this is shifting in some sign extension, then masking it out |
| // with an and. |
| if (Op->hasOneUse()) { |
| uint32_t BitWidth = AndRHS->getType()->getBitWidth(); |
| uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); |
| APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); |
| Constant *C = ConstantInt::get(Op->getContext(), |
| AndRHS->getValue() & ShrMask); |
| if (C == AndRHS) { // Masking out bits shifted in. |
| // (Val ashr C1) & C2 -> (Val lshr C1) & C2 |
| // Make the argument unsigned. |
| Value *ShVal = Op->getOperand(0); |
| ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName()); |
| return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName()); |
| } |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| |
| /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is |
| /// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient |
| /// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates |
| /// whether to treat the V, Lo and HI as signed or not. IB is the location to |
| /// insert new instructions. |
| Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, |
| bool isSigned, bool Inside, |
| Instruction &IB) { |
| assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? |
| ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() && |
| "Lo is not <= Hi in range emission code!"); |
| |
| if (Inside) { |
| if (Lo == Hi) // Trivially false. |
| return new ICmpInst(ICmpInst::ICMP_NE, V, V); |
| |
| // V >= Min && V < Hi --> V < Hi |
| if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { |
| ICmpInst::Predicate pred = (isSigned ? |
| ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT); |
| return new ICmpInst(pred, V, Hi); |
| } |
| |
| // Emit V-Lo <u Hi-Lo |
| Constant *NegLo = ConstantExpr::getNeg(Lo); |
| Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off"); |
| Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi); |
| return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound); |
| } |
| |
| if (Lo == Hi) // Trivially true. |
| return new ICmpInst(ICmpInst::ICMP_EQ, V, V); |
| |
| // V < Min || V >= Hi -> V > Hi-1 |
| Hi = SubOne(cast<ConstantInt>(Hi)); |
| if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { |
| ICmpInst::Predicate pred = (isSigned ? |
| ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); |
| return new ICmpInst(pred, V, Hi); |
| } |
| |
| // Emit V-Lo >u Hi-1-Lo |
| // Note that Hi has already had one subtracted from it, above. |
| ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo)); |
| Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off"); |
| Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi); |
| return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound); |
| } |
| |
| // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with |
| // any number of 0s on either side. The 1s are allowed to wrap from LSB to |
| // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is |
| // not, since all 1s are not contiguous. |
| static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) { |
| const APInt& V = Val->getValue(); |
| uint32_t BitWidth = Val->getType()->getBitWidth(); |
| if (!APIntOps::isShiftedMask(BitWidth, V)) return false; |
| |
| // look for the first zero bit after the run of ones |
| MB = BitWidth - ((V - 1) ^ V).countLeadingZeros(); |
| // look for the first non-zero bit |
| ME = V.getActiveBits(); |
| return true; |
| } |
| |
| /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask, |
| /// where isSub determines whether the operator is a sub. If we can fold one of |
| /// the following xforms: |
| /// |
| /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask |
| /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 |
| /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 |
| /// |
| /// return (A +/- B). |
| /// |
| Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, |
| ConstantInt *Mask, bool isSub, |
| Instruction &I) { |
| Instruction *LHSI = dyn_cast<Instruction>(LHS); |
| if (!LHSI || LHSI->getNumOperands() != 2 || |
| !isa<ConstantInt>(LHSI->getOperand(1))) return 0; |
| |
| ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1)); |
| |
| switch (LHSI->getOpcode()) { |
| default: return 0; |
| case Instruction::And: |
| if (ConstantExpr::getAnd(N, Mask) == Mask) { |
| // If the AndRHS is a power of two minus one (0+1+), this is simple. |
| if ((Mask->getValue().countLeadingZeros() + |
| Mask->getValue().countPopulation()) == |
| Mask->getValue().getBitWidth()) |
| break; |
| |
| // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+ |
| // part, we don't need any explicit masks to take them out of A. If that |
| // is all N is, ignore it. |
| uint32_t MB = 0, ME = 0; |
| if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive |
| uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth(); |
| APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1)); |
| if (MaskedValueIsZero(RHS, Mask)) |
| break; |
| } |
| } |
| return 0; |
| case Instruction::Or: |
| case Instruction::Xor: |
| // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0 |
| if ((Mask->getValue().countLeadingZeros() + |
| Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth() |
| && ConstantExpr::getAnd(N, Mask)->isNullValue()) |
| break; |
| return 0; |
| } |
| |
| if (isSub) |
| return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold"); |
| return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold"); |
| } |
| |
| /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible. |
| Instruction *InstCombiner::FoldAndOfICmps(Instruction &I, |
| ICmpInst *LHS, ICmpInst *RHS) { |
| ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); |
| |
| // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) |
| if (PredicatesFoldable(LHSCC, RHSCC)) { |
| if (LHS->getOperand(0) == RHS->getOperand(1) && |
| LHS->getOperand(1) == RHS->getOperand(0)) |
| LHS->swapOperands(); |
| if (LHS->getOperand(0) == RHS->getOperand(0) && |
| LHS->getOperand(1) == RHS->getOperand(1)) { |
| Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); |
| unsigned Code = getICmpCode(LHS) & getICmpCode(RHS); |
| bool isSigned = LHS->isSigned() || RHS->isSigned(); |
| Value *RV = getICmpValue(isSigned, Code, Op0, Op1); |
| if (Instruction *I = dyn_cast<Instruction>(RV)) |
| return I; |
| // Otherwise, it's a constant boolean value. |
| return ReplaceInstUsesWith(I, RV); |
| } |
| } |
| |
| // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). |
| Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0); |
| ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1)); |
| ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1)); |
| if (LHSCst == 0 || RHSCst == 0) return 0; |
| |
| if (LHSCst == RHSCst && LHSCC == RHSCC) { |
| // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) |
| // where C is a power of 2 |
| if (LHSCC == ICmpInst::ICMP_ULT && |
| LHSCst->getValue().isPowerOf2()) { |
| Value *NewOr = Builder->CreateOr(Val, Val2); |
| return new ICmpInst(LHSCC, NewOr, LHSCst); |
| } |
| |
| // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) |
| if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) { |
| Value *NewOr = Builder->CreateOr(Val, Val2); |
| return new ICmpInst(LHSCC, NewOr, LHSCst); |
| } |
| } |
| |
| // From here on, we only handle: |
| // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. |
| if (Val != Val2) return 0; |
| |
| // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. |
| if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || |
| RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || |
| LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || |
| RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) |
| return 0; |
| |
| // We can't fold (ugt x, C) & (sgt x, C2). |
| if (!PredicatesFoldable(LHSCC, RHSCC)) |
| return 0; |
| |
| // Ensure that the larger constant is on the RHS. |
| bool ShouldSwap; |
| if (CmpInst::isSigned(LHSCC) || |
| (ICmpInst::isEquality(LHSCC) && |
| CmpInst::isSigned(RHSCC))) |
| ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); |
| else |
| ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); |
| |
| if (ShouldSwap) { |
| std::swap(LHS, RHS); |
| std::swap(LHSCst, RHSCst); |
| std::swap(LHSCC, RHSCC); |
| } |
| |
| // At this point, we know we have have two icmp instructions |
| // comparing a value against two constants and and'ing the result |
| // together. Because of the above check, we know that we only have |
| // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know |
| // (from the icmp folding check above), that the two constants |
| // are not equal and that the larger constant is on the RHS |
| assert(LHSCst != RHSCst && "Compares not folded above?"); |
| |
| switch (LHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: |
| switch (RHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false |
| case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false |
| case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false |
| return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13 |
| case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13 |
| case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13 |
| return ReplaceInstUsesWith(I, LHS); |
| } |
| case ICmpInst::ICMP_NE: |
| switch (RHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_ULT: |
| if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13 |
| return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst); |
| break; // (X != 13 & X u< 15) -> no change |
| case ICmpInst::ICMP_SLT: |
| if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13 |
| return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst); |
| break; // (X != 13 & X s< 15) -> no change |
| case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15 |
| case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15 |
| case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15 |
| return ReplaceInstUsesWith(I, RHS); |
| case ICmpInst::ICMP_NE: |
| if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1 |
| Constant *AddCST = ConstantExpr::getNeg(LHSCst); |
| Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off"); |
| return new ICmpInst(ICmpInst::ICMP_UGT, Add, |
| ConstantInt::get(Add->getType(), 1)); |
| } |
| break; // (X != 13 & X != 15) -> no change |
| } |
| break; |
| case ICmpInst::ICMP_ULT: |
| switch (RHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false |
| case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false |
| return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change |
| break; |
| case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13 |
| case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13 |
| return ReplaceInstUsesWith(I, LHS); |
| case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change |
| break; |
| } |
| break; |
| case ICmpInst::ICMP_SLT: |
| switch (RHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false |
| case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false |
| return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change |
| break; |
| case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13 |
| case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13 |
| return ReplaceInstUsesWith(I, LHS); |
| case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change |
| break; |
| } |
| break; |
| case ICmpInst::ICMP_UGT: |
| switch (RHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15 |
| case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15 |
| return ReplaceInstUsesWith(I, RHS); |
| case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change |
| break; |
| case ICmpInst::ICMP_NE: |
| if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14 |
| return new ICmpInst(LHSCC, Val, RHSCst); |
| break; // (X u> 13 & X != 15) -> no change |
| case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1 |
| return InsertRangeTest(Val, AddOne(LHSCst), |
| RHSCst, false, true, I); |
| case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change |
| break; |
| } |
| break; |
| case ICmpInst::ICMP_SGT: |
| switch (RHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15 |
| case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15 |
| return ReplaceInstUsesWith(I, RHS); |
| case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change |
| break; |
| case ICmpInst::ICMP_NE: |
| if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14 |
| return new ICmpInst(LHSCC, Val, RHSCst); |
| break; // (X s> 13 & X != 15) -> no change |
| case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1 |
| return InsertRangeTest(Val, AddOne(LHSCst), |
| RHSCst, true, true, I); |
| case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change |
| break; |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, |
| FCmpInst *RHS) { |
| |
| if (LHS->getPredicate() == FCmpInst::FCMP_ORD && |
| RHS->getPredicate() == FCmpInst::FCMP_ORD) { |
| // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y) |
| if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) |
| if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { |
| // If either of the constants are nans, then the whole thing returns |
| // false. |
| if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) |
| return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| return new FCmpInst(FCmpInst::FCMP_ORD, |
| LHS->getOperand(0), RHS->getOperand(0)); |
| } |
| |
| // Handle vector zeros. This occurs because the canonical form of |
| // "fcmp ord x,x" is "fcmp ord x, 0". |
| if (isa<ConstantAggregateZero>(LHS->getOperand(1)) && |
| isa<ConstantAggregateZero>(RHS->getOperand(1))) |
| return new FCmpInst(FCmpInst::FCMP_ORD, |
| LHS->getOperand(0), RHS->getOperand(0)); |
| return 0; |
| } |
| |
| Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1); |
| Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1); |
| FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate(); |
| |
| |
| if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { |
| // Swap RHS operands to match LHS. |
| Op1CC = FCmpInst::getSwappedPredicate(Op1CC); |
| std::swap(Op1LHS, Op1RHS); |
| } |
| |
| if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { |
| // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). |
| if (Op0CC == Op1CC) |
| return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS); |
| |
| if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE) |
| return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| if (Op0CC == FCmpInst::FCMP_TRUE) |
| return ReplaceInstUsesWith(I, RHS); |
| if (Op1CC == FCmpInst::FCMP_TRUE) |
| return ReplaceInstUsesWith(I, LHS); |
| |
| bool Op0Ordered; |
| bool Op1Ordered; |
| unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); |
| unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); |
| if (Op1Pred == 0) { |
| std::swap(LHS, RHS); |
| std::swap(Op0Pred, Op1Pred); |
| std::swap(Op0Ordered, Op1Ordered); |
| } |
| if (Op0Pred == 0) { |
| // uno && ueq -> uno && (uno || eq) -> ueq |
| // ord && olt -> ord && (ord && lt) -> olt |
| if (Op0Ordered == Op1Ordered) |
| return ReplaceInstUsesWith(I, RHS); |
| |
| // uno && oeq -> uno && (ord && eq) -> false |
| // uno && ord -> false |
| if (!Op0Ordered) |
| return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); |
| // ord && ueq -> ord && (uno || eq) -> oeq |
| return cast<Instruction>(getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS)); |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| Instruction *InstCombiner::visitAnd(BinaryOperator &I) { |
| bool Changed = SimplifyCommutative(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyAndInst(Op0, Op1, TD)) |
| return ReplaceInstUsesWith(I, V); |
| |
| // See if we can simplify any instructions used by the instruction whose sole |
| // purpose is to compute bits we don't care about. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { |
| const APInt &AndRHSMask = AndRHS->getValue(); |
| APInt NotAndRHS(~AndRHSMask); |
| |
| // Optimize a variety of ((val OP C1) & C2) combinations... |
| if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { |
| Value *Op0LHS = Op0I->getOperand(0); |
| Value *Op0RHS = Op0I->getOperand(1); |
| switch (Op0I->getOpcode()) { |
| default: break; |
| case Instruction::Xor: |
| case Instruction::Or: |
| // If the mask is only needed on one incoming arm, push it up. |
| if (!Op0I->hasOneUse()) break; |
| |
| if (MaskedValueIsZero(Op0LHS, NotAndRHS)) { |
| // Not masking anything out for the LHS, move to RHS. |
| Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS, |
| Op0RHS->getName()+".masked"); |
| return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS); |
| } |
| if (!isa<Constant>(Op0RHS) && |
| MaskedValueIsZero(Op0RHS, NotAndRHS)) { |
| // Not masking anything out for the RHS, move to LHS. |
| Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS, |
| Op0LHS->getName()+".masked"); |
| return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS); |
| } |
| |
| break; |
| case Instruction::Add: |
| // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS. |
| // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 |
| // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 |
| if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I)) |
| return BinaryOperator::CreateAnd(V, AndRHS); |
| if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I)) |
| return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes |
| break; |
| |
| case Instruction::Sub: |
| // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS. |
| // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 |
| // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 |
| if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I)) |
| return BinaryOperator::CreateAnd(V, AndRHS); |
| |
| // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS |
| // has 1's for all bits that the subtraction with A might affect. |
| if (Op0I->hasOneUse()) { |
| uint32_t BitWidth = AndRHSMask.getBitWidth(); |
| uint32_t Zeros = AndRHSMask.countLeadingZeros(); |
| APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros); |
| |
| ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS); |
| if (!(A && A->isZero()) && // avoid infinite recursion. |
| MaskedValueIsZero(Op0LHS, Mask)) { |
| Value *NewNeg = Builder->CreateNeg(Op0RHS); |
| return BinaryOperator::CreateAnd(NewNeg, AndRHS); |
| } |
| } |
| break; |
| |
| case Instruction::Shl: |
| case Instruction::LShr: |
| // (1 << x) & 1 --> zext(x == 0) |
| // (1 >> x) & 1 --> zext(x == 0) |
| if (AndRHSMask == 1 && Op0LHS == AndRHS) { |
| Value *NewICmp = |
| Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType())); |
