| //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the AsmPrinter class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/AsmPrinter.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Module.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Mangler.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Streams.h" |
| #include "llvm/Target/TargetAsmInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <cerrno> |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| AsmVerbose("asm-verbose", cl::Hidden, cl::desc("Add comments to directives.")); |
| |
| char AsmPrinter::ID = 0; |
| AsmPrinter::AsmPrinter(std::ostream &o, TargetMachine &tm, |
| const TargetAsmInfo *T) |
| : MachineFunctionPass((intptr_t)&ID), O(o), TM(tm), TAI(T) |
| {} |
| |
| std::string AsmPrinter::getSectionForFunction(const Function &F) const { |
| return TAI->getTextSection(); |
| } |
| |
| |
| /// SwitchToTextSection - Switch to the specified text section of the executable |
| /// if we are not already in it! |
| /// |
| void AsmPrinter::SwitchToTextSection(const char *NewSection, |
| const GlobalValue *GV) { |
| std::string NS; |
| if (GV && GV->hasSection()) |
| NS = TAI->getSwitchToSectionDirective() + GV->getSection(); |
| else |
| NS = NewSection; |
| |
| // If we're already in this section, we're done. |
| if (CurrentSection == NS) return; |
| |
| // Close the current section, if applicable. |
| if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) |
| O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << "\n"; |
| |
| CurrentSection = NS; |
| |
| if (!CurrentSection.empty()) |
| O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n'; |
| } |
| |
| /// SwitchToDataSection - Switch to the specified data section of the executable |
| /// if we are not already in it! |
| /// |
| void AsmPrinter::SwitchToDataSection(const char *NewSection, |
| const GlobalValue *GV) { |
| std::string NS; |
| if (GV && GV->hasSection()) |
| NS = TAI->getSwitchToSectionDirective() + GV->getSection(); |
| else |
| NS = NewSection; |
| |
| // If we're already in this section, we're done. |
| if (CurrentSection == NS) return; |
| |
| // Close the current section, if applicable. |
| if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty()) |
| O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << "\n"; |
| |
| CurrentSection = NS; |
| |
| if (!CurrentSection.empty()) |
| O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n'; |
| } |
| |
| |
| bool AsmPrinter::doInitialization(Module &M) { |
| Mang = new Mangler(M, TAI->getGlobalPrefix()); |
| |
| if (!M.getModuleInlineAsm().empty()) |
| O << TAI->getCommentString() << " Start of file scope inline assembly\n" |
| << M.getModuleInlineAsm() |
| << "\n" << TAI->getCommentString() |
| << " End of file scope inline assembly\n"; |
| |
| SwitchToDataSection(""); // Reset back to no section. |
| |
| if (MachineModuleInfo *MMI = getAnalysisToUpdate<MachineModuleInfo>()) { |
| MMI->AnalyzeModule(M); |
| } |
| |
| return false; |
| } |
| |
| bool AsmPrinter::doFinalization(Module &M) { |
| if (TAI->getWeakRefDirective()) { |
| if (!ExtWeakSymbols.empty()) |
| SwitchToDataSection(""); |
| |
| for (std::set<const GlobalValue*>::iterator i = ExtWeakSymbols.begin(), |
| e = ExtWeakSymbols.end(); i != e; ++i) { |
| const GlobalValue *GV = *i; |
| std::string Name = Mang->getValueName(GV); |
| O << TAI->getWeakRefDirective() << Name << "\n"; |
| } |
| } |
| |
| if (TAI->getSetDirective()) { |
| if (!M.alias_empty()) |
| SwitchToTextSection(TAI->getTextSection()); |
| |
| O << "\n"; |
| for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); |