| return new ZExtInst(NewICmp, I.getType()); |
| } |
| break; |
| } |
| |
| if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) |
| if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) |
| return Res; |
| } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) { |
| // If this is an integer truncation or change from signed-to-unsigned, and |
| // if the source is an and/or with immediate, transform it. This |
| // frequently occurs for bitfield accesses. |
| if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) { |
| if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) && |
| CastOp->getNumOperands() == 2) |
| if (ConstantInt *AndCI =dyn_cast<ConstantInt>(CastOp->getOperand(1))){ |
| if (CastOp->getOpcode() == Instruction::And) { |
| // Change: and (cast (and X, C1) to T), C2 |
| // into : and (cast X to T), trunc_or_bitcast(C1)&C2 |
| // This will fold the two constants together, which may allow |
| // other simplifications. |
| Value *NewCast = Builder->CreateTruncOrBitCast( |
| CastOp->getOperand(0), I.getType(), |
| CastOp->getName()+".shrunk"); |
| // trunc_or_bitcast(C1)&C2 |
| Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); |
| C3 = ConstantExpr::getAnd(C3, AndRHS); |
| return BinaryOperator::CreateAnd(NewCast, C3); |
| } else if (CastOp->getOpcode() == Instruction::Or) { |
| // Change: and (cast (or X, C1) to T), C2 |
| // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2 |
| Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); |
| if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) |
| // trunc(C1)&C2 |
| return ReplaceInstUsesWith(I, AndRHS); |
| } |
| } |
| } |
| } |
| |
| // Try to fold constant and into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| if (isa<PHINode>(Op0)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| } |
| |
| |
| // (~A & ~B) == (~(A | B)) - De Morgan's Law |
| if (Value *Op0NotVal = dyn_castNotVal(Op0)) |
| if (Value *Op1NotVal = dyn_castNotVal(Op1)) |
| if (Op0->hasOneUse() && Op1->hasOneUse()) { |
| Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal, |
| I.getName()+".demorgan"); |
| return BinaryOperator::CreateNot(Or); |
| } |
| |
| { |
| Value *A = 0, *B = 0, *C = 0, *D = 0; |
| // (A|B) & ~(A&B) -> A^B |
| if (match(Op0, m_Or(m_Value(A), m_Value(B))) && |
| match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) && |
| ((A == C && B == D) || (A == D && B == C))) |
| return BinaryOperator::CreateXor(A, B); |
| |
| // ~(A&B) & (A|B) -> A^B |
| if (match(Op1, m_Or(m_Value(A), m_Value(B))) && |
| match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) && |
| ((A == C && B == D) || (A == D && B == C))) |
| return BinaryOperator::CreateXor(A, B); |
| |
| if (Op0->hasOneUse() && |
| match(Op0, m_Xor(m_Value(A), m_Value(B)))) { |
| if (A == Op1) { // (A^B)&A -> A&(A^B) |
| I.swapOperands(); // Simplify below |
| std::swap(Op0, Op1); |
| } else if (B == Op1) { // (A^B)&B -> B&(B^A) |
| cast<BinaryOperator>(Op0)->swapOperands(); |
| I.swapOperands(); // Simplify below |
| std::swap(Op0, Op1); |
| } |
| } |
| |
| if (Op1->hasOneUse() && |
| match(Op1, m_Xor(m_Value(A), m_Value(B)))) { |
| if (B == Op0) { // B&(A^B) -> B&(B^A) |
| cast<BinaryOperator>(Op1)->swapOperands(); |
| std::swap(A, B); |
| } |
| if (A == Op0) // A&(A^B) -> A & ~B |
| return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp")); |
| } |
| |
| // (A&((~A)|B)) -> A&B |
| if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) || |
| match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1))))) |
| return BinaryOperator::CreateAnd(A, Op1); |
| if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) || |
| match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0))))) |
| return BinaryOperator::CreateAnd(A, Op0); |
| } |
| |
| if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) |
| if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0)) |
| if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS)) |
| return Res; |
| |
| // fold (and (cast A), (cast B)) -> (cast (and A, B)) |
| if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) |
| if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) |
| if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ? |
| const Type *SrcTy = Op0C->getOperand(0)->getType(); |
| if (SrcTy == Op1C->getOperand(0)->getType() && |
| SrcTy->isIntOrIntVector() && |
| // Only do this if the casts both really cause code to be generated. |
| ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), |
| I.getType()) && |
| ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), |
| I.getType())) { |
| Value *NewOp = Builder->CreateAnd(Op0C->getOperand(0), |
| Op1C->getOperand(0), I.getName()); |
| return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); |
| } |
| } |
| |
| // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. |
| if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) { |
| if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0)) |
| if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && |
| SI0->getOperand(1) == SI1->getOperand(1) && |
| (SI0->hasOneUse() || SI1->hasOneUse())) { |
| Value *NewOp = |
| Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0), |
| SI0->getName()); |
| return BinaryOperator::Create(SI1->getOpcode(), NewOp, |
| SI1->getOperand(1)); |
| } |
| } |
| |
| // If and'ing two fcmp, try combine them into one. |
| if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) { |
| if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) |
| if (Instruction *Res = FoldAndOfFCmps(I, LHS, RHS)) |
| return Res; |
| } |
| |
| return Changed ? &I : 0; |
| } |
| |
| /// CollectBSwapParts - Analyze the specified subexpression and see if it is |
| /// capable of providing pieces of a bswap. The subexpression provides pieces |
| /// of a bswap if it is proven that each of the non-zero bytes in the output of |
| /// the expression came from the corresponding "byte swapped" byte in some other |
| /// value. For example, if the current subexpression is "(shl i32 %X, 24)" then |
| /// we know that the expression deposits the low byte of %X into the high byte |
| /// of the bswap result and that all other bytes are zero. This expression is |
| /// accepted, the high byte of ByteValues is set to X to indicate a correct |
| /// match. |
| /// |
| /// This function returns true if the match was unsuccessful and false if so. |
| /// On entry to the function the "OverallLeftShift" is a signed integer value |
| /// indicating the number of bytes that the subexpression is later shifted. For |
| /// example, if the expression is later right shifted by 16 bits, the |
| /// OverallLeftShift value would be -2 on entry. This is used to specify which |
| /// byte of ByteValues is actually being set. |
| /// |
| /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding |
| /// byte is masked to zero by a user. For example, in (X & 255), X will be |
| /// processed with a bytemask of 1. Because bytemask is 32-bits, this limits |
| /// this function to working on up to 32-byte (256 bit) values. ByteMask is |
| /// always in the local (OverallLeftShift) coordinate space. |
| /// |
| static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask, |
| SmallVector<Value*, 8> &ByteValues) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| // If this is an or instruction, it may be an inner node of the bswap. |
| if (I->getOpcode() == Instruction::Or) { |
| return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, |
| ByteValues) || |
| CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask, |
| ByteValues); |
| } |
| |
| // If this is a logical shift by a constant multiple of 8, recurse with |
| // OverallLeftShift and ByteMask adjusted. |
| if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { |
| unsigned ShAmt = |
| cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); |
| // Ensure the shift amount is defined and of a byte value. |
| if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size())) |
| return true; |
| |
| unsigned ByteShift = ShAmt >> 3; |
| if (I->getOpcode() == Instruction::Shl) { |
| // X << 2 -> collect(X, +2) |
| OverallLeftShift += ByteShift; |
| ByteMask >>= ByteShift; |
| } else { |
| // X >>u 2 -> collect(X, -2) |
| OverallLeftShift -= ByteShift; |
| ByteMask <<= ByteShift; |
| ByteMask &= (~0U >> (32-ByteValues.size())); |
| } |
| |
| if (OverallLeftShift >= (int)ByteValues.size()) return true; |
| if (OverallLeftShift <= -(int)ByteValues.size()) return true; |
| |
| return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, |
| ByteValues); |
| } |
| |
| // If this is a logical 'and' with a mask that clears bytes, clear the |
| // corresponding bytes in ByteMask. |
| if (I->getOpcode() == Instruction::And && |
| isa<ConstantInt>(I->getOperand(1))) { |
| // Scan every byte of the and mask, seeing if the byte is either 0 or 255. |
| unsigned NumBytes = ByteValues.size(); |
| APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255); |
| const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); |
| |
| for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) { |
| // If this byte is masked out by a later operation, we don't care what |
| // the and mask is. |
| if ((ByteMask & (1 << i)) == 0) |
| continue; |
| |
| // If the AndMask is all zeros for this byte, clear the bit. |
| APInt MaskB = AndMask & Byte; |
| if (MaskB == 0) { |
| ByteMask &= ~(1U << i); |
| continue; |
| } |
| |
| // If the AndMask is not all ones for this byte, it's not a bytezap. |
| if (MaskB != Byte) |
| return true; |
| |
| // Otherwise, this byte is kept. |
| } |
| |
| return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, |
| ByteValues); |
| } |
| } |
| |
| // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be |
| // the input value to the bswap. Some observations: 1) if more than one byte |
| // is demanded from this input, then it could not be successfully assembled |
| // into a byteswap. At least one of the two bytes would not be aligned with |
| // their ultimate destination. |
| if (!isPowerOf2_32(ByteMask)) return true; |
| unsigned InputByteNo = CountTrailingZeros_32(ByteMask); |
| |
| // 2) The input and ultimate destinations must line up: if byte 3 of an i32 |
| // is demanded, it needs to go into byte 0 of the result. This means that the |
| // byte needs to be shifted until it lands in the right byte bucket. The |
| // shift amount depends on the position: if the byte is coming from the high |
| // part of the value (e.g. byte 3) then it must be shifted right. If from the |
| // low part, it must be shifted left. |
| unsigned DestByteNo = InputByteNo + OverallLeftShift; |
| if (InputByteNo < ByteValues.size()/2) { |
| if (ByteValues.size()-1-DestByteNo != InputByteNo) |
| return true; |
| } else { |
| if (ByteValues.size()-1-DestByteNo != InputByteNo) |
| return true; |
| } |
| |
| // If the destination byte value is already defined, the values are or'd |
| // together, which isn't a bswap (unless it's an or of the same bits). |
| if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V) |
| return true; |
| ByteValues[DestByteNo] = V; |
| return false; |
| } |
| |
| /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom. |
| /// If so, insert the new bswap intrinsic and return it. |
| Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) { |
| const IntegerType *ITy = dyn_cast<IntegerType>(I.getType()); |
| if (!ITy || ITy->getBitWidth() % 16 || |
| // ByteMask only allows up to 32-byte values. |
| ITy->getBitWidth() > 32*8) |
| return 0; // Can only bswap pairs of bytes. Can't do vectors. |
| |
| /// ByteValues - For each byte of the result, we keep track of which value |
| /// defines each byte. |
| SmallVector<Value*, 8> ByteValues; |
| ByteValues.resize(ITy->getBitWidth()/8); |
| |
| // Try to find all the pieces corresponding to the bswap. |
| uint32_t ByteMask = ~0U >> (32-ByteValues.size()); |
| if (CollectBSwapParts(&I, 0, ByteMask, ByteValues)) |
| return 0; |
| |
| // Check to see if all of the bytes come from the same value. |
| Value *V = ByteValues[0]; |
| if (V == 0) return 0; // Didn't find a byte? Must be zero. |
| |
| // Check to make sure that all of the bytes come from the same value. |
| for (unsigned i = 1, e = ByteValues.size(); i != e; ++i) |
| if (ByteValues[i] != V) |
| return 0; |
| const Type *Tys[] = { ITy }; |
| Module *M = I.getParent()->getParent()->getParent(); |
| Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1); |
| return CallInst::Create(F, V); |
| } |
| |
| /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check |
| /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then |
| /// we can simplify this expression to "cond ? C : D or B". |
| static Instruction *MatchSelectFromAndOr(Value *A, Value *B, |
| Value *C, Value *D) { |
| // If A is not a select of -1/0, this cannot match. |
| Value *Cond = 0; |
| if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond)))) |
| return 0; |
| |
| // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B. |
| if (match(D, m_SelectCst<0, -1>(m_Specific(Cond)))) |
| return SelectInst::Create(Cond, C, B); |
| if (match(D, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond))))) |
| return SelectInst::Create(Cond, C, B); |
| // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D. |
| if (match(B, m_SelectCst<0, -1>(m_Specific(Cond)))) |
| return SelectInst::Create(Cond, C, D); |
| if (match(B, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond))))) |
| return SelectInst::Create(Cond, C, D); |
| return 0; |
| } |
| |
| /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible. |
| Instruction *InstCombiner::FoldOrOfICmps(Instruction &I, |
| ICmpInst *LHS, ICmpInst *RHS) { |
| ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); |
| |
| // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) |
| if (PredicatesFoldable(LHSCC, RHSCC)) { |
| if (LHS->getOperand(0) == RHS->getOperand(1) && |
| LHS->getOperand(1) == RHS->getOperand(0)) |
| LHS->swapOperands(); |
| if (LHS->getOperand(0) == RHS->getOperand(0) && |
| LHS->getOperand(1) == RHS->getOperand(1)) { |
| Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); |
| unsigned Code = getICmpCode(LHS) | getICmpCode(RHS); |
| bool isSigned = LHS->isSigned() || RHS->isSigned(); |
| Value *RV = getICmpValue(isSigned, Code, Op0, Op1); |
| if (Instruction *I = dyn_cast<Instruction>(RV)) |
| return I; |
| // Otherwise, it's a constant boolean value. |
| return ReplaceInstUsesWith(I, RV); |
| } |
| } |
| |
| // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). |
| Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0); |
| ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1)); |
| ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1)); |
| if (LHSCst == 0 || RHSCst == 0) return 0; |
| |
| // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) |
| if (LHSCst == RHSCst && LHSCC == RHSCC && |
| LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) { |
| Value *NewOr = Builder->CreateOr(Val, Val2); |
| return new ICmpInst(LHSCC, NewOr, LHSCst); |
| } |
| |
| // From here on, we only handle: |
| // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. |
| if (Val != Val2) return 0; |
| |
| // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. |
| if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || |
| RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || |
| LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || |
| RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) |
| return 0; |
| |
| // We can't fold (ugt x, C) | (sgt x, C2). |
| if (!PredicatesFoldable(LHSCC, RHSCC)) |
| return 0; |
| |
| // Ensure that the larger constant is on the RHS. |
| bool ShouldSwap; |
| if (CmpInst::isSigned(LHSCC) || |
| (ICmpInst::isEquality(LHSCC) && |
| CmpInst::isSigned(RHSCC))) |
| ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); |
| else |
| ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); |
| |
| if (ShouldSwap) { |
| std::swap(LHS, RHS); |
| std::swap(LHSCst, RHSCst); |
| std::swap(LHSCC, RHSCC); |
| } |
| |
| // At this point, we know we have have two icmp instructions |
| // comparing a value against two constants and or'ing the result |
| // together. Because of the above check, we know that we only have |
| // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the |
| // icmp folding check above), that the two constants are not |
| // equal. |
| assert(LHSCst != RHSCst && "Compares not folded above?"); |
| |
| switch (LHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: |
| switch (RHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: |
| if (LHSCst == SubOne(RHSCst)) { |
| // (X == 13 | X == 14) -> X-13 <u 2 |
| Constant *AddCST = ConstantExpr::getNeg(LHSCst); |
| Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off"); |
| AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst); |
| return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST); |
| } |
| break; // (X == 13 | X == 15) -> no change |
| case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change |
| case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change |
| break; |
| case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15 |
| case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15 |
| case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15 |
| return ReplaceInstUsesWith(I, RHS); |
| } |
| break; |
| case ICmpInst::ICMP_NE: |
| switch (RHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13 |
| case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13 |
| case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13 |
| return ReplaceInstUsesWith(I, LHS); |
| case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true |
| case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true |
| case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true |
| return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| } |
| break; |
| case ICmpInst::ICMP_ULT: |
| switch (RHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change |
| break; |
| case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2 |
| // If RHSCst is [us]MAXINT, it is always false. Not handling |
| // this can cause overflow. |
| if (RHSCst->isMaxValue(false)) |
| return ReplaceInstUsesWith(I, LHS); |
| return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), |
| false, false, I); |
| case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change |
| break; |
| case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15 |
| case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15 |
| return ReplaceInstUsesWith(I, RHS); |
| case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change |