| I!=E; ++I) { |
| std::string Name = Mang->getValueName(I); |
| std::string Target; |
| |
| const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); |
| Target = Mang->getValueName(GV); |
| |
| if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) |
| O << "\t.globl\t" << Name << "\n"; |
| else if (I->hasWeakLinkage()) |
| O << TAI->getWeakRefDirective() << Name << "\n"; |
| else if (!I->hasInternalLinkage()) |
| assert(0 && "Invalid alias linkage"); |
| |
| O << TAI->getSetDirective() << Name << ", " << Target << "\n"; |
| |
| // If the aliasee has external weak linkage it can be referenced only by |
| // alias itself. In this case it can be not in ExtWeakSymbols list. Emit |
| // weak reference in such case. |
| if (GV->hasExternalWeakLinkage()) |
| if (TAI->getWeakRefDirective()) |
| O << TAI->getWeakRefDirective() << Target << "\n"; |
| else |
| O << "\t.globl\t" << Target << "\n"; |
| } |
| } |
| |
| delete Mang; Mang = 0; |
| return false; |
| } |
| |
| std::string AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) { |
| assert(MF && "No machine function?"); |
| return Mang->makeNameProper(MF->getFunction()->getName() + ".eh", |
| TAI->getGlobalPrefix()); |
| } |
| |
| void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { |
| // What's my mangled name? |
| CurrentFnName = Mang->getValueName(MF.getFunction()); |
| } |
| |
| /// EmitConstantPool - Print to the current output stream assembly |
| /// representations of the constants in the constant pool MCP. This is |
| /// used to print out constants which have been "spilled to memory" by |
| /// the code generator. |
| /// |
| void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { |
| const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); |
| if (CP.empty()) return; |
| |
| // Some targets require 4-, 8-, and 16- byte constant literals to be placed |
| // in special sections. |
| std::vector<std::pair<MachineConstantPoolEntry,unsigned> > FourByteCPs; |
| std::vector<std::pair<MachineConstantPoolEntry,unsigned> > EightByteCPs; |
| std::vector<std::pair<MachineConstantPoolEntry,unsigned> > SixteenByteCPs; |
| std::vector<std::pair<MachineConstantPoolEntry,unsigned> > OtherCPs; |
| std::vector<std::pair<MachineConstantPoolEntry,unsigned> > TargetCPs; |
| for (unsigned i = 0, e = CP.size(); i != e; ++i) { |
| MachineConstantPoolEntry CPE = CP[i]; |
| const Type *Ty = CPE.getType(); |
| if (TAI->getFourByteConstantSection() && |
| TM.getTargetData()->getTypeSize(Ty) == 4) |
| FourByteCPs.push_back(std::make_pair(CPE, i)); |
| else if (TAI->getEightByteConstantSection() && |
| TM.getTargetData()->getTypeSize(Ty) == 8) |
| EightByteCPs.push_back(std::make_pair(CPE, i)); |
| else if (TAI->getSixteenByteConstantSection() && |
| TM.getTargetData()->getTypeSize(Ty) == 16) |
| SixteenByteCPs.push_back(std::make_pair(CPE, i)); |
| else |
| OtherCPs.push_back(std::make_pair(CPE, i)); |
| } |
| |
| unsigned Alignment = MCP->getConstantPoolAlignment(); |
| EmitConstantPool(Alignment, TAI->getFourByteConstantSection(), FourByteCPs); |
| EmitConstantPool(Alignment, TAI->getEightByteConstantSection(), EightByteCPs); |
| EmitConstantPool(Alignment, TAI->getSixteenByteConstantSection(), |
| SixteenByteCPs); |
| EmitConstantPool(Alignment, TAI->getConstantPoolSection(), OtherCPs); |
| } |
| |
| void AsmPrinter::EmitConstantPool(unsigned Alignment, const char *Section, |
| std::vector<std::pair<MachineConstantPoolEntry,unsigned> > &CP) { |
| if (CP.empty()) return; |
| |
| SwitchToDataSection(Section); |
| EmitAlignment(Alignment); |