| break; |
| } |
| break; |
| case ICmpInst::ICMP_SLT: |
| switch (RHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change |
| break; |
| case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2 |
| // If RHSCst is [us]MAXINT, it is always false. Not handling |
| // this can cause overflow. |
| if (RHSCst->isMaxValue(true)) |
| return ReplaceInstUsesWith(I, LHS); |
| return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), |
| true, false, I); |
| case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change |
| break; |
| case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15 |
| case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15 |
| return ReplaceInstUsesWith(I, RHS); |
| case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change |
| break; |
| } |
| break; |
| case ICmpInst::ICMP_UGT: |
| switch (RHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13 |
| case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13 |
| return ReplaceInstUsesWith(I, LHS); |
| case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change |
| break; |
| case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true |
| case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true |
| return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change |
| break; |
| } |
| break; |
| case ICmpInst::ICMP_SGT: |
| switch (RHSCC) { |
| default: llvm_unreachable("Unknown integer condition code!"); |
| case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13 |
| case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13 |
| return ReplaceInstUsesWith(I, LHS); |
| case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change |
| break; |
| case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true |
| case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true |
| return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change |
| break; |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS, |
| FCmpInst *RHS) { |
| if (LHS->getPredicate() == FCmpInst::FCMP_UNO && |
| RHS->getPredicate() == FCmpInst::FCMP_UNO && |
| LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) { |
| if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) |
| if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { |
| // If either of the constants are nans, then the whole thing returns |
| // true. |
| if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) |
| return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| |
| // Otherwise, no need to compare the two constants, compare the |
| // rest. |
| return new FCmpInst(FCmpInst::FCMP_UNO, |
| LHS->getOperand(0), RHS->getOperand(0)); |
| } |
| |
| // Handle vector zeros. This occurs because the canonical form of |
| // "fcmp uno x,x" is "fcmp uno x, 0". |
| if (isa<ConstantAggregateZero>(LHS->getOperand(1)) && |
| isa<ConstantAggregateZero>(RHS->getOperand(1))) |
| return new FCmpInst(FCmpInst::FCMP_UNO, |
| LHS->getOperand(0), RHS->getOperand(0)); |
| |
| return 0; |
| } |
| |
| Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1); |
| Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1); |
| FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate(); |
| |
| if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { |
| // Swap RHS operands to match LHS. |
| Op1CC = FCmpInst::getSwappedPredicate(Op1CC); |
| std::swap(Op1LHS, Op1RHS); |
| } |
| if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { |
| // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y). |
| if (Op0CC == Op1CC) |
| return new FCmpInst((FCmpInst::Predicate)Op0CC, |
| Op0LHS, Op0RHS); |
| if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE) |
| return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext())); |
| if (Op0CC == FCmpInst::FCMP_FALSE) |
| return ReplaceInstUsesWith(I, RHS); |
| if (Op1CC == FCmpInst::FCMP_FALSE) |
| return ReplaceInstUsesWith(I, LHS); |
| bool Op0Ordered; |
| bool Op1Ordered; |
| unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); |
| unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); |
| if (Op0Ordered == Op1Ordered) { |
| // If both are ordered or unordered, return a new fcmp with |
| // or'ed predicates. |
| Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS); |
| if (Instruction *I = dyn_cast<Instruction>(RV)) |
| return I; |
| // Otherwise, it's a constant boolean value... |
| return ReplaceInstUsesWith(I, RV); |
| } |
| } |
| return 0; |
| } |
| |
| /// FoldOrWithConstants - This helper function folds: |
| /// |
| /// ((A | B) & C1) | (B & C2) |
| /// |
| /// into: |
| /// |
| /// (A & C1) | B |
| /// |
| /// when the XOR of the two constants is "all ones" (-1). |
| Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op, |
| Value *A, Value *B, Value *C) { |
| ConstantInt *CI1 = dyn_cast<ConstantInt>(C); |
| if (!CI1) return 0; |
| |
| Value *V1 = 0; |
| ConstantInt *CI2 = 0; |
| if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0; |
| |
| APInt Xor = CI1->getValue() ^ CI2->getValue(); |
| if (!Xor.isAllOnesValue()) return 0; |
| |
| if (V1 == A || V1 == B) { |
| Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1); |
| return BinaryOperator::CreateOr(NewOp, V1); |
| } |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitOr(BinaryOperator &I) { |
| bool Changed = SimplifyCommutative(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Value *V = SimplifyOrInst(Op0, Op1, TD)) |
| return ReplaceInstUsesWith(I, V); |
| |
| |
| // See if we can simplify any instructions used by the instruction whose sole |
| // purpose is to compute bits we don't care about. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { |
| ConstantInt *C1 = 0; Value *X = 0; |
| // (X & C1) | C2 --> (X | C2) & (C1|C2) |
| if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && |
| Op0->hasOneUse()) { |
| Value *Or = Builder->CreateOr(X, RHS); |
| Or->takeName(Op0); |
| return BinaryOperator::CreateAnd(Or, |
| ConstantInt::get(I.getContext(), |
| RHS->getValue() | C1->getValue())); |
| } |
| |
| // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2) |
| if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && |
| Op0->hasOneUse()) { |
| Value *Or = Builder->CreateOr(X, RHS); |
| Or->takeName(Op0); |
| return BinaryOperator::CreateXor(Or, |
| ConstantInt::get(I.getContext(), |
| C1->getValue() & ~RHS->getValue())); |
| } |
| |
| // Try to fold constant and into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| if (isa<PHINode>(Op0)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| } |
| |
| Value *A = 0, *B = 0; |
| ConstantInt *C1 = 0, *C2 = 0; |
| |
| // (A | B) | C and A | (B | C) -> bswap if possible. |
| // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible. |
| if (match(Op0, m_Or(m_Value(), m_Value())) || |
| match(Op1, m_Or(m_Value(), m_Value())) || |
| (match(Op0, m_Shift(m_Value(), m_Value())) && |
| match(Op1, m_Shift(m_Value(), m_Value())))) { |
| if (Instruction *BSwap = MatchBSwap(I)) |
| return BSwap; |
| } |
| |
| // (X^C)|Y -> (X|Y)^C iff Y&C == 0 |
| if (Op0->hasOneUse() && |
| match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) && |
| MaskedValueIsZero(Op1, C1->getValue())) { |
| Value *NOr = Builder->CreateOr(A, Op1); |
| NOr->takeName(Op0); |
| return BinaryOperator::CreateXor(NOr, C1); |
| } |
| |
| // Y|(X^C) -> (X|Y)^C iff Y&C == 0 |
| if (Op1->hasOneUse() && |
| match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) && |
| MaskedValueIsZero(Op0, C1->getValue())) { |
| Value *NOr = Builder->CreateOr(A, Op0); |
| NOr->takeName(Op0); |
| return BinaryOperator::CreateXor(NOr, C1); |
| } |
| |
| // (A & C)|(B & D) |
| Value *C = 0, *D = 0; |
| if (match(Op0, m_And(m_Value(A), m_Value(C))) && |
| match(Op1, m_And(m_Value(B), m_Value(D)))) { |
| Value *V1 = 0, *V2 = 0, *V3 = 0; |
| C1 = dyn_cast<ConstantInt>(C); |
| C2 = dyn_cast<ConstantInt>(D); |
| if (C1 && C2) { // (A & C1)|(B & C2) |
| // If we have: ((V + N) & C1) | (V & C2) |
| // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 |
| // replace with V+N. |
| if (C1->getValue() == ~C2->getValue()) { |
| if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+ |
| match(A, m_Add(m_Value(V1), m_Value(V2)))) { |
| // Add commutes, try both ways. |
| if (V1 == B && MaskedValueIsZero(V2, C2->getValue())) |
| return ReplaceInstUsesWith(I, A); |
| if (V2 == B && MaskedValueIsZero(V1, C2->getValue())) |
| return ReplaceInstUsesWith(I, A); |
| } |
| // Or commutes, try both ways. |
| if ((C1->getValue() & (C1->getValue()+1)) == 0 && |
| match(B, m_Add(m_Value(V1), m_Value(V2)))) { |
| // Add commutes, try both ways. |
| if (V1 == A && MaskedValueIsZero(V2, C1->getValue())) |
| return ReplaceInstUsesWith(I, B); |
| if (V2 == A && MaskedValueIsZero(V1, C1->getValue())) |
| return ReplaceInstUsesWith(I, B); |
| } |
| } |
| |
| // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2) |
| // iff (C1&C2) == 0 and (N&~C1) == 0 |
| if ((C1->getValue() & C2->getValue()) == 0) { |
| if (match(A, m_Or(m_Value(V1), m_Value(V2))) && |
| ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) || // (V|N) |
| (V2 == B && MaskedValueIsZero(V1, ~C1->getValue())))) // (N|V) |
| return BinaryOperator::CreateAnd(A, |
| ConstantInt::get(A->getContext(), |
| C1->getValue()|C2->getValue())); |
| // Or commutes, try both ways. |
| if (match(B, m_Or(m_Value(V1), m_Value(V2))) && |
| ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) || // (V|N) |
| (V2 == A && MaskedValueIsZero(V1, ~C2->getValue())))) // (N|V) |
| return BinaryOperator::CreateAnd(B, |
| ConstantInt::get(B->getContext(), |
| C1->getValue()|C2->getValue())); |
| } |
| } |
| |
| // Check to see if we have any common things being and'ed. If so, find the |
| // terms for V1 & (V2|V3). |
| if (Op0->hasOneUse() || Op1->hasOneUse()) { |
| V1 = 0; |
| if (A == B) // (A & C)|(A & D) == A & (C|D) |
| V1 = A, V2 = C, V3 = D; |
| else if (A == D) // (A & C)|(B & A) == A & (B|C) |
| V1 = A, V2 = B, V3 = C; |
| else if (C == B) // (A & C)|(C & D) == C & (A|D) |
| V1 = C, V2 = A, V3 = D; |
| else if (C == D) // (A & C)|(B & C) == C & (A|B) |
| V1 = C, V2 = A, V3 = B; |
| |
| if (V1) { |
| Value *Or = Builder->CreateOr(V2, V3, "tmp"); |
| return BinaryOperator::CreateAnd(V1, Or); |
| } |
| } |
| |
| // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants |
| if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D)) |
| return Match; |
| if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C)) |
| return Match; |
| if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D)) |
| return Match; |
| if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C)) |
| return Match; |
| |
| // ((A&~B)|(~A&B)) -> A^B |
| if ((match(C, m_Not(m_Specific(D))) && |
| match(B, m_Not(m_Specific(A))))) |
| return BinaryOperator::CreateXor(A, D); |
| // ((~B&A)|(~A&B)) -> A^B |
| if ((match(A, m_Not(m_Specific(D))) && |
| match(B, m_Not(m_Specific(C))))) |
| return BinaryOperator::CreateXor(C, D); |
| // ((A&~B)|(B&~A)) -> A^B |
| if ((match(C, m_Not(m_Specific(B))) && |
| match(D, m_Not(m_Specific(A))))) |
| return BinaryOperator::CreateXor(A, B); |
| // ((~B&A)|(B&~A)) -> A^B |
| if ((match(A, m_Not(m_Specific(B))) && |
| match(D, m_Not(m_Specific(C))))) |
| return BinaryOperator::CreateXor(C, B); |
| } |
| |
| // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. |
| if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) { |
| if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0)) |
| if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && |
| SI0->getOperand(1) == SI1->getOperand(1) && |
| (SI0->hasOneUse() || SI1->hasOneUse())) { |
| Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0), |
| SI0->getName()); |
| return BinaryOperator::Create(SI1->getOpcode(), NewOp, |
| SI1->getOperand(1)); |
| } |
| } |
| |
| // ((A|B)&1)|(B&-2) -> (A&1) | B |
| if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) || |
| match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) { |
| Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C); |
| if (Ret) return Ret; |
| } |
| // (B&-2)|((A|B)&1) -> (A&1) | B |
| if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) || |
| match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) { |
| Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C); |
| if (Ret) return Ret; |
| } |
| |
| // (~A | ~B) == (~(A & B)) - De Morgan's Law |
| if (Value *Op0NotVal = dyn_castNotVal(Op0)) |
| if (Value *Op1NotVal = dyn_castNotVal(Op1)) |
| if (Op0->hasOneUse() && Op1->hasOneUse()) { |
| Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal, |
| I.getName()+".demorgan"); |
| return BinaryOperator::CreateNot(And); |
| } |
| |
| if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) |
| if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) |
| if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS)) |
| return Res; |
| |
| // fold (or (cast A), (cast B)) -> (cast (or A, B)) |
| if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { |
| if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) |
| if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ? |
| if (!isa<ICmpInst>(Op0C->getOperand(0)) || |
| !isa<ICmpInst>(Op1C->getOperand(0))) { |
| const Type *SrcTy = Op0C->getOperand(0)->getType(); |
| if (SrcTy == Op1C->getOperand(0)->getType() && |
| SrcTy->isIntOrIntVector() && |
| // Only do this if the casts both really cause code to be |
| // generated. |
| ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), |
| I.getType()) && |
| ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), |
| I.getType())) { |
| Value *NewOp = Builder->CreateOr(Op0C->getOperand(0), |
| Op1C->getOperand(0), I.getName()); |
| return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); |
| } |
| } |
| } |
| } |
| |
| |
| // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y) |
| if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) { |
| if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) |
| if (Instruction *Res = FoldOrOfFCmps(I, LHS, RHS)) |
| return Res; |
| } |
| |
| return Changed ? &I : 0; |
| } |
| |
| Instruction *InstCombiner::visitXor(BinaryOperator &I) { |
| bool Changed = SimplifyCommutative(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (isa<UndefValue>(Op1)) { |
| if (isa<UndefValue>(Op0)) |
| // Handle undef ^ undef -> 0 special case. This is a common |
| // idiom (misuse). |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef |
| } |
| |
| // xor X, X = 0 |
| if (Op0 == Op1) |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| |
| // See if we can simplify any instructions used by the instruction whose sole |
| // purpose is to compute bits we don't care about. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| if (isa<VectorType>(I.getType())) |
| if (isa<ConstantAggregateZero>(Op1)) |
| return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X |
| |
| // Is this a ~ operation? |
| if (Value *NotOp = dyn_castNotVal(&I)) { |
| if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) { |
| if (Op0I->getOpcode() == Instruction::And || |
| Op0I->getOpcode() == Instruction::Or) { |
| // ~(~X & Y) --> (X | ~Y) - De Morgan's Law |
| // ~(~X | Y) === (X & ~Y) - De Morgan's Law |
| if (dyn_castNotVal(Op0I->getOperand(1))) |
| Op0I->swapOperands(); |
| if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) { |
| Value *NotY = |
| Builder->CreateNot(Op0I->getOperand(1), |
| Op0I->getOperand(1)->getName()+".not"); |
| if (Op0I->getOpcode() == Instruction::And) |
| return BinaryOperator::CreateOr(Op0NotVal, NotY); |
| return BinaryOperator::CreateAnd(Op0NotVal, NotY); |
| } |
| |
| // ~(X & Y) --> (~X | ~Y) - De Morgan's Law |
| // ~(X | Y) === (~X & ~Y) - De Morgan's Law |
| if (isFreeToInvert(Op0I->getOperand(0)) && |
| isFreeToInvert(Op0I->getOperand(1))) { |
| Value *NotX = |
| Builder->CreateNot(Op0I->getOperand(0), "notlhs"); |
| Value *NotY = |
| Builder->CreateNot(Op0I->getOperand(1), "notrhs"); |
| if (Op0I->getOpcode() == Instruction::And) |
| return BinaryOperator::CreateOr(NotX, NotY); |
| return BinaryOperator::CreateAnd(NotX, NotY); |
| } |
| } |
| } |
| } |
| |
| |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { |
| if (RHS->isOne() && Op0->hasOneUse()) { |
| // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0)) |
| return new ICmpInst(ICI->getInversePredicate(), |
| ICI->getOperand(0), ICI->getOperand(1)); |
| |
| if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0)) |
| return new FCmpInst(FCI->getInversePredicate(), |
| FCI->getOperand(0), FCI->getOperand(1)); |
| } |
| |
| // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp). |
| if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { |
| if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) { |
| if (CI->hasOneUse() && Op0C->hasOneUse()) { |
| Instruction::CastOps Opcode = Op0C->getOpcode(); |
| if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && |
| (RHS == ConstantExpr::getCast(Opcode, |
| ConstantInt::getTrue(I.getContext()), |
| Op0C->getDestTy()))) { |
| CI->setPredicate(CI->getInversePredicate()); |
| return CastInst::Create(Opcode, CI, Op0C->getType()); |
| } |
| } |
| } |
| } |
| |
| if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { |
| // ~(c-X) == X-c-1 == X+(-c-1) |
| if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue()) |
| if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) { |
| Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C); |
| Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C, |
| ConstantInt::get(I.getType(), 1)); |
| return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS); |
| } |
| |
| if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { |
| if (Op0I->getOpcode() == Instruction::Add) { |
| // ~(X-c) --> (-c-1)-X |
| if (RHS->isAllOnesValue()) { |
| Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI); |
| return BinaryOperator::CreateSub( |
| ConstantExpr::getSub(NegOp0CI, |
| ConstantInt::get(I.getType(), 1)), |
| Op0I->getOperand(0)); |
| } else if (RHS->getValue().isSignBit()) { |
| // (X + C) ^ signbit -> (X + C + signbit) |
| Constant *C = ConstantInt::get(I.getContext(), |
| RHS->getValue() + Op0CI->getValue()); |
| return BinaryOperator::CreateAdd(Op0I->getOperand(0), C); |
| |
| } |
| } else if (Op0I->getOpcode() == Instruction::Or) { |
| // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0 |
| if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) { |
| Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS); |
| // Anything in both C1 and C2 is known to be zero, remove it from |
| // NewRHS. |
| Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS); |
| NewRHS = ConstantExpr::getAnd(NewRHS, |
| ConstantExpr::getNot(CommonBits)); |
| Worklist.Add(Op0I); |