| for (unsigned i = 0, e = CP.size(); i != e; ++i) { |
| O << TAI->getPrivateGlobalPrefix() << "CPI" << CP[i].second |
| << '_' << CurrentFnName |
| << ":\t\t\t\t\t" << TAI->getCommentString() << ' '; |
| WriteTypeSymbolic(O, CP[i].first.getType(), 0) << '\n'; |
| if (CP[i].first.isMachineConstantPoolEntry()) |
| EmitMachineConstantPoolValue(CP[i].first.Val.MachineCPVal); |
| else |
| EmitGlobalConstant(CP[i].first.Val.ConstVal); |
| if (i != e-1) { |
| const Type *Ty = CP[i].first.getType(); |
| unsigned EntSize = |
| TM.getTargetData()->getTypeSize(Ty); |
| unsigned ValEnd = CP[i].first.getOffset() + EntSize; |
| // Emit inter-object padding for alignment. |
| EmitZeros(CP[i+1].first.getOffset()-ValEnd); |
| } |
| } |
| } |
| |
| /// EmitJumpTableInfo - Print assembly representations of the jump tables used |
| /// by the current function to the current output stream. |
| /// |
| void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, |
| MachineFunction &MF) { |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return; |
| bool IsPic = TM.getRelocationModel() == Reloc::PIC_; |
| |
| // Use JumpTableDirective otherwise honor the entry size from the jump table |
| // info. |
| const char *JTEntryDirective = TAI->getJumpTableDirective(); |
| bool HadJTEntryDirective = JTEntryDirective != NULL; |
| if (!HadJTEntryDirective) { |
| JTEntryDirective = MJTI->getEntrySize() == 4 ? |
| TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); |
| } |
| |
| // Pick the directive to use to print the jump table entries, and switch to |
| // the appropriate section. |
| TargetLowering *LoweringInfo = TM.getTargetLowering(); |
| |
| const char* JumpTableDataSection = TAI->getJumpTableDataSection(); |
| if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) || |
| !JumpTableDataSection) { |
| // In PIC mode, we need to emit the jump table to the same section as the |
| // function body itself, otherwise the label differences won't make sense. |
| // We should also do if the section name is NULL. |
| const Function *F = MF.getFunction(); |
| SwitchToTextSection(getSectionForFunction(*F).c_str(), F); |
| } else { |
| SwitchToDataSection(JumpTableDataSection); |
| } |
| |
| EmitAlignment(Log2_32(MJTI->getAlignment())); |
| |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) { |
| const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; |
| |
| // If this jump table was deleted, ignore it. |
| if (JTBBs.empty()) continue; |
| |
| // For PIC codegen, if possible we want to use the SetDirective to reduce |
| // the number of relocations the assembler will generate for the jump table. |
| // Set directives are all printed before the jump table itself. |
| std::set<MachineBasicBlock*> EmittedSets; |
| if (TAI->getSetDirective() && IsPic) |
| for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) |
| if (EmittedSets.insert(JTBBs[ii]).second) |
| printSetLabel(i, JTBBs[ii]); |
| |
| // On some targets (e.g. darwin) we want to emit two consequtive labels |
| // before each jump table. The first label is never referenced, but tells |
| // the assembler and linker the extents of the jump table object. The |
| // second label is actually referenced by the code. |
| if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) |
| O << JTLabelPrefix << "JTI" << i << '_' << CurrentFnName << ":\n"; |
| |
| O << TAI->getPrivateGlobalPrefix() << "JTI" << i |
| << '_' << CurrentFnName << ":\n"; |
| |
| for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { |
| O << JTEntryDirective << ' '; |
| // If we have emitted set directives for the jump table entries, print |
| // them rather than the entries themselves. If we're emitting PIC, then |
| // emit the table entries as differences between two text section labels. |
| // If we're emitting non-PIC code, then emit the entries as direct |
| // references to the target basic blocks. |
| if (!EmittedSets.empty()) { |
| O << TAI->getPrivateGlobalPrefix() << i |
| << '_' << "_set_" << JTBBs[ii]->getNumber() << '_' << CurrentFnName; |
| } else if (IsPic) { |
| printBasicBlockLabel(JTBBs[ii], false, false); |
| // If the arch uses custom Jump Table directives, don't calc relative to |
| // JT |
| if (!HadJTEntryDirective) |
| O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" |
| << i << '_' << CurrentFnName; |
| } else { |
| printBasicBlockLabel(JTBBs[ii], false, false); |
| } |
| O << '\n'; |
| } |
| } |
| } |
| |
| /// EmitSpecialLLVMGlobal - Check to see if the specified global is a |
| /// special global used by LLVM. If so, emit it and return true, otherwise |
| /// do nothing and return false. |
| bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { |
| if (GV->getName() == "llvm.used") { |
| if (TAI->getUsedDirective() != 0) // No need to emit this at all. |
| EmitLLVMUsedList(GV->getInitializer()); |
| return true; |
| } |
| |
| // Ignore debug and non-emitted data. |
| if (GV->getSection() == "llvm.metadata") return true; |
| |
| if (!GV->hasAppendingLinkage()) return false; |
| |
| assert(GV->hasInitializer() && "Not a special LLVM global!"); |
| |
| const TargetData *TD = TM.getTargetData(); |
| unsigned Align = Log2_32(TD->getPointerPrefAlignment()); |
| if (GV->getName() == "llvm.global_ctors" && GV->use_empty()) { |
| SwitchToDataSection(TAI->getStaticCtorsSection()); |
| EmitAlignment(Align, 0); |
| EmitXXStructorList(GV->getInitializer()); |
| return true; |
| } |
| |
| if (GV->getName() == "llvm.global_dtors" && GV->use_empty()) { |
| SwitchToDataSection(TAI->getStaticDtorsSection()); |
| EmitAlignment(Align, 0); |
| EmitXXStructorList(GV->getInitializer()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each |
| /// global in the specified llvm.used list as being used with this directive. |
| void AsmPrinter::EmitLLVMUsedList(Constant *List) { |
| const char *Directive = TAI->getUsedDirective(); |
| |
| // Should be an array of 'sbyte*'. |
| ConstantArray *InitList = dyn_cast<ConstantArray>(List); |
| if (InitList == 0) return; |
| |
| for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { |
| O << Directive; |
| EmitConstantValueOnly(InitList->getOperand(i)); |
| O << "\n"; |
| } |
| } |
| |
| /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the |
| /// function pointers, ignoring the init priority. |
| void AsmPrinter::EmitXXStructorList(Constant *List) { |
| // Should be an array of '{ int, void ()* }' structs. The first value is the |
| // init priority, which we ignore. |
| if (!isa<ConstantArray>(List)) return; |
| ConstantArray *InitList = cast<ConstantArray>(List); |
| for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) |
| if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ |
| if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. |
| |
| if (CS->getOperand(1)->isNullValue()) |
| return; // Found a null terminator, exit printing. |
| // Emit the function pointer. |
| EmitGlobalConstant(CS->getOperand(1)); |
| } |
| } |
| |
| /// getGlobalLinkName - Returns the asm/link name of of the specified |
| /// global variable. Should be overridden by each target asm printer to |
| /// generate the appropriate value. |
| const std::string AsmPrinter::getGlobalLinkName(const GlobalVariable *GV) const{ |