| I.setOperand(0, Op0I->getOperand(0)); |
| I.setOperand(1, NewRHS); |
| return &I; |
| } |
| } |
| } |
| } |
| |
| // Try to fold constant and into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| if (isa<PHINode>(Op0)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| } |
| |
| if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1 |
| if (X == Op1) |
| return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); |
| |
| if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1 |
| if (X == Op0) |
| return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); |
| |
| |
| BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1); |
| if (Op1I) { |
| Value *A, *B; |
| if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) { |
| if (A == Op0) { // B^(B|A) == (A|B)^B |
| Op1I->swapOperands(); |
| I.swapOperands(); |
| std::swap(Op0, Op1); |
| } else if (B == Op0) { // B^(A|B) == (A|B)^B |
| I.swapOperands(); // Simplified below. |
| std::swap(Op0, Op1); |
| } |
| } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) { |
| return ReplaceInstUsesWith(I, B); // A^(A^B) == B |
| } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) { |
| return ReplaceInstUsesWith(I, A); // A^(B^A) == B |
| } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && |
| Op1I->hasOneUse()){ |
| if (A == Op0) { // A^(A&B) -> A^(B&A) |
| Op1I->swapOperands(); |
| std::swap(A, B); |
| } |
| if (B == Op0) { // A^(B&A) -> (B&A)^A |
| I.swapOperands(); // Simplified below. |
| std::swap(Op0, Op1); |
| } |
| } |
| } |
| |
| BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0); |
| if (Op0I) { |
| Value *A, *B; |
| if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && |
| Op0I->hasOneUse()) { |
| if (A == Op1) // (B|A)^B == (A|B)^B |
| std::swap(A, B); |
| if (B == Op1) // (A|B)^B == A & ~B |
| return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp")); |
| } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) { |
| return ReplaceInstUsesWith(I, B); // (A^B)^A == B |
| } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) { |
| return ReplaceInstUsesWith(I, A); // (B^A)^A == B |
| } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && |
| Op0I->hasOneUse()){ |
| if (A == Op1) // (A&B)^A -> (B&A)^A |
| std::swap(A, B); |
| if (B == Op1 && // (B&A)^A == ~B & A |
| !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C |
| return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1); |
| } |
| } |
| } |
| |
| // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. |
| if (Op0I && Op1I && Op0I->isShift() && |
| Op0I->getOpcode() == Op1I->getOpcode() && |
| Op0I->getOperand(1) == Op1I->getOperand(1) && |
| (Op1I->hasOneUse() || Op1I->hasOneUse())) { |
| Value *NewOp = |
| Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0), |
| Op0I->getName()); |
| return BinaryOperator::Create(Op1I->getOpcode(), NewOp, |
| Op1I->getOperand(1)); |
| } |
| |
| if (Op0I && Op1I) { |
| Value *A, *B, *C, *D; |
| // (A & B)^(A | B) -> A ^ B |
| if (match(Op0I, m_And(m_Value(A), m_Value(B))) && |
| match(Op1I, m_Or(m_Value(C), m_Value(D)))) { |
| if ((A == C && B == D) || (A == D && B == C)) |
| return BinaryOperator::CreateXor(A, B); |
| } |
| // (A | B)^(A & B) -> A ^ B |
| if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && |
| match(Op1I, m_And(m_Value(C), m_Value(D)))) { |
| if ((A == C && B == D) || (A == D && B == C)) |
| return BinaryOperator::CreateXor(A, B); |
| } |
| |
| // (A & B)^(C & D) |
| if ((Op0I->hasOneUse() || Op1I->hasOneUse()) && |
| match(Op0I, m_And(m_Value(A), m_Value(B))) && |
| match(Op1I, m_And(m_Value(C), m_Value(D)))) { |
| // (X & Y)^(X & Y) -> (Y^Z) & X |
| Value *X = 0, *Y = 0, *Z = 0; |
| if (A == C) |
| X = A, Y = B, Z = D; |
| else if (A == D) |
| X = A, Y = B, Z = C; |
| else if (B == C) |
| X = B, Y = A, Z = D; |
| else if (B == D) |
| X = B, Y = A, Z = C; |
| |
| if (X) { |
| Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName()); |
| return BinaryOperator::CreateAnd(NewOp, X); |
| } |
| } |
| } |
| |
| // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) |
| if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) |
| if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) |
| if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) { |
| if (LHS->getOperand(0) == RHS->getOperand(1) && |
| LHS->getOperand(1) == RHS->getOperand(0)) |
| LHS->swapOperands(); |
| if (LHS->getOperand(0) == RHS->getOperand(0) && |
| LHS->getOperand(1) == RHS->getOperand(1)) { |
| Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); |
| unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS); |
| bool isSigned = LHS->isSigned() || RHS->isSigned(); |
| Value *RV = getICmpValue(isSigned, Code, Op0, Op1); |
| if (Instruction *I = dyn_cast<Instruction>(RV)) |
| return I; |
| // Otherwise, it's a constant boolean value. |
| return ReplaceInstUsesWith(I, RV); |
| } |
| } |
| |
| // fold (xor (cast A), (cast B)) -> (cast (xor A, B)) |
| if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { |
| if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) |
| if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind? |
| const Type *SrcTy = Op0C->getOperand(0)->getType(); |
| if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && |
| // Only do this if the casts both really cause code to be generated. |
| ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), |
| I.getType()) && |
| ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), |
| I.getType())) { |
| Value *NewOp = Builder->CreateXor(Op0C->getOperand(0), |
| Op1C->getOperand(0), I.getName()); |
| return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); |
| } |
| } |
| } |
| |
| return Changed ? &I : 0; |
| } |
| |
| |
| Instruction *InstCombiner::visitShl(BinaryOperator &I) { |
| return commonShiftTransforms(I); |
| } |
| |
| Instruction *InstCombiner::visitLShr(BinaryOperator &I) { |
| return commonShiftTransforms(I); |
| } |
| |
| Instruction *InstCombiner::visitAShr(BinaryOperator &I) { |
| if (Instruction *R = commonShiftTransforms(I)) |
| return R; |
| |
| Value *Op0 = I.getOperand(0); |
| |
| // ashr int -1, X = -1 (for any arithmetic shift rights of ~0) |
| if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) |
| if (CSI->isAllOnesValue()) |
| return ReplaceInstUsesWith(I, CSI); |
| |
| // See if we can turn a signed shr into an unsigned shr. |
| if (MaskedValueIsZero(Op0, |
| APInt::getSignBit(I.getType()->getScalarSizeInBits()))) |
| return BinaryOperator::CreateLShr(Op0, I.getOperand(1)); |
| |
| // Arithmetic shifting an all-sign-bit value is a no-op. |
| unsigned NumSignBits = ComputeNumSignBits(Op0); |
| if (NumSignBits == Op0->getType()->getScalarSizeInBits()) |
| return ReplaceInstUsesWith(I, Op0); |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { |
| assert(I.getOperand(1)->getType() == I.getOperand(0)->getType()); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // shl X, 0 == X and shr X, 0 == X |
| // shl 0, X == 0 and shr 0, X == 0 |
| if (Op1 == Constant::getNullValue(Op1->getType()) || |
| Op0 == Constant::getNullValue(Op0->getType())) |
| return ReplaceInstUsesWith(I, Op0); |
| |
| if (isa<UndefValue>(Op0)) { |
| if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef |
| return ReplaceInstUsesWith(I, Op0); |
| else // undef << X -> 0, undef >>u X -> 0 |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| } |
| if (isa<UndefValue>(Op1)) { |
| if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X |
| return ReplaceInstUsesWith(I, Op0); |
| else // X << undef, X >>u undef -> 0 |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| } |
| |
| // See if we can fold away this shift. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| // Try to fold constant and into select arguments. |
| if (isa<Constant>(Op0)) |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| |
| if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1)) |
| if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) |
| return Res; |
| return 0; |
| } |
| |
| Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1, |
| BinaryOperator &I) { |
| bool isLeftShift = I.getOpcode() == Instruction::Shl; |
| |
| // See if we can simplify any instructions used by the instruction whose sole |
| // purpose is to compute bits we don't care about. |
| uint32_t TypeBits = Op0->getType()->getScalarSizeInBits(); |
| |
| // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate |
| // a signed shift. |
| // |
| if (Op1->uge(TypeBits)) { |
| if (I.getOpcode() != Instruction::AShr) |
| return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); |
| else { |
| I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1)); |
| return &I; |
| } |
| } |
| |
| // ((X*C1) << C2) == (X * (C1 << C2)) |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) |
| if (BO->getOpcode() == Instruction::Mul && isLeftShift) |
| if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1))) |
| return BinaryOperator::CreateMul(BO->getOperand(0), |
| ConstantExpr::getShl(BOOp, Op1)); |
| |
| // Try to fold constant and into select arguments. |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| return R; |
| if (isa<PHINode>(Op0)) |
| if (Instruction *NV = FoldOpIntoPhi(I)) |
| return NV; |
| |
| // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) |
| if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { |
| Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); |
| // If 'shift2' is an ashr, we would have to get the sign bit into a funny |
| // place. Don't try to do this transformation in this case. Also, we |
| // require that the input operand is a shift-by-constant so that we have |
| // confidence that the shifts will get folded together. We could do this |
| // xform in more cases, but it is unlikely to be profitable. |
| if (TrOp && I.isLogicalShift() && TrOp->isShift() && |
| isa<ConstantInt>(TrOp->getOperand(1))) { |
| // Okay, we'll do this xform. Make the shift of shift. |
| Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType()); |
| // (shift2 (shift1 & 0x00FF), c2) |
| Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName()); |
| |
| // For logical shifts, the truncation has the effect of making the high |
| // part of the register be zeros. Emulate this by inserting an AND to |
| // clear the top bits as needed. This 'and' will usually be zapped by |
| // other xforms later if dead. |
| unsigned SrcSize = TrOp->getType()->getScalarSizeInBits(); |
| unsigned DstSize = TI->getType()->getScalarSizeInBits(); |
| APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); |
| |
| // The mask we constructed says what the trunc would do if occurring |
| // between the shifts. We want to know the effect *after* the second |
| // shift. We know that it is a logical shift by a constant, so adjust the |
| // mask as appropriate. |
| if (I.getOpcode() == Instruction::Shl) |
| MaskV <<= Op1->getZExtValue(); |
| else { |
| assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); |
| MaskV = MaskV.lshr(Op1->getZExtValue()); |
| } |
| |
| // shift1 & 0x00FF |
| Value *And = Builder->CreateAnd(NSh, |
| ConstantInt::get(I.getContext(), MaskV), |
| TI->getName()); |
| |
| // Return the value truncated to the interesting size. |
| return new TruncInst(And, I.getType()); |
| } |
| } |
| |
| if (Op0->hasOneUse()) { |
| if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { |
| // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) |
| Value *V1, *V2; |
| ConstantInt *CC; |
| switch (Op0BO->getOpcode()) { |
| default: break; |
| case Instruction::Add: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| // These operators commute. |
| // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) |
| if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && |
| match(Op0BO->getOperand(1), m_Shr(m_Value(V1), |
| m_Specific(Op1)))) { |
| Value *YS = // (Y << C) |
| Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); |
| // (X + (Y << C)) |
| Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1, |
| Op0BO->getOperand(1)->getName()); |
| uint32_t Op1Val = Op1->getLimitedValue(TypeBits); |
| return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(), |
| APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); |
| } |
| |
| // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) |
| Value *Op0BOOp1 = Op0BO->getOperand(1); |
| if (isLeftShift && Op0BOOp1->hasOneUse() && |
| match(Op0BOOp1, |
| m_And(m_Shr(m_Value(V1), m_Specific(Op1)), |
| m_ConstantInt(CC))) && |
| cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) { |
| Value *YS = // (Y << C) |
| Builder->CreateShl(Op0BO->getOperand(0), Op1, |
| Op0BO->getName()); |
| // X & (CC << C) |
| Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), |
| V1->getName()+".mask"); |
| return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); |
| } |
| } |
| |
| // FALL THROUGH. |
| case Instruction::Sub: { |
| // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) |
| if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && |
| match(Op0BO->getOperand(0), m_Shr(m_Value(V1), |
| m_Specific(Op1)))) { |
| Value *YS = // (Y << C) |
| Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); |
| // (X + (Y << C)) |
| Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS, |
| Op0BO->getOperand(0)->getName()); |
| uint32_t Op1Val = Op1->getLimitedValue(TypeBits); |
| return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(), |
| APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); |
| } |
| |
| // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C) |
| if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && |
| match(Op0BO->getOperand(0), |
| m_And(m_Shr(m_Value(V1), m_Value(V2)), |
| m_ConstantInt(CC))) && V2 == Op1 && |
| cast<BinaryOperator>(Op0BO->getOperand(0)) |
| ->getOperand(0)->hasOneUse()) { |
| Value *YS = // (Y << C) |
| Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); |
| // X & (CC << C) |
| Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), |
| V1->getName()+".mask"); |
| |
| return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); |
| } |
| |
| break; |
| } |
| } |
| |
| |
| // If the operand is an bitwise operator with a constant RHS, and the |
| // shift is the only use, we can pull it out of the shift. |
| if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) { |
| bool isValid = true; // Valid only for And, Or, Xor |
| bool highBitSet = false; // Transform if high bit of constant set? |
| |
| switch (Op0BO->getOpcode()) { |
| default: isValid = false; break; // Do not perform transform! |
| case Instruction::Add: |
| isValid = isLeftShift; |
| break; |
| case Instruction::Or: |
| case Instruction::Xor: |
| highBitSet = false; |
| break; |
| case Instruction::And: |
| highBitSet = true; |
| break; |
| } |
| |
| // If this is a signed shift right, and the high bit is modified |
| // by the logical operation, do not perform the transformation. |
| // The highBitSet boolean indicates the value of the high bit of |
| // the constant which would cause it to be modified for this |
| // operation. |
| // |
| if (isValid && I.getOpcode() == Instruction::AShr) |
| isValid = Op0C->getValue()[TypeBits-1] == highBitSet; |
| |
| if (isValid) { |
| Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1); |
| |
| Value *NewShift = |
| Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); |
| NewShift->takeName(Op0BO); |
| |
| return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, |
| NewRHS); |
| } |
| } |
| } |
| } |
| |
| // Find out if this is a shift of a shift by a constant. |
| BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0); |
| if (ShiftOp && !ShiftOp->isShift()) |
| ShiftOp = 0; |
| |
| if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) { |
| ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1)); |
| uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits); |
| uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits); |
| assert(ShiftAmt2 != 0 && "Should have been simplified earlier"); |
| if (ShiftAmt1 == 0) return 0; // Will be simplified in the future. |
| Value *X = ShiftOp->getOperand(0); |
| |
| uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift. |
| |
| const IntegerType *Ty = cast<IntegerType>(I.getType()); |
| |
| // Check for (X << c1) << c2 and (X >> c1) >> c2 |
| if (I.getOpcode() == ShiftOp->getOpcode()) { |
| // If this is oversized composite shift, then unsigned shifts get 0, ashr |
| // saturates. |
| if (AmtSum >= TypeBits) { |
| if (I.getOpcode() != Instruction::AShr) |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr. |
| } |
| |
| return BinaryOperator::Create(I.getOpcode(), X, |
| ConstantInt::get(Ty, AmtSum)); |
| } |
| |
| if (ShiftOp->getOpcode() == Instruction::LShr && |
| I.getOpcode() == Instruction::AShr) { |
| if (AmtSum >= TypeBits) |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| |
| // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0. |
| return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); |
| } |
| |
| if (ShiftOp->getOpcode() == Instruction::AShr && |
| I.getOpcode() == Instruction::LShr) { |
| // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0. |
| if (AmtSum >= TypeBits) |
| AmtSum = TypeBits-1; |
| |
| Value *Shift = Builder->CreateAShr(X, ConstantInt::get(Ty, AmtSum)); |
| |
| APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); |
| return BinaryOperator::CreateAnd(Shift, |
| ConstantInt::get(I.getContext(), Mask)); |
| } |
| |
| // Okay, if we get here, one shift must be left, and the other shift must be |
| // right. See if the amounts are equal. |
| if (ShiftAmt1 == ShiftAmt2) { |
| // If we have ((X >>? C) << C), turn this into X & (-1 << C). |
| if (I.getOpcode() == Instruction::Shl) { |
| APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1)); |
| return BinaryOperator::CreateAnd(X, |
| ConstantInt::get(I.getContext(),Mask)); |
| } |
| // If we have ((X << C) >>u C), turn this into X & (-1 >>u C). |
| if (I.getOpcode() == Instruction::LShr) { |
| APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1)); |
| return BinaryOperator::CreateAnd(X, |
| ConstantInt::get(I.getContext(), Mask)); |
| } |
| // We can simplify ((X << C) >>s C) into a trunc + sext. |
| // NOTE: we could do this for any C, but that would make 'unusual' integer |
| // types. For now, just stick to ones well-supported by the code |
| // generators. |
| const Type *SExtType = 0; |
| switch (Ty->getBitWidth() - ShiftAmt1) { |
| case 1 : |
| case 8 : |
| case 16 : |
| case 32 : |
| case 64 : |
| case 128: |
| SExtType = IntegerType::get(I.getContext(), |
| Ty->getBitWidth() - ShiftAmt1); |
| break; |
| default: break; |
| } |
| if (SExtType) |
| return new SExtInst(Builder->CreateTrunc(X, SExtType, "sext"), Ty); |
| // Otherwise, we can't handle it yet. |
| } else if (ShiftAmt1 < ShiftAmt2) { |
| uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1; |
| |
| // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) |
| if (I.getOpcode() == Instruction::Shl) { |
| assert(ShiftOp->getOpcode() == Instruction::LShr || |
| ShiftOp->getOpcode() == Instruction::AShr); |
| Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); |
| |
| APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); |
| return BinaryOperator::CreateAnd(Shift, |
| ConstantInt::get(I.getContext(),Mask)); |
| } |
| |
| // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2) |
| if (I.getOpcode() == Instruction::LShr) { |
| assert(ShiftOp->getOpcode() == Instruction::Shl); |
| Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff)); |
| |
| APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); |
| return BinaryOperator::CreateAnd(Shift, |
| ConstantInt::get(I.getContext(),Mask)); |
| } |
| |
| // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. |
| } else { |
| assert(ShiftAmt2 < ShiftAmt1); |
| uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2; |
| |
| // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) |
| if (I.getOpcode() == Instruction::Shl) { |
| assert(ShiftOp->getOpcode() == Instruction::LShr || |
| ShiftOp->getOpcode() == Instruction::AShr); |
| Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X, |
| ConstantInt::get(Ty, ShiftDiff)); |
| |
| APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); |
| return BinaryOperator::CreateAnd(Shift, |
| ConstantInt::get(I.getContext(),Mask)); |
| } |
| |
| // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2) |
| if (I.getOpcode() == Instruction::LShr) { |
| assert(ShiftOp->getOpcode() == Instruction::Shl); |
| Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); |
| |
| APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); |
| return BinaryOperator::CreateAnd(Shift, |
| ConstantInt::get(I.getContext(),Mask)); |
| } |
| |
| // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in. |
| } |
| } |
| return 0; |
| } |
| |
| |
| |
| /// FindElementAtOffset - Given a type and a constant offset, determine whether |
| /// or not there is a sequence of GEP indices into the type that will land us at |
| /// the specified offset. If so, fill them into NewIndices and return the |
| /// resultant element type, otherwise return null. |
| const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset, |
| SmallVectorImpl<Value*> &NewIndices) { |
| if (!TD) return 0; |
| if (!Ty->isSized()) return 0; |
| |
| // Start with the index over the outer type. Note that the type size |
| // might be zero (even if the offset isn't zero) if the indexed type |
| // is something like [0 x {int, int}] |
| const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext()); |
| int64_t FirstIdx = 0; |
| if (int64_t TySize = TD->getTypeAllocSize(Ty)) { |
| FirstIdx = Offset/TySize; |
| Offset -= FirstIdx*TySize; |
| |
| // Handle hosts where % returns negative instead of values [0..TySize). |
| if (Offset < 0) { |
| --FirstIdx; |
| Offset += TySize; |
| assert(Offset >= 0); |
| } |
| assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); |
| } |
| |
| NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); |
| |
| // Index into the types. If we fail, set OrigBase to null. |
| while (Offset) { |
| // Indexing into tail padding between struct/array elements. |
| if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty)) |
| return 0; |
| |
| if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| const StructLayout *SL = TD->getStructLayout(STy); |
| assert(Offset < (int64_t)SL->getSizeInBytes() && |
| "Offset must stay within the indexed type"); |
| |
| unsigned Elt = SL->getElementContainingOffset(Offset); |
| NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), |
| Elt)); |
| |
| Offset -= SL->getElementOffset(Elt); |
| Ty = STy->getElementType(Elt); |
| } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { |
| uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType()); |
| assert(EltSize && "Cannot index into a zero-sized array"); |
| NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); |
| Offset %= EltSize; |
| Ty = AT->getElementType(); |
| } else { |
| // Otherwise, we can't index into the middle of this atomic type, bail. |
| return 0; |
| } |
| } |
| |
| return Ty; |
| } |
| |
| |
| /// EnforceKnownAlignment - If the specified pointer points to an object that |
| /// we control, modify the object's alignment to PrefAlign. This isn't |
| /// often possible though. If alignment is important, a more reliable approach |
| /// is to simply align all global variables and allocation instructions to |
| /// their preferred alignment from the beginning. |
| /// |
| static unsigned EnforceKnownAlignment(Value *V, |
| unsigned Align, unsigned PrefAlign) { |
| |
| User *U = dyn_cast<User>(V); |
| if (!U) return Align; |
| |
| switch (Operator::getOpcode(U)) { |
| default: break; |
| case Instruction::BitCast: |
| return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); |
| case Instruction::GetElementPtr: { |
| // If all indexes are zero, it is just the alignment of the base pointer. |
| bool AllZeroOperands = true; |
| for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i) |
| if (!isa<Constant>(*i) || |
| !cast<Constant>(*i)->isNullValue()) { |
| AllZeroOperands = false; |
| break; |
| } |
| |
| if (AllZeroOperands) { |
| // Treat this like a bitcast. |
| return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); |
| } |
| break; |
| } |
| } |
| |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // If there is a large requested alignment and we can, bump up the alignment |
| // of the global. |
| if (!GV->isDeclaration()) { |
| if (GV->getAlignment() >= PrefAlign) |
| Align = GV->getAlignment(); |
| else { |
| GV->setAlignment(PrefAlign); |
| Align = PrefAlign; |
| } |
| } |
| } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| // If there is a requested alignment and if this is an alloca, round up. |
| if (AI->getAlignment() >= PrefAlign) |
| Align = AI->getAlignment(); |
| else { |
| AI->setAlignment(PrefAlign); |
| Align = PrefAlign; |
| } |
| } |
| |
| return Align; |
| } |
| |
| /// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that |
| /// we can determine, return it, otherwise return 0. If PrefAlign is specified, |
| /// and it is more than the alignment of the ultimate object, see if we can |
| /// increase the alignment of the ultimate object, making this check succeed. |
| unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V, |
| unsigned PrefAlign) { |
| unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) : |
| sizeof(PrefAlign) * CHAR_BIT; |
| APInt Mask = APInt::getAllOnesValue(BitWidth); |
| APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); |
| ComputeMaskedBits(V, Mask, KnownZero, KnownOne); |
| unsigned TrailZ = KnownZero.countTrailingOnes(); |
| unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); |
| |
| if (PrefAlign > Align) |
| Align = EnforceKnownAlignment(V, Align, PrefAlign); |
| |
| // We don't need to make any adjustment. |
| return Align; |
| } |
| |
| Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) { |
| unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1)); |
| unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2)); |
| unsigned MinAlign = std::min(DstAlign, SrcAlign); |
| unsigned CopyAlign = MI->getAlignment(); |
| |
| if (CopyAlign < MinAlign) { |
| MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), |
| MinAlign, false)); |
| return MI; |
| } |
| |
| // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with |
| // load/store. |
| ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3)); |
| if (MemOpLength == 0) return 0; |
| |
| // Source and destination pointer types are always "i8*" for intrinsic. See |
| // if the size is something we can handle with a single primitive load/store. |
| // A single load+store correctly handles overlapping memory in the memmove |
| // case. |
| unsigned Size = MemOpLength->getZExtValue(); |
| if (Size == 0) return MI; // Delete this mem transfer. |
| |
| if (Size > 8 || (Size&(Size-1))) |
| return 0; // If not 1/2/4/8 bytes, exit. |
| |
| // Use an integer load+store unless we can find something better. |
| Type *NewPtrTy = |
| PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3)); |
| |
| // Memcpy forces the use of i8* for the source and destination. That means |
| // that if you're using memcpy to move one double around, you'll get a cast |
| // from double* to i8*. We'd much rather use a double load+store rather than |
| // an i64 load+store, here because this improves the odds that the source or |
| // dest address will be promotable. See if we can find a better type than the |
| // integer datatype. |
| if (Value *Op = getBitCastOperand(MI->getOperand(1))) { |
| const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType(); |
| if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) { |
| // The SrcETy might be something like {{{double}}} or [1 x double]. Rip |
| // down through these levels if so. |
| while (!SrcETy->isSingleValueType()) { |
| if (const StructType *STy = dyn_cast<StructType>(SrcETy)) { |
| if (STy->getNumElements() == 1) |
| SrcETy = STy->getElementType(0); |
| else |
| break; |
| } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) { |
| if (ATy->getNumElements() == 1) |
| SrcETy = ATy->getElementType(); |
| else |
| break; |
| } else |
| break; |
| } |
| |
| if (SrcETy->isSingleValueType()) |
| NewPtrTy = PointerType::getUnqual(SrcETy); |
| } |
| } |
| |
| |
| // If the memcpy/memmove provides better alignment info than we can |
| // infer, use it. |
| SrcAlign = std::max(SrcAlign, CopyAlign); |
| DstAlign = std::max(DstAlign, CopyAlign); |
| |
| Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy); |
| Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy); |
| Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign); |
| InsertNewInstBefore(L, *MI); |
| InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI); |
| |
| // Set the size of the copy to 0, it will be deleted on the next iteration. |
| MI->setOperand(3, Constant::getNullValue(MemOpLength->getType())); |
| return MI; |
| } |
| |
| Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) { |
| unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest()); |
| if (MI->getAlignment() < Alignment) { |
| MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), |
| Alignment, false)); |
| return MI; |
| } |
| |
| // Extract the length and alignment and fill if they are constant. |
| ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); |
| ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); |
| if (!LenC || !FillC || FillC->getType() != Type::getInt8Ty(MI->getContext())) |
| return 0; |
| uint64_t Len = LenC->getZExtValue(); |
| Alignment = MI->getAlignment(); |
| |
| // If the length is zero, this is a no-op |
| if (Len == 0) return MI; // memset(d,c,0,a) -> noop |
| |
| // memset(s,c,n) -> store s, c (for n=1,2,4,8) |
| if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { |
| const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. |
| |
| Value *Dest = MI->getDest(); |
| Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy)); |
| |
| // Alignment 0 is identity for alignment 1 for memset, but not store. |
| if (Alignment == 0) Alignment = 1; |
| |
| // Extract the fill value and store. |
| uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; |
| InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), |
| Dest, false, Alignment), *MI); |
| |
| // Set the size of the copy to 0, it will be deleted on the next iteration. |
| MI->setLength(Constant::getNullValue(LenC->getType())); |
| return MI; |
| } |
| |
| return 0; |
| } |
| |
| |
| /// visitCallInst - CallInst simplification. This mostly only handles folding |
| /// of intrinsic instructions. For normal calls, it allows visitCallSite to do |
| /// the heavy lifting. |
| /// |
| Instruction *InstCombiner::visitCallInst(CallInst &CI) { |
| if (isFreeCall(&CI)) |
| return visitFree(CI); |
| |
| // If the caller function is nounwind, mark the call as nounwind, even if the |
| // callee isn't. |
| if (CI.getParent()->getParent()->doesNotThrow() && |
| !CI.doesNotThrow()) { |
| CI.setDoesNotThrow(); |
| return &CI; |
| } |
| |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); |
| if (!II) return visitCallSite(&CI); |
| |
| // Intrinsics cannot occur in an invoke, so handle them here instead of in |
| // visitCallSite. |
| if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) { |
| bool Changed = false; |
| |
| // memmove/cpy/set of zero bytes is a noop. |
| if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { |
| if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) |
| if (CI->getZExtValue() == 1) { |
| // Replace the instruction with just byte operations. We would |
| // transform other cases to loads/stores, but we don't know if |
| // alignment is sufficient. |
| } |
| } |
| |
| // If we have a memmove and the source operation is a constant global, |
| // then the source and dest pointers can't alias, so we can change this |
| // into a call to memcpy. |
| if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) { |
| if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) |
| if (GVSrc->isConstant()) { |
| Module *M = CI.getParent()->getParent()->getParent(); |
| Intrinsic::ID MemCpyID = Intrinsic::memcpy; |
| const Type *Tys[1]; |
| Tys[0] = CI.getOperand(3)->getType(); |
| CI.setOperand(0, |
| Intrinsic::getDeclaration(M, MemCpyID, Tys, 1)); |
| Changed = true; |
| } |
| } |
| |
| if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { |
| // memmove(x,x,size) -> noop. |
| if (MTI->getSource() == MTI->getDest()) |
| return EraseInstFromFunction(CI); |
| } |
| |
| // If we can determine a pointer alignment that is bigger than currently |
| // set, update the alignment. |
| if (isa<MemTransferInst>(MI)) { |
| if (Instruction *I = SimplifyMemTransfer(MI)) |
| return I; |
| } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) { |
| if (Instruction *I = SimplifyMemSet(MSI)) |
| return I; |
| } |
| |
| if (Changed) return II; |
| } |
| |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::bswap: |
| // bswap(bswap(x)) -> x |
| if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1))) |
| if (Operand->getIntrinsicID() == Intrinsic::bswap) |
| return ReplaceInstUsesWith(CI, Operand->getOperand(1)); |
| |
| // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) |
| if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) { |
| if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0))) |
| if (Operand->getIntrinsicID() == Intrinsic::bswap) { |
| unsigned C = Operand->getType()->getPrimitiveSizeInBits() - |
| TI->getType()->getPrimitiveSizeInBits(); |
| Value *CV = ConstantInt::get(Operand->getType(), C); |
| Value *V = Builder->CreateLShr(Operand->getOperand(1), CV); |
| return new TruncInst(V, TI->getType()); |
| } |
| } |
| |
| break; |
| case Intrinsic::powi: |
| if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) { |
| // powi(x, 0) -> 1.0 |
| if (Power->isZero()) |
| return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0)); |
| // powi(x, 1) -> x |
| if (Power->isOne()) |
| return ReplaceInstUsesWith(CI, II->getOperand(1)); |
| // powi(x, -1) -> 1/x |
| if (Power->isAllOnesValue()) |
| return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), |
| II->getOperand(1)); |
| } |
| break; |
| |
| case Intrinsic::uadd_with_overflow: { |
| Value *LHS = II->getOperand(1), *RHS = II->getOperand(2); |
| const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType()); |
| uint32_t BitWidth = IT->getBitWidth(); |
| APInt Mask = APInt::getSignBit(BitWidth); |
| APInt LHSKnownZero(BitWidth, 0); |
| APInt LHSKnownOne(BitWidth, 0); |
| ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); |
| bool LHSKnownNegative = LHSKnownOne[BitWidth - 1]; |
| bool LHSKnownPositive = LHSKnownZero[BitWidth - 1]; |
| |
| if (LHSKnownNegative || LHSKnownPositive) { |
| APInt RHSKnownZero(BitWidth, 0); |
| APInt RHSKnownOne(BitWidth, 0); |
| ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); |
| bool RHSKnownNegative = RHSKnownOne[BitWidth - 1]; |
| bool RHSKnownPositive = RHSKnownZero[BitWidth - 1]; |
| if (LHSKnownNegative && RHSKnownNegative) { |
| // The sign bit is set in both cases: this MUST overflow. |
| // Create a simple add instruction, and insert it into the struct. |
| Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI); |
| Worklist.Add(Add); |
| Constant *V[] = { |
| UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext()) |
| }; |
| Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); |
| return InsertValueInst::Create(Struct, Add, 0); |
| } |
| |
| if (LHSKnownPositive && RHSKnownPositive) { |
| // The sign bit is clear in both cases: this CANNOT overflow. |
| // Create a simple add instruction, and insert it into the struct. |
| Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI); |
| Worklist.Add(Add); |
| Constant *V[] = { |
| UndefValue::get(LHS->getType()), |
| ConstantInt::getFalse(II->getContext()) |
| }; |
| Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); |
| return InsertValueInst::Create(Struct, Add, 0); |
| } |
| } |
| } |
| // FALL THROUGH uadd into sadd |
| case Intrinsic::sadd_with_overflow: |
| // Canonicalize constants into the RHS. |
| if (isa<Constant>(II->getOperand(1)) && |
| !isa<Constant>(II->getOperand(2))) { |
| Value *LHS = II->getOperand(1); |
| II->setOperand(1, II->getOperand(2)); |
| II->setOperand(2, LHS); |
| return II; |
| } |
| |
| // X + undef -> undef |
| if (isa<UndefValue>(II->getOperand(2))) |
| return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); |
| |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) { |
| // X + 0 -> {X, false} |
| if (RHS->isZero()) { |
| Constant *V[] = { |
| UndefValue::get(II->getOperand(0)->getType()), |
| ConstantInt::getFalse(II->getContext()) |
| }; |
| Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); |
| return InsertValueInst::Create(Struct, II->getOperand(1), 0); |
| } |
| } |
| break; |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| // undef - X -> undef |
| // X - undef -> undef |
| if (isa<UndefValue>(II->getOperand(1)) || |
| isa<UndefValue>(II->getOperand(2))) |
| return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); |
| |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) { |
| // X - 0 -> {X, false} |
| if (RHS->isZero()) { |
| Constant *V[] = { |