| std::string LinkName; |
| |
| if (isa<Function>(GV)) { |
| LinkName += TAI->getFunctionAddrPrefix(); |
| LinkName += Mang->getValueName(GV); |
| LinkName += TAI->getFunctionAddrSuffix(); |
| } else { |
| LinkName += TAI->getGlobalVarAddrPrefix(); |
| LinkName += Mang->getValueName(GV); |
| LinkName += TAI->getGlobalVarAddrSuffix(); |
| } |
| |
| return LinkName; |
| } |
| |
| /// EmitExternalGlobal - Emit the external reference to a global variable. |
| /// Should be overridden if an indirect reference should be used. |
| void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { |
| O << getGlobalLinkName(GV); |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// LEB 128 number encoding. |
| |
| /// PrintULEB128 - Print a series of hexidecimal values (separated by commas) |
| /// representing an unsigned leb128 value. |
| void AsmPrinter::PrintULEB128(unsigned Value) const { |
| do { |
| unsigned Byte = Value & 0x7f; |
| Value >>= 7; |
| if (Value) Byte |= 0x80; |
| O << "0x" << std::hex << Byte << std::dec; |
| if (Value) O << ", "; |
| } while (Value); |
| } |
| |
| /// SizeULEB128 - Compute the number of bytes required for an unsigned leb128 |
| /// value. |
| unsigned AsmPrinter::SizeULEB128(unsigned Value) { |
| unsigned Size = 0; |
| do { |
| Value >>= 7; |
| Size += sizeof(int8_t); |
| } while (Value); |
| return Size; |
| } |
| |
| /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) |
| /// representing a signed leb128 value. |
| void AsmPrinter::PrintSLEB128(int Value) const { |
| int Sign = Value >> (8 * sizeof(Value) - 1); |
| bool IsMore; |
| |
| do { |
| unsigned Byte = Value & 0x7f; |
| Value >>= 7; |
| IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; |
| if (IsMore) Byte |= 0x80; |
| O << "0x" << std::hex << Byte << std::dec; |
| if (IsMore) O << ", "; |
| } while (IsMore); |
| } |
| |
| /// SizeSLEB128 - Compute the number of bytes required for a signed leb128 |
| /// value. |
| unsigned AsmPrinter::SizeSLEB128(int Value) { |
| unsigned Size = 0; |
| int Sign = Value >> (8 * sizeof(Value) - 1); |
| bool IsMore; |
| |
| do { |
| unsigned Byte = Value & 0x7f; |
| Value >>= 7; |
| IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; |
| Size += sizeof(int8_t); |
| } while (IsMore); |
| return Size; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Emission and print routines |
| // |
| |
| /// PrintHex - Print a value as a hexidecimal value. |
| /// |
| void AsmPrinter::PrintHex(int Value) const { |
| O << "0x" << std::hex << Value << std::dec; |
| } |
| |
| /// EOL - Print a newline character to asm stream. If a comment is present |
| /// then it will be printed first. Comments should not contain '\n'. |
| void AsmPrinter::EOL() const { |
| O << "\n"; |
| } |
| void AsmPrinter::EOL(const std::string &Comment) const { |
| if (AsmVerbose && !Comment.empty()) { |
| O << "\t" |
| << TAI->getCommentString() |
| << " " |
| << Comment; |
| } |
| O << "\n"; |
| } |
| |
| /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an |
| /// unsigned leb128 value. |
| void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { |
| if (TAI->hasLEB128()) { |
| O << "\t.uleb128\t" |
| << Value; |
| } else { |
| O << TAI->getData8bitsDirective(); |
| PrintULEB128(Value); |
| } |
| } |
| |
| /// EmitSLEB128Bytes - print an assembler byte data directive to compose a |
| /// signed leb128 value. |
| void AsmPrinter::EmitSLEB128Bytes(int Value) const { |
| if (TAI->hasLEB128()) { |
| O << "\t.sleb128\t" |
| << Value; |
| } else { |
| O << TAI->getData8bitsDirective(); |
| PrintSLEB128(Value); |
| } |
| } |
| |