| UndefValue::get(II->getOperand(1)->getType()), |
| ConstantInt::getFalse(II->getContext()) |
| }; |
| Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); |
| return InsertValueInst::Create(Struct, II->getOperand(1), 0); |
| } |
| } |
| break; |
| case Intrinsic::umul_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| // Canonicalize constants into the RHS. |
| if (isa<Constant>(II->getOperand(1)) && |
| !isa<Constant>(II->getOperand(2))) { |
| Value *LHS = II->getOperand(1); |
| II->setOperand(1, II->getOperand(2)); |
| II->setOperand(2, LHS); |
| return II; |
| } |
| |
| // X * undef -> undef |
| if (isa<UndefValue>(II->getOperand(2))) |
| return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); |
| |
| if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) { |
| // X*0 -> {0, false} |
| if (RHSI->isZero()) |
| return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType())); |
| |
| // X * 1 -> {X, false} |
| if (RHSI->equalsInt(1)) { |
| Constant *V[] = { |
| UndefValue::get(II->getOperand(1)->getType()), |
| ConstantInt::getFalse(II->getContext()) |
| }; |
| Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); |
| return InsertValueInst::Create(Struct, II->getOperand(1), 0); |
| } |
| } |
| break; |
| case Intrinsic::ppc_altivec_lvx: |
| case Intrinsic::ppc_altivec_lvxl: |
| case Intrinsic::x86_sse_loadu_ps: |
| case Intrinsic::x86_sse2_loadu_pd: |
| case Intrinsic::x86_sse2_loadu_dq: |
| // Turn PPC lvx -> load if the pointer is known aligned. |
| // Turn X86 loadups -> load if the pointer is known aligned. |
| if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { |
| Value *Ptr = Builder->CreateBitCast(II->getOperand(1), |
| PointerType::getUnqual(II->getType())); |
| return new LoadInst(Ptr); |
| } |
| break; |
| case Intrinsic::ppc_altivec_stvx: |
| case Intrinsic::ppc_altivec_stvxl: |
| // Turn stvx -> store if the pointer is known aligned. |
| if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) { |
| const Type *OpPtrTy = |
| PointerType::getUnqual(II->getOperand(1)->getType()); |
| Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy); |
| return new StoreInst(II->getOperand(1), Ptr); |
| } |
| break; |
| case Intrinsic::x86_sse_storeu_ps: |
| case Intrinsic::x86_sse2_storeu_pd: |
| case Intrinsic::x86_sse2_storeu_dq: |
| // Turn X86 storeu -> store if the pointer is known aligned. |
| if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { |
| const Type *OpPtrTy = |
| PointerType::getUnqual(II->getOperand(2)->getType()); |
| Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy); |
| return new StoreInst(II->getOperand(2), Ptr); |
| } |
| break; |
| |
| case Intrinsic::x86_sse_cvttss2si: { |
| // These intrinsics only demands the 0th element of its input vector. If |
| // we can simplify the input based on that, do so now. |
| unsigned VWidth = |
| cast<VectorType>(II->getOperand(1)->getType())->getNumElements(); |
| APInt DemandedElts(VWidth, 1); |
| APInt UndefElts(VWidth, 0); |
| if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, |
| UndefElts)) { |
| II->setOperand(1, V); |
| return II; |
| } |
| break; |
| } |
| |
| case Intrinsic::ppc_altivec_vperm: |
| // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. |
| if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) { |
| assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!"); |
| |
| // Check that all of the elements are integer constants or undefs. |
| bool AllEltsOk = true; |
| for (unsigned i = 0; i != 16; ++i) { |
| if (!isa<ConstantInt>(Mask->getOperand(i)) && |
| !isa<UndefValue>(Mask->getOperand(i))) { |
| AllEltsOk = false; |
| break; |
| } |
| } |
| |
| if (AllEltsOk) { |
| // Cast the input vectors to byte vectors. |
| Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType()); |
| Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType()); |
| Value *Result = UndefValue::get(Op0->getType()); |
| |
| // Only extract each element once. |
| Value *ExtractedElts[32]; |
| memset(ExtractedElts, 0, sizeof(ExtractedElts)); |
| |
| for (unsigned i = 0; i != 16; ++i) { |
| if (isa<UndefValue>(Mask->getOperand(i))) |
| continue; |
| unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue(); |
| Idx &= 31; // Match the hardware behavior. |
| |
| if (ExtractedElts[Idx] == 0) { |
| ExtractedElts[Idx] = |
| Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1, |
| ConstantInt::get(Type::getInt32Ty(II->getContext()), |
| Idx&15, false), "tmp"); |
| } |
| |
| // Insert this value into the result vector. |
| Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx], |
| ConstantInt::get(Type::getInt32Ty(II->getContext()), |
| i, false), "tmp"); |
| } |
| return CastInst::Create(Instruction::BitCast, Result, CI.getType()); |
| } |
| } |
| break; |
| |
| case Intrinsic::stackrestore: { |
| // If the save is right next to the restore, remove the restore. This can |
| // happen when variable allocas are DCE'd. |
| if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) { |
| if (SS->getIntrinsicID() == Intrinsic::stacksave) { |
| BasicBlock::iterator BI = SS; |
| if (&*++BI == II) |
| return EraseInstFromFunction(CI); |
| } |
| } |
| |
| // Scan down this block to see if there is another stack restore in the |
| // same block without an intervening call/alloca. |
| BasicBlock::iterator BI = II; |
| TerminatorInst *TI = II->getParent()->getTerminator(); |
| bool CannotRemove = false; |
| for (++BI; &*BI != TI; ++BI) { |
| if (isa<AllocaInst>(BI) || isMalloc(BI)) { |
| CannotRemove = true; |
| break; |
| } |
| if (CallInst *BCI = dyn_cast<CallInst>(BI)) { |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) { |
| // If there is a stackrestore below this one, remove this one. |
| if (II->getIntrinsicID() == Intrinsic::stackrestore) |
| return EraseInstFromFunction(CI); |
| // Otherwise, ignore the intrinsic. |
| } else { |
| // If we found a non-intrinsic call, we can't remove the stack |
| // restore. |
| CannotRemove = true; |
| break; |
| } |
| } |
| } |
| |
| // If the stack restore is in a return/unwind block and if there are no |
| // allocas or calls between the restore and the return, nuke the restore. |
| if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI))) |
| return EraseInstFromFunction(CI); |
| break; |
| } |
| } |
| |
| return visitCallSite(II); |
| } |
| |
| // InvokeInst simplification |
| // |
| Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { |
| return visitCallSite(&II); |
| } |
| |
| /// isSafeToEliminateVarargsCast - If this cast does not affect the value |
| /// passed through the varargs area, we can eliminate the use of the cast. |
| static bool isSafeToEliminateVarargsCast(const CallSite CS, |
| const CastInst * const CI, |
| const TargetData * const TD, |
| const int ix) { |
| if (!CI->isLosslessCast()) |
| return false; |
| |
| // The size of ByVal arguments is derived from the type, so we |
| // can't change to a type with a different size. If the size were |
| // passed explicitly we could avoid this check. |
| if (!CS.paramHasAttr(ix, Attribute::ByVal)) |
| return true; |
| |
| const Type* SrcTy = |
| cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); |
| const Type* DstTy = cast<PointerType>(CI->getType())->getElementType(); |
| if (!SrcTy->isSized() || !DstTy->isSized()) |
| return false; |
| if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy)) |
| return false; |
| return true; |
| } |
| |
| // visitCallSite - Improvements for call and invoke instructions. |
| // |
| Instruction *InstCombiner::visitCallSite(CallSite CS) { |
| bool Changed = false; |
| |
| // If the callee is a constexpr cast of a function, attempt to move the cast |
| // to the arguments of the call/invoke. |
| if (transformConstExprCastCall(CS)) return 0; |
| |
| Value *Callee = CS.getCalledValue(); |
| |
| if (Function *CalleeF = dyn_cast<Function>(Callee)) |
| if (CalleeF->getCallingConv() != CS.getCallingConv()) { |
| Instruction *OldCall = CS.getInstruction(); |
| // If the call and callee calling conventions don't match, this call must |
| // be unreachable, as the call is undefined. |
| new StoreInst(ConstantInt::getTrue(Callee->getContext()), |
| UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), |
| OldCall); |
| // If OldCall dues not return void then replaceAllUsesWith undef. |
| // This allows ValueHandlers and custom metadata to adjust itself. |
| if (!OldCall->getType()->isVoidTy()) |
| OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType())); |
| if (isa<CallInst>(OldCall)) // Not worth removing an invoke here. |
| return EraseInstFromFunction(*OldCall); |
| return 0; |
| } |
| |
| if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { |
| // This instruction is not reachable, just remove it. We insert a store to |
| // undef so that we know that this code is not reachable, despite the fact |
| // that we can't modify the CFG here. |
| new StoreInst(ConstantInt::getTrue(Callee->getContext()), |
| UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), |
| CS.getInstruction()); |
| |
| // If CS dues not return void then replaceAllUsesWith undef. |
| // This allows ValueHandlers and custom metadata to adjust itself. |
| if (!CS.getInstruction()->getType()->isVoidTy()) |
| CS.getInstruction()-> |
| replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType())); |
| |
| if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { |
| // Don't break the CFG, insert a dummy cond branch. |
| BranchInst::Create(II->getNormalDest(), II->getUnwindDest(), |
| ConstantInt::getTrue(Callee->getContext()), II); |
| } |
| return EraseInstFromFunction(*CS.getInstruction()); |
| } |
| |
| if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee)) |
| if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0))) |
| if (In->getIntrinsicID() == Intrinsic::init_trampoline) |
| return transformCallThroughTrampoline(CS); |
| |
| const PointerType *PTy = cast<PointerType>(Callee->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| if (FTy->isVarArg()) { |
| int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1); |
| // See if we can optimize any arguments passed through the varargs area of |
| // the call. |
| for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(), |
| E = CS.arg_end(); I != E; ++I, ++ix) { |
| CastInst *CI = dyn_cast<CastInst>(*I); |
| if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) { |
| *I = CI->getOperand(0); |
| Changed = true; |
| } |
| } |
| } |
| |
| if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) { |
| // Inline asm calls cannot throw - mark them 'nounwind'. |
| CS.setDoesNotThrow(); |
| Changed = true; |
| } |
| |
| return Changed ? CS.getInstruction() : 0; |
| } |
| |
| // transformConstExprCastCall - If the callee is a constexpr cast of a function, |
| // attempt to move the cast to the arguments of the call/invoke. |
| // |
| bool InstCombiner::transformConstExprCastCall(CallSite CS) { |
| if (!isa<ConstantExpr>(CS.getCalledValue())) return false; |
| ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue()); |
| if (CE->getOpcode() != Instruction::BitCast || |
| !isa<Function>(CE->getOperand(0))) |
| return false; |
| Function *Callee = cast<Function>(CE->getOperand(0)); |
| Instruction *Caller = CS.getInstruction(); |
| const AttrListPtr &CallerPAL = CS.getAttributes(); |
| |
| // Okay, this is a cast from a function to a different type. Unless doing so |
| // would cause a type conversion of one of our arguments, change this call to |
| // be a direct call with arguments casted to the appropriate types. |
| // |
| const FunctionType *FT = Callee->getFunctionType(); |
| const Type *OldRetTy = Caller->getType(); |
| const Type *NewRetTy = FT->getReturnType(); |
| |
| if (isa<StructType>(NewRetTy)) |
| return false; // TODO: Handle multiple return values. |
| |
| // Check to see if we are changing the return type... |
| if (OldRetTy != NewRetTy) { |
| if (Callee->isDeclaration() && |
| // Conversion is ok if changing from one pointer type to another or from |
| // a pointer to an integer of the same size. |
| !((isa<PointerType>(OldRetTy) || !TD || |
| OldRetTy == TD->getIntPtrType(Caller->getContext())) && |
| (isa<PointerType>(NewRetTy) || !TD || |
| NewRetTy == TD->getIntPtrType(Caller->getContext())))) |
| return false; // Cannot transform this return value. |
| |
| if (!Caller->use_empty() && |
| // void -> non-void is handled specially |
| !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy)) |
| return false; // Cannot transform this return value. |
| |
| if (!CallerPAL.isEmpty() && !Caller->use_empty()) { |
| Attributes RAttrs = CallerPAL.getRetAttributes(); |
| if (RAttrs & Attribute::typeIncompatible(NewRetTy)) |
| return false; // Attribute not compatible with transformed value. |
| } |
| |
| // If the callsite is an invoke instruction, and the return value is used by |
| // a PHI node in a successor, we cannot change the return type of the call |
| // because there is no place to put the cast instruction (without breaking |
| // the critical edge). Bail out in this case. |
| if (!Caller->use_empty()) |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) |
| for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); |
| UI != E; ++UI) |
| if (PHINode *PN = dyn_cast<PHINode>(*UI)) |
| if (PN->getParent() == II->getNormalDest() || |
| PN->getParent() == II->getUnwindDest()) |
| return false; |
| } |
| |
| unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); |
| unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); |
| |
| CallSite::arg_iterator AI = CS.arg_begin(); |
| for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { |
| const Type *ParamTy = FT->getParamType(i); |
| const Type *ActTy = (*AI)->getType(); |
| |
| if (!CastInst::isCastable(ActTy, ParamTy)) |
| return false; // Cannot transform this parameter value. |
| |
| if (CallerPAL.getParamAttributes(i + 1) |
| & Attribute::typeIncompatible(ParamTy)) |
| return false; // Attribute not compatible with transformed value. |
| |
| // Converting from one pointer type to another or between a pointer and an |
| // integer of the same size is safe even if we do not have a body. |
| bool isConvertible = ActTy == ParamTy || |
| (TD && ((isa<PointerType>(ParamTy) || |
| ParamTy == TD->getIntPtrType(Caller->getContext())) && |
| (isa<PointerType>(ActTy) || |
| ActTy == TD->getIntPtrType(Caller->getContext())))); |
| if (Callee->isDeclaration() && !isConvertible) return false; |
| } |
| |
| if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() && |
| Callee->isDeclaration()) |
| return false; // Do not delete arguments unless we have a function body. |
| |
| if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && |
| !CallerPAL.isEmpty()) |
| // In this case we have more arguments than the new function type, but we |
| // won't be dropping them. Check that these extra arguments have attributes |
| // that are compatible with being a vararg call argument. |
| for (unsigned i = CallerPAL.getNumSlots(); i; --i) { |
| if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams()) |
| break; |
| Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs; |
| if (PAttrs & Attribute::VarArgsIncompatible) |
| return false; |
| } |
| |
| // Okay, we decided that this is a safe thing to do: go ahead and start |
| // inserting cast instructions as necessary... |
| std::vector<Value*> Args; |
| Args.reserve(NumActualArgs); |
| SmallVector<AttributeWithIndex, 8> attrVec; |
| attrVec.reserve(NumCommonArgs); |
| |
| // Get any return attributes. |
| Attributes RAttrs = CallerPAL.getRetAttributes(); |
| |
| // If the return value is not being used, the type may not be compatible |
| // with the existing attributes. Wipe out any problematic attributes. |
| RAttrs &= ~Attribute::typeIncompatible(NewRetTy); |
| |
| // Add the new return attributes. |
| if (RAttrs) |
| attrVec.push_back(AttributeWithIndex::get(0, RAttrs)); |
| |
| AI = CS.arg_begin(); |
| for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { |
| const Type *ParamTy = FT->getParamType(i); |
| if ((*AI)->getType() == ParamTy) { |
| Args.push_back(*AI); |
| } else { |
| Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, |
| false, ParamTy, false); |
| Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp")); |
| } |
| |
| // Add any parameter attributes. |
| if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) |
| attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); |
| } |
| |
| // If the function takes more arguments than the call was taking, add them |
| // now. |
| for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) |
| Args.push_back(Constant::getNullValue(FT->getParamType(i))); |
| |
| // If we are removing arguments to the function, emit an obnoxious warning. |
| if (FT->getNumParams() < NumActualArgs) { |
| if (!FT->isVarArg()) { |
| errs() << "WARNING: While resolving call to function '" |
| << Callee->getName() << "' arguments were dropped!\n"; |
| } else { |
| // Add all of the arguments in their promoted form to the arg list. |
| for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { |
| const Type *PTy = getPromotedType((*AI)->getType()); |
| if (PTy != (*AI)->getType()) { |
| // Must promote to pass through va_arg area! |
| Instruction::CastOps opcode = |
| CastInst::getCastOpcode(*AI, false, PTy, false); |
| Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp")); |
| } else { |
| Args.push_back(*AI); |
| } |
| |
| // Add any parameter attributes. |
| if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) |
| attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); |
| } |
| } |
| } |
| |
| if (Attributes FnAttrs = CallerPAL.getFnAttributes()) |
| attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); |
| |
| if (NewRetTy->isVoidTy()) |
| Caller->setName(""); // Void type should not have a name. |
| |
| const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(), |
| attrVec.end()); |
| |
| Instruction *NC; |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { |
| NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(), |
| Args.begin(), Args.end(), |
| Caller->getName(), Caller); |
| cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv()); |
| cast<InvokeInst>(NC)->setAttributes(NewCallerPAL); |
| } else { |
| NC = CallInst::Create(Callee, Args.begin(), Args.end(), |
| Caller->getName(), Caller); |
| CallInst *CI = cast<CallInst>(Caller); |
| if (CI->isTailCall()) |
| cast<CallInst>(NC)->setTailCall(); |
| cast<CallInst>(NC)->setCallingConv(CI->getCallingConv()); |
| cast<CallInst>(NC)->setAttributes(NewCallerPAL); |
| } |
| |
| // Insert a cast of the return type as necessary. |
| Value *NV = NC; |
| if (OldRetTy != NV->getType() && !Caller->use_empty()) { |
| if (!NV->getType()->isVoidTy()) { |
| Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, |
| OldRetTy, false); |
| NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp"); |
| |
| // If this is an invoke instruction, we should insert it after the first |
| // non-phi, instruction in the normal successor block. |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { |
| BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI(); |
| InsertNewInstBefore(NC, *I); |
| } else { |
| // Otherwise, it's a call, just insert cast right after the call instr |
| InsertNewInstBefore(NC, *Caller); |
| } |
| Worklist.AddUsersToWorkList(*Caller); |
| } else { |
| NV = UndefValue::get(Caller->getType()); |
| } |
| } |
| |
| |
| if (!Caller->use_empty()) |
| Caller->replaceAllUsesWith(NV); |
| |
| EraseInstFromFunction(*Caller); |
| return true; |
| } |
| |
| // transformCallThroughTrampoline - Turn a call to a function created by the |
| // init_trampoline intrinsic into a direct call to the underlying function. |
| // |
| Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) { |
| Value *Callee = CS.getCalledValue(); |
| const PointerType *PTy = cast<PointerType>(Callee->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| const AttrListPtr &Attrs = CS.getAttributes(); |
| |
| // If the call already has the 'nest' attribute somewhere then give up - |
| // otherwise 'nest' would occur twice after splicing in the chain. |
| if (Attrs.hasAttrSomewhere(Attribute::Nest)) |
| return 0; |
| |
| IntrinsicInst *Tramp = |
| cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0)); |
| |
| Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts()); |
| const PointerType *NestFPTy = cast<PointerType>(NestF->getType()); |
| const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType()); |
| |
| const AttrListPtr &NestAttrs = NestF->getAttributes(); |
| if (!NestAttrs.isEmpty()) { |
| unsigned NestIdx = 1; |
| const Type *NestTy = 0; |
| Attributes NestAttr = Attribute::None; |
| |
| // Look for a parameter marked with the 'nest' attribute. |
| for (FunctionType::param_iterator I = NestFTy->param_begin(), |
| E = NestFTy->param_end(); I != E; ++NestIdx, ++I) |
| if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) { |
| // Record the parameter type and any other attributes. |
| NestTy = *I; |
| NestAttr = NestAttrs.getParamAttributes(NestIdx); |
| break; |
| } |
| |
| if (NestTy) { |
| Instruction *Caller = CS.getInstruction(); |
| std::vector<Value*> NewArgs; |
| NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1); |
| |
| SmallVector<AttributeWithIndex, 8> NewAttrs; |
| NewAttrs.reserve(Attrs.getNumSlots() + 1); |
| |
| // Insert the nest argument into the call argument list, which may |
| // mean appending it. Likewise for attributes. |
| |
| // Add any result attributes. |
| if (Attributes Attr = Attrs.getRetAttributes()) |
| NewAttrs.push_back(AttributeWithIndex::get(0, Attr)); |
| |
| { |
| unsigned Idx = 1; |
| CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); |
| do { |
| if (Idx == NestIdx) { |
| // Add the chain argument and attributes. |
| Value *NestVal = Tramp->getOperand(3); |
| if (NestVal->getType() != NestTy) |
| NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller); |
| NewArgs.push_back(NestVal); |
| NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr)); |
| } |
| |
| if (I == E) |
| break; |
| |
| // Add the original argument and attributes. |
| NewArgs.push_back(*I); |
| if (Attributes Attr = Attrs.getParamAttributes(Idx)) |
| NewAttrs.push_back |
| (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr)); |
| |
| ++Idx, ++I; |
| } while (1); |
| } |
| |
| // Add any function attributes. |
| if (Attributes Attr = Attrs.getFnAttributes()) |
| NewAttrs.push_back(AttributeWithIndex::get(~0, Attr)); |
| |
| // The trampoline may have been bitcast to a bogus type (FTy). |
| // Handle this by synthesizing a new function type, equal to FTy |
| // with the chain parameter inserted. |
| |
| std::vector<const Type*> NewTypes; |
| NewTypes.reserve(FTy->getNumParams()+1); |
| |
| // Insert the chain's type into the list of parameter types, which may |
| // mean appending it. |
| { |
| unsigned Idx = 1; |
| FunctionType::param_iterator I = FTy->param_begin(), |
| E = FTy->param_end(); |
| |
| do { |
| if (Idx == NestIdx) |
| // Add the chain's type. |
| NewTypes.push_back(NestTy); |
| |
| if (I == E) |
| break; |
| |
| // Add the original type. |
| NewTypes.push_back(*I); |
| |
| ++Idx, ++I; |
| } while (1); |
| } |
| |
| // Replace the trampoline call with a direct call. Let the generic |
| // code sort out any function type mismatches. |
| FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, |
| FTy->isVarArg()); |
| Constant *NewCallee = |
| NestF->getType() == PointerType::getUnqual(NewFTy) ? |
| NestF : ConstantExpr::getBitCast(NestF, |
| PointerType::getUnqual(NewFTy)); |
| const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(), |
| NewAttrs.end()); |
| |
| Instruction *NewCaller; |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { |
| NewCaller = InvokeInst::Create(NewCallee, |
| II->getNormalDest(), II->getUnwindDest(), |
| NewArgs.begin(), NewArgs.end(), |
| Caller->getName(), Caller); |
| cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); |
| cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); |
| } else { |
| NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(), |
| Caller->getName(), Caller); |
| if (cast<CallInst>(Caller)->isTailCall()) |
| cast<CallInst>(NewCaller)->setTailCall(); |
| cast<CallInst>(NewCaller)-> |
| setCallingConv(cast<CallInst>(Caller)->getCallingConv()); |
| cast<CallInst>(NewCaller)->setAttributes(NewPAL); |
| } |
| if (!Caller->getType()->isVoidTy()) |
| Caller->replaceAllUsesWith(NewCaller); |
| Caller->eraseFromParent(); |
| Worklist.Remove(Caller); |
| return 0; |
| } |
| } |
| |
| // Replace the trampoline call with a direct call. Since there is no 'nest' |
| // parameter, there is no need to adjust the argument list. Let the generic |
| // code sort out any function type mismatches. |
| Constant *NewCallee = |
| NestF->getType() == PTy ? NestF : |
| ConstantExpr::getBitCast(NestF, PTy); |
| CS.setCalledFunction(NewCallee); |
| return CS.getInstruction(); |
| } |
| |
| |
| |
| Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); |
| |
| if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD)) |
| return ReplaceInstUsesWith(GEP, V); |
| |
| Value *PtrOp = GEP.getOperand(0); |
| |
| if (isa<UndefValue>(GEP.getOperand(0))) |
| return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType())); |
| |
| // Eliminate unneeded casts for indices. |
| if (TD) { |
| bool MadeChange = false; |
| unsigned PtrSize = TD->getPointerSizeInBits(); |
| |
| gep_type_iterator GTI = gep_type_begin(GEP); |
| for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); |
| I != E; ++I, ++GTI) { |
| if (!isa<SequentialType>(*GTI)) continue; |
| |
| // If we are using a wider index than needed for this platform, shrink it |
| // to what we need. If narrower, sign-extend it to what we need. This |
| // explicit cast can make subsequent optimizations more obvious. |
| unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth(); |
| if (OpBits == PtrSize) |
| continue; |
| |
| *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true); |
| MadeChange = true; |
| } |
| if (MadeChange) return &GEP; |
| } |
| |
| // Combine Indices - If the source pointer to this getelementptr instruction |
| // is a getelementptr instruction, combine the indices of the two |
| // getelementptr instructions into a single instruction. |
| // |
| if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { |
| // Note that if our source is a gep chain itself that we wait for that |
| // chain to be resolved before we perform this transformation. This |
| // avoids us creating a TON of code in some cases. |
| // |
| if (GetElementPtrInst *SrcGEP = |
| dyn_cast<GetElementPtrInst>(Src->getOperand(0))) |
| if (SrcGEP->getNumOperands() == 2) |
| return 0; // Wait until our source is folded to completion. |
| |
| SmallVector<Value*, 8> Indices; |
| |
| // Find out whether the last index in the source GEP is a sequential idx. |
| bool EndsWithSequential = false; |
| for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); |
| I != E; ++I) |
| EndsWithSequential = !isa<StructType>(*I); |
| |
| // Can we combine the two pointer arithmetics offsets? |
| if (EndsWithSequential) { |
| // Replace: gep (gep %P, long B), long A, ... |
| // With: T = long A+B; gep %P, T, ... |
| // |
| Value *Sum; |
| Value *SO1 = Src->getOperand(Src->getNumOperands()-1); |
| Value *GO1 = GEP.getOperand(1); |
| if (SO1 == Constant::getNullValue(SO1->getType())) { |
| Sum = GO1; |
| } else if (GO1 == Constant::getNullValue(GO1->getType())) { |
| Sum = SO1; |
| } else { |
| // If they aren't the same type, then the input hasn't been processed |
| // by the loop above yet (which canonicalizes sequential index types to |
| // intptr_t). Just avoid transforming this until the input has been |
| // normalized. |
| if (SO1->getType() != GO1->getType()) |
| return 0; |
| Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); |
| } |
| |
| // Update the GEP in place if possible. |
| if (Src->getNumOperands() == 2) { |
| GEP.setOperand(0, Src->getOperand(0)); |
| GEP.setOperand(1, Sum); |
| return &GEP; |
| } |
| Indices.append(Src->op_begin()+1, Src->op_end()-1); |
| Indices.push_back(Sum); |
| Indices.append(GEP.op_begin()+2, GEP.op_end()); |
| } else if (isa<Constant>(*GEP.idx_begin()) && |
| cast<Constant>(*GEP.idx_begin())->isNullValue() && |
| Src->getNumOperands() != 1) { |
| // Otherwise we can do the fold if the first index of the GEP is a zero |
| Indices.append(Src->op_begin()+1, Src->op_end()); |
| Indices.append(GEP.idx_begin()+1, GEP.idx_end()); |
| } |
| |
| if (!Indices.empty()) |
| return (cast<GEPOperator>(&GEP)->isInBounds() && |
| Src->isInBounds()) ? |
| GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(), |
| Indices.end(), GEP.getName()) : |
| GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(), |
| Indices.end(), GEP.getName()); |
| } |
| |
| // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). |
| if (Value *X = getBitCastOperand(PtrOp)) { |
| assert(isa<PointerType>(X->getType()) && "Must be cast from pointer"); |
| |
| // If the input bitcast is actually "bitcast(bitcast(x))", then we don't |
| // want to change the gep until the bitcasts are eliminated. |
| if (getBitCastOperand(X)) { |
| Worklist.AddValue(PtrOp); |
| return 0; |
| } |
| |
| bool HasZeroPointerIndex = false; |
| if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) |
| HasZeroPointerIndex = C->isZero(); |
| |
| // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... |
| // into : GEP [10 x i8]* X, i32 0, ... |
| // |
| // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... |
| // into : GEP i8* X, ... |
| // |
| // This occurs when the program declares an array extern like "int X[];" |
| if (HasZeroPointerIndex) { |
| const PointerType *CPTy = cast<PointerType>(PtrOp->getType()); |
| const PointerType *XTy = cast<PointerType>(X->getType()); |
| if (const ArrayType *CATy = |
| dyn_cast<ArrayType>(CPTy->getElementType())) { |
| // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? |
| if (CATy->getElementType() == XTy->getElementType()) { |
| // -> GEP i8* X, ... |
| SmallVector<Value*, 8> Indices(GEP.idx_begin()+1, GEP.idx_end()); |
| return cast<GEPOperator>(&GEP)->isInBounds() ? |
| GetElementPtrInst::CreateInBounds(X, Indices.begin(), Indices.end(), |
| GEP.getName()) : |
| GetElementPtrInst::Create(X, Indices.begin(), Indices.end(), |
| GEP.getName()); |
| } |
| |
| if (const ArrayType *XATy = dyn_cast<ArrayType>(XTy->getElementType())){ |
| // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? |
| if (CATy->getElementType() == XATy->getElementType()) { |
| // -> GEP [10 x i8]* X, i32 0, ... |
| // At this point, we know that the cast source type is a pointer |
| // to an array of the same type as the destination pointer |
| // array. Because the array type is never stepped over (there |
| // is a leading zero) we can fold the cast into this GEP. |
| GEP.setOperand(0, X); |
| return &GEP; |
| } |
| } |
| } |
| } else if (GEP.getNumOperands() == 2) { |
| // Transform things like: |
| // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V |
| // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast |
| const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType(); |
| const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType(); |
| if (TD && isa<ArrayType>(SrcElTy) && |
| TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) == |
| TD->getTypeAllocSize(ResElTy)) { |
| Value *Idx[2]; |
| Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); |
| Idx[1] = GEP.getOperand(1); |
| Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ? |
| Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) : |
| Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName()); |
| // V and GEP are both pointer types --> BitCast |
| return new BitCastInst(NewGEP, GEP.getType()); |
| } |
| |
| // Transform things like: |
| // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp |
| // (where tmp = 8*tmp2) into: |
| // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast |
| |
| if (TD && isa<ArrayType>(SrcElTy) && |
| ResElTy == Type::getInt8Ty(GEP.getContext())) { |
| uint64_t ArrayEltSize = |
| TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()); |
| |
| // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We |
| // allow either a mul, shift, or constant here. |
| Value *NewIdx = 0; |
| ConstantInt *Scale = 0; |
| if (ArrayEltSize == 1) { |
| NewIdx = GEP.getOperand(1); |
| Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1); |
| } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) { |
| NewIdx = ConstantInt::get(CI->getType(), 1); |
| Scale = CI; |
| } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){ |
| if (Inst->getOpcode() == Instruction::Shl && |
| isa<ConstantInt>(Inst->getOperand(1))) { |
| ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1)); |
| uint32_t ShAmtVal = ShAmt->getLimitedValue(64); |
| Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()), |
| 1ULL << ShAmtVal); |
| NewIdx = Inst->getOperand(0); |
| } else if (Inst->getOpcode() == Instruction::Mul && |
| isa<ConstantInt>(Inst->getOperand(1))) { |
| Scale = cast<ConstantInt>(Inst->getOperand(1)); |
| NewIdx = Inst->getOperand(0); |
| } |
| } |
| |
| // If the index will be to exactly the right offset with the scale taken |
| // out, perform the transformation. Note, we don't know whether Scale is |
| // signed or not. We'll use unsigned version of division/modulo |
| // operation after making sure Scale doesn't have the sign bit set. |
| if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL && |
| Scale->getZExtValue() % ArrayEltSize == 0) { |
| Scale = ConstantInt::get(Scale->getType(), |
| Scale->getZExtValue() / ArrayEltSize); |
| if (Scale->getZExtValue() != 1) { |
| Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(), |
| false /*ZExt*/); |
| NewIdx = Builder->CreateMul(NewIdx, C, "idxscale"); |
| } |
| |
| // Insert the new GEP instruction. |
| Value *Idx[2]; |
| Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); |
| Idx[1] = NewIdx; |
| Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ? |
| Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) : |
| Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName()); |
| // The NewGEP must be pointer typed, so must the old one -> BitCast |
| return new BitCastInst(NewGEP, GEP.getType()); |
| } |
| } |
| } |
| } |
| |
| /// See if we can simplify: |
| /// X = bitcast A* to B* |
| /// Y = gep X, <...constant indices...> |
| /// into a gep of the original struct. This is important for SROA and alias |
| /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. |
| if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { |
| if (TD && |
| !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) { |
| // Determine how much the GEP moves the pointer. We are guaranteed to get |
| // a constant back from EmitGEPOffset. |
| ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP)); |
| int64_t Offset = OffsetV->getSExtValue(); |
| |
| // If this GEP instruction doesn't move the pointer, just replace the GEP |
| // with a bitcast of the real input to the dest type. |
| if (Offset == 0) { |
| // If the bitcast is of an allocation, and the allocation will be |
| // converted to match the type of the cast, don't touch this. |
| if (isa<AllocaInst>(BCI->getOperand(0)) || |
| isMalloc(BCI->getOperand(0))) { |
| // See if the bitcast simplifies, if so, don't nuke this GEP yet. |
| if (Instruction *I = visitBitCast(*BCI)) { |
| if (I != BCI) { |
| I->takeName(BCI); |
| BCI->getParent()->getInstList().insert(BCI, I); |
| ReplaceInstUsesWith(*BCI, I); |
| } |
| return &GEP; |
| } |
| } |
| return new BitCastInst(BCI->getOperand(0), GEP.getType()); |
| } |
| |
| // Otherwise, if the offset is non-zero, we need to find out if there is a |
| // field at Offset in 'A's type. If so, we can pull the cast through the |
| // GEP. |
| SmallVector<Value*, 8> NewIndices; |
| const Type *InTy = |
| cast<PointerType>(BCI->getOperand(0)->getType())->getElementType(); |
| if (FindElementAtOffset(InTy, Offset, NewIndices)) { |
| Value *NGEP = cast<GEPOperator>(&GEP)->isInBounds() ? |
| Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(), |
| NewIndices.end()) : |
| Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(), |
| NewIndices.end()); |
| |
| if (NGEP->getType() == GEP.getType()) |
| return ReplaceInstUsesWith(GEP, NGEP); |
| NGEP->takeName(&GEP); |
| return new BitCastInst(NGEP, GEP.getType()); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitFree(Instruction &FI) { |
| Value *Op = FI.getOperand(1); |
| |
| // free undef -> unreachable. |
| if (isa<UndefValue>(Op)) { |
| // Insert a new store to null because we cannot modify the CFG here. |
| new StoreInst(ConstantInt::getTrue(FI.getContext()), |
| UndefValue::get(Type::getInt1PtrTy(FI.getContext())), &FI); |
| return EraseInstFromFunction(FI); |
| } |
| |
| // If we have 'free null' delete the instruction. This can happen in stl code |
| // when lots of inlining happens. |
| if (isa<ConstantPointerNull>(Op)) |
| return EraseInstFromFunction(FI); |
| |
| // If we have a malloc call whose only use is a free call, delete both. |
| if (isMalloc(Op)) { |
| if (CallInst* CI = extractMallocCallFromBitCast(Op)) { |
| if (Op->hasOneUse() && CI->hasOneUse()) { |
| EraseInstFromFunction(FI); |
| EraseInstFromFunction(*CI); |
| return EraseInstFromFunction(*cast<Instruction>(Op)); |
| } |
| } else { |
| // Op is a call to malloc |
| if (Op->hasOneUse()) { |
| EraseInstFromFunction(FI); |
| return EraseInstFromFunction(*cast<Instruction>(Op)); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| |
| Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { |
| // Change br (not X), label True, label False to: br X, label False, True |
| Value *X = 0; |
| BasicBlock *TrueDest; |
| BasicBlock *FalseDest; |
| if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && |
| !isa<Constant>(X)) { |
| // Swap Destinations and condition... |
| BI.setCondition(X); |
| BI.setSuccessor(0, FalseDest); |
| BI.setSuccessor(1, TrueDest); |
| return &BI; |
| } |
| |
| // Cannonicalize fcmp_one -> fcmp_oeq |
| FCmpInst::Predicate FPred; Value *Y; |
| if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), |
| TrueDest, FalseDest)) && |
| BI.getCondition()->hasOneUse()) |
| if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || |
| FPred == FCmpInst::FCMP_OGE) { |
| FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); |
| Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); |
| |
| // Swap Destinations and condition. |
| BI.setSuccessor(0, FalseDest); |
| BI.setSuccessor(1, TrueDest); |
| Worklist.Add(Cond); |
| return &BI; |
| } |
| |
| // Cannonicalize icmp_ne -> icmp_eq |
| ICmpInst::Predicate IPred; |
| if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), |
| TrueDest, FalseDest)) && |
| BI.getCondition()->hasOneUse()) |
| if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || |
| IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || |
| IPred == ICmpInst::ICMP_SGE) { |
| ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); |
| Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); |
| // Swap Destinations and condition. |
| BI.setSuccessor(0, FalseDest); |
| BI.setSuccessor(1, TrueDest); |
| Worklist.Add(Cond); |
| return &BI; |
| } |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { |
| Value *Cond = SI.getCondition(); |
| if (Instruction *I = dyn_cast<Instruction>(Cond)) { |
| if (I->getOpcode() == Instruction::Add) |
| if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| // change 'switch (X+4) case 1:' into 'switch (X) case -3' |
| for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) |
| SI.setOperand(i, |
| ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)), |
| AddRHS)); |
| SI.setOperand(0, I->getOperand(0)); |
| Worklist.Add(I); |
| return &SI; |
| } |
| } |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { |
| Value *Agg = EV.getAggregateOperand(); |
| |
| if (!EV.hasIndices()) |
| return ReplaceInstUsesWith(EV, Agg); |
| |
| if (Constant *C = dyn_cast<Constant>(Agg)) { |
| if (isa<UndefValue>(C)) |
| return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType())); |
| |
| if (isa<ConstantAggregateZero>(C)) |
| return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType())); |
| |
| if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) { |
| // Extract the element indexed by the first index out of the constant |
| Value *V = C->getOperand(*EV.idx_begin()); |
| if (EV.getNumIndices() > 1) |
| // Extract the remaining indices out of the constant indexed by the |
| // first index |
| return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end()); |
| else |
| return ReplaceInstUsesWith(EV, V); |
| } |
| return 0; // Can't handle other constants |
| } |
| if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { |
| // We're extracting from an insertvalue instruction, compare the indices |
| const unsigned *exti, *exte, *insi, *inse; |
| for (exti = EV.idx_begin(), insi = IV->idx_begin(), |
| exte = EV.idx_end(), inse = IV->idx_end(); |
| exti != exte && insi != inse; |
| ++exti, ++insi) { |
| if (*insi != *exti) |
| // The insert and extract both reference distinctly different elements. |
| // This means the extract is not influenced by the insert, and we can |
| // replace the aggregate operand of the extract with the aggregate |
| // operand of the insert. i.e., replace |
| // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 |
| // %E = extractvalue { i32, { i32 } } %I, 0 |
| // with |
| // %E = extractvalue { i32, { i32 } } %A, 0 |
| return ExtractValueInst::Create(IV->getAggregateOperand(), |
| EV.idx_begin(), EV.idx_end()); |
| } |
| if (exti == exte && insi == inse) |
| // Both iterators are at the end: Index lists are identical. Replace |
| // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 |
| // %C = extractvalue { i32, { i32 } } %B, 1, 0 |
| // with "i32 42" |
| return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand()); |
| if (exti == exte) { |
| // The extract list is a prefix of the insert list. i.e. replace |
| // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 |
| // %E = extractvalue { i32, { i32 } } %I, 1 |
| // with |
| // %X = extractvalue { i32, { i32 } } %A, 1 |
| // %E = insertvalue { i32 } %X, i32 42, 0 |
| // by switching the order of the insert and extract (though the |
| // insertvalue should be left in, since it may have other uses). |
| Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), |
| EV.idx_begin(), EV.idx_end()); |
| return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), |
| insi, inse); |
| } |
| if (insi == inse) |
| // The insert list is a prefix of the extract list |
| // We can simply remove the common indices from the extract and make it |
| // operate on the inserted value instead of the insertvalue result. |
| // i.e., replace |
| // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 |
| // %E = extractvalue { i32, { i32 } } %I, 1, 0 |
| // with |
| // %E extractvalue { i32 } { i32 42 }, 0 |
| return ExtractValueInst::Create(IV->getInsertedValueOperand(), |
| exti, exte); |
| } |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { |
| // We're extracting from an intrinsic, see if we're the only user, which |
| // allows us to simplify multiple result intrinsics to simpler things that |
| // just get one value.. |
| if (II->hasOneUse()) { |
| // Check if we're grabbing the overflow bit or the result of a 'with |
| // overflow' intrinsic. If it's the latter we can remove the intrinsic |
| // and replace it with a traditional binary instruction. |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: |
| if (*EV.idx_begin() == 0) { // Normal result. |
| Value *LHS = II->getOperand(1), *RHS = II->getOperand(2); |
| II->replaceAllUsesWith(UndefValue::get(II->getType())); |
| EraseInstFromFunction(*II); |
| return BinaryOperator::CreateAdd(LHS, RHS); |
| } |
| break; |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| if (*EV.idx_begin() == 0) { // Normal result. |
| Value *LHS = II->getOperand(1), *RHS = II->getOperand(2); |
| II->replaceAllUsesWith(UndefValue::get(II->getType())); |
| EraseInstFromFunction(*II); |
| return BinaryOperator::CreateSub(LHS, RHS); |
| } |
| break; |
| case Intrinsic::umul_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| if (*EV.idx_begin() == 0) { // Normal result. |
| Value *LHS = II->getOperand(1), *RHS = II->getOperand(2); |
| II->replaceAllUsesWith(UndefValue::get(II->getType())); |
| EraseInstFromFunction(*II); |
| return BinaryOperator::CreateMul(LHS, RHS); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| // Can't simplify extracts from other values. Note that nested extracts are |
| // already simplified implicitely by the above (extract ( extract (insert) ) |
| // will be translated into extract ( insert ( extract ) ) first and then just |
| // the value inserted, if appropriate). |
| return 0; |
| } |
| |
| |
| |
| |
| /// TryToSinkInstruction - Try to move the specified instruction from its |
| /// current block into the beginning of DestBlock, which can only happen if it's |
| /// safe to move the instruction past all of the instructions between it and the |
| /// end of its block. |
| static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { |
| assert(I->hasOneUse() && "Invariants didn't hold!"); |
| |
| // Cannot move control-flow-involving, volatile loads, vaarg, etc. |
| if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I)) |
| return false; |
| |
| // Do not sink alloca instructions out of the entry block. |
| if (isa<AllocaInst>(I) && I->getParent() == |
| &DestBlock->getParent()->getEntryBlock()) |
| return false; |
| |
| // We can only sink load instructions if there is nothing between the load and |
| // the end of block that could change the value. |
| if (I->mayReadFromMemory()) { |
| for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); |
| Scan != E; ++Scan) |
| if (Scan->mayWriteToMemory()) |
| return false; |
| } |
| |
| BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI(); |
| |
| I->moveBefore(InsertPos); |
| ++NumSunkInst; |
| return true; |
| } |
| |
| |
| /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding |
| /// all reachable code to the worklist. |
| /// |
| /// This has a couple of tricks to make the code faster and more powerful. In |
| /// particular, we constant fold and DCE instructions as we go, to avoid adding |
| /// them to the worklist (this significantly speeds up instcombine on code where |
| /// many instructions are dead or constant). Additionally, if we find a branch |
| /// whose condition is a known constant, we only visit the reachable successors. |
| /// |
| static bool AddReachableCodeToWorklist(BasicBlock *BB, |
| SmallPtrSet<BasicBlock*, 64> &Visited, |
| InstCombiner &IC, |
| const TargetData *TD) { |
| bool MadeIRChange = false; |
| SmallVector<BasicBlock*, 256> Worklist; |
| Worklist.push_back(BB); |
| |
| std::vector<Instruction*> InstrsForInstCombineWorklist; |
| InstrsForInstCombineWorklist.reserve(128); |
| |
| SmallPtrSet<ConstantExpr*, 64> FoldedConstants; |
| |
| while (!Worklist.empty()) { |
| BB = Worklist.back(); |
| Worklist.pop_back(); |
| |
| // We have now visited this block! If we've already been here, ignore it. |
| if (!Visited.insert(BB)) continue; |
| |
| for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { |
| Instruction *Inst = BBI++; |
| |
| // DCE instruction if trivially dead. |
| if (isInstructionTriviallyDead(Inst)) { |
| ++NumDeadInst; |
| DEBUG(errs() << "IC: DCE: " << *Inst << '\n'); |
| Inst->eraseFromParent(); |
| continue; |
| } |
| |
| // ConstantProp instruction if trivially constant. |
| if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0))) |
| if (Constant *C = ConstantFoldInstruction(Inst, TD)) { |
| DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " |
| << *Inst << '\n'); |
| Inst->replaceAllUsesWith(C); |
| ++NumConstProp; |
| Inst->eraseFromParent(); |
| continue; |
| } |
| |
| |
| |
| if (TD) { |
| // See if we can constant fold its operands. |
| for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); |
| i != e; ++i) { |
| ConstantExpr *CE = dyn_cast<ConstantExpr>(i); |
| if (CE == 0) continue; |
| |
| // If we already folded this constant, don't try again. |
| if (!FoldedConstants.insert(CE)) |
| continue; |
| |
| Constant *NewC = ConstantFoldConstantExpression(CE, TD); |
| if (NewC && NewC != CE) { |
| *i = NewC; |
| MadeIRChange = true; |
| } |
| } |
| } |
| |
| |
| InstrsForInstCombineWorklist.push_back(Inst); |
| } |
| |
| // Recursively visit successors. If this is a branch or switch on a |
| // constant, only visit the reachable successor. |
| TerminatorInst *TI = BB->getTerminator(); |
| if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { |
| bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); |
| BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); |
| Worklist.push_back(ReachableBB); |
| continue; |
| } |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { |
| // See if this is an explicit destination. |
| for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) |
| if (SI->getCaseValue(i) == Cond) { |
| BasicBlock *ReachableBB = SI->getSuccessor(i); |
| Worklist.push_back(ReachableBB); |
| continue; |
| } |
| |
| // Otherwise it is the default destination. |
| Worklist.push_back(SI->getSuccessor(0)); |
| continue; |
| } |
| } |
| |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| Worklist.push_back(TI->getSuccessor(i)); |
| } |
| |
| // Once we've found all of the instructions to add to instcombine's worklist, |
| // add them in reverse order. This way instcombine will visit from the top |
| // of the function down. This jives well with the way that it adds all uses |
| // of instructions to the worklist after doing a transformation, thus avoiding |
| // some N^2 behavior in pathological cases. |
| IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], |
| InstrsForInstCombineWorklist.size()); |
| |
| return MadeIRChange; |
| } |
| |
| bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { |
| MadeIRChange = false; |
| |
| DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " |
| << F.getNameStr() << "\n"); |
| |
| { |
| // Do a depth-first traversal of the function, populate the worklist with |
| // the reachable instructions. Ignore blocks that are not reachable. Keep |
| // track of which blocks we visit. |
| SmallPtrSet<BasicBlock*, 64> Visited; |
| MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD); |
| |
| // Do a quick scan over the function. If we find any blocks that are |
| // unreachable, remove any instructions inside of them. This prevents |
| // the instcombine code from having to deal with some bad special cases. |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| if (!Visited.count(BB)) { |
| Instruction *Term = BB->getTerminator(); |
| while (Term != BB->begin()) { // Remove instrs bottom-up |
| BasicBlock::iterator I = Term; --I; |
| |
| DEBUG(errs() << "IC: DCE: " << *I << '\n'); |
| // A debug intrinsic shouldn't force another iteration if we weren't |
| // going to do one without it. |
| if (!isa<DbgInfoIntrinsic>(I)) { |
| ++NumDeadInst; |
| MadeIRChange = true; |
| } |
| |
| // If I is not void type then replaceAllUsesWith undef. |
| // This allows ValueHandlers and custom metadata to adjust itself. |
| if (!I->getType()->isVoidTy()) |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| I->eraseFromParent(); |
| } |
| } |
| } |
| |
| while (!Worklist.isEmpty()) { |
| Instruction *I = Worklist.RemoveOne(); |
| if (I == 0) continue; // skip null values. |
| |
| // Check to see if we can DCE the instruction. |
| if (isInstructionTriviallyDead(I)) { |
| DEBUG(errs() << "IC: DCE: " << *I << '\n'); |
| EraseInstFromFunction(*I); |
| ++NumDeadInst; |
| MadeIRChange = true; |
| continue; |
| } |
| |
| // Instruction isn't dead, see if we can constant propagate it. |
| if (!I->use_empty() && isa<Constant>(I->getOperand(0))) |
| if (Constant *C = ConstantFoldInstruction(I, TD)) { |
| DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); |
| |
| // Add operands to the worklist. |
| ReplaceInstUsesWith(*I, C); |
| ++NumConstProp; |
| EraseInstFromFunction(*I); |
| MadeIRChange = true; |
| continue; |
| } |
| |
| // See if we can trivially sink this instruction to a successor basic block. |
| if (I->hasOneUse()) { |
| BasicBlock *BB = I->getParent(); |
| Instruction *UserInst = cast<Instruction>(I->use_back()); |
| BasicBlock *UserParent; |
| |
| // Get the block the use occurs in. |
| if (PHINode *PN = dyn_cast<PHINode>(UserInst)) |
| UserParent = PN->getIncomingBlock(I->use_begin().getUse()); |
| else |
| UserParent = UserInst->getParent(); |
| |
| if (UserParent != BB) { |
| bool UserIsSuccessor = false; |
| // See if the user is one of our successors. |
| for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) |
| if (*SI == UserParent) { |
| UserIsSuccessor = true; |
| break; |
| } |
| |
| // If the user is one of our immediate successors, and if that successor |
| // only has us as a predecessors (we'd have to split the critical edge |
| // otherwise), we can keep going. |
| if (UserIsSuccessor && UserParent->getSinglePredecessor()) |
| // Okay, the CFG is simple enough, try to sink this instruction. |
| MadeIRChange |= TryToSinkInstruction(I, UserParent); |
| } |
| } |
| |
| // Now that we have an instruction, try combining it to simplify it. |
| Builder->SetInsertPoint(I->getParent(), I); |
| |
| #ifndef NDEBUG |
| std::string OrigI; |
| #endif |
| DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); |
| DEBUG(errs() << "IC: Visiting: " << OrigI << '\n'); |
| |
| if (Instruction *Result = visit(*I)) { |
| ++NumCombined; |
| // Should we replace the old instruction with a new one? |
| if (Result != I) { |
| DEBUG(errs() << "IC: Old = " << *I << '\n' |
| << " New = " << *Result << '\n'); |
| |
| // Everything uses the new instruction now. |
| I->replaceAllUsesWith(Result); |
| |
| // Push the new instruction and any users onto the worklist. |
| Worklist.Add(Result); |
| Worklist.AddUsersToWorkList(*Result); |
| |
| // Move the name to the new instruction first. |
| Result->takeName(I); |
| |
| // Insert the new instruction into the basic block... |
| BasicBlock *InstParent = I->getParent(); |
| BasicBlock::iterator InsertPos = I; |
| |
| if (!isa<PHINode>(Result)) // If combining a PHI, don't insert |
| while (isa<PHINode>(InsertPos)) // middle of a block of PHIs. |
| ++InsertPos; |
| |
| InstParent->getInstList().insert(InsertPos, Result); |
| |
| EraseInstFromFunction(*I); |
| } else { |
| #ifndef NDEBUG |
| DEBUG(errs() << "IC: Mod = " << OrigI << '\n' |
| << " New = " << *I << '\n'); |
| #endif |
| |
| // If the instruction was modified, it's possible that it is now dead. |
| // if so, remove it. |
| if (isInstructionTriviallyDead(I)) { |
| EraseInstFromFunction(*I); |
| } else { |
| Worklist.Add(I); |
| Worklist.AddUsersToWorkList(*I); |
| } |
| } |
| MadeIRChange = true; |
| } |
| } |
| |
| Worklist.Zap(); |
| return MadeIRChange; |
| } |
| |
| |
| bool InstCombiner::runOnFunction(Function &F) { |
| MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID); |
| TD = getAnalysisIfAvailable<TargetData>(); |
| |
| |
| /// Builder - This is an IRBuilder that automatically inserts new |
| /// instructions into the worklist when they are created. |
| IRBuilder<true, TargetFolder, InstCombineIRInserter> |
| TheBuilder(F.getContext(), TargetFolder(TD), |
| InstCombineIRInserter(Worklist)); |
| Builder = &TheBuilder; |
| |
| bool EverMadeChange = false; |
| |
| // Iterate while there is work to do. |
| unsigned Iteration = 0; |
| while (DoOneIteration(F, Iteration++)) |
| EverMadeChange = true; |
| |
| Builder = 0; |
| return EverMadeChange; |
| } |
| |
| FunctionPass *llvm::createInstructionCombiningPass() { |
| return new InstCombiner(); |
| } |