| /// EmitInt8 - Emit a byte directive and value. |
| /// |
| void AsmPrinter::EmitInt8(int Value) const { |
| O << TAI->getData8bitsDirective(); |
| PrintHex(Value & 0xFF); |
| } |
| |
| /// EmitInt16 - Emit a short directive and value. |
| /// |
| void AsmPrinter::EmitInt16(int Value) const { |
| O << TAI->getData16bitsDirective(); |
| PrintHex(Value & 0xFFFF); |
| } |
| |
| /// EmitInt32 - Emit a long directive and value. |
| /// |
| void AsmPrinter::EmitInt32(int Value) const { |
| O << TAI->getData32bitsDirective(); |
| PrintHex(Value); |
| } |
| |
| /// EmitInt64 - Emit a long long directive and value. |
| /// |
| void AsmPrinter::EmitInt64(uint64_t Value) const { |
| if (TAI->getData64bitsDirective()) { |
| O << TAI->getData64bitsDirective(); |
| PrintHex(Value); |
| } else { |
| if (TM.getTargetData()->isBigEndian()) { |
| EmitInt32(unsigned(Value >> 32)); O << "\n"; |
| EmitInt32(unsigned(Value)); |
| } else { |
| EmitInt32(unsigned(Value)); O << "\n"; |
| EmitInt32(unsigned(Value >> 32)); |
| } |
| } |
| } |
| |
| /// toOctal - Convert the low order bits of X into an octal digit. |
| /// |
| static inline char toOctal(int X) { |
| return (X&7)+'0'; |
| } |
| |
| /// printStringChar - Print a char, escaped if necessary. |
| /// |
| static void printStringChar(std::ostream &O, unsigned char C) { |
| if (C == '"') { |
| O << "\\\""; |
| } else if (C == '\\') { |
| O << "\\\\"; |
| } else if (isprint(C)) { |
| O << C; |
| } else { |
| switch(C) { |
| case '\b': O << "\\b"; break; |
| case '\f': O << "\\f"; break; |
| case '\n': O << "\\n"; break; |
| case '\r': O << "\\r"; break; |
| case '\t': O << "\\t"; break; |
| default: |
| O << '\\'; |
| O << toOctal(C >> 6); |
| O << toOctal(C >> 3); |
| O << toOctal(C >> 0); |
| break; |
| } |
| } |
| } |
| |
| /// EmitString - Emit a string with quotes and a null terminator. |
| /// Special characters are emitted properly. |
| /// \literal (Eg. '\t') \endliteral |
| void AsmPrinter::EmitString(const std::string &String) const { |
| const char* AscizDirective = TAI->getAscizDirective(); |
| if (AscizDirective) |
| O << AscizDirective; |
| else |
| O << TAI->getAsciiDirective(); |
| O << "\""; |
| for (unsigned i = 0, N = String.size(); i < N; ++i) { |
| unsigned char C = String[i]; |
| printStringChar(O, C); |
| } |
| if (AscizDirective) |
| O << "\""; |
| else |
| O << "\\0\""; |
| } |
| |
| |
| /// EmitFile - Emit a .file directive. |
| void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { |
| O << "\t.file\t" << Number << " \""; |
| for (unsigned i = 0, N = Name.size(); i < N; ++i) { |
| unsigned char C = Name[i]; |
| printStringChar(O, C); |
| } |
| O << "\""; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| |
| // EmitAlignment - Emit an alignment directive to the specified power of |
| // two boundary. For example, if you pass in 3 here, you will get an 8 |
| // byte alignment. If a global value is specified, and if that global has |
| // an explicit alignment requested, it will unconditionally override the |
| // alignment request. However, if ForcedAlignBits is specified, this value |
| // has final say: the ultimate alignment will be the max of ForcedAlignBits |
| // and the alignment computed with NumBits and the global. |
| // |
| // The algorithm is: |
| // Align = NumBits; |
| // if (GV && GV->hasalignment) Align = GV->getalignment(); |
| // Align = std::max(Align, ForcedAlignBits); |
| // |
| void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, |
| unsigned ForcedAlignBits, bool UseFillExpr, |
| unsigned FillValue) const { |
| if (GV && GV->getAlignment()) |
| NumBits = Log2_32(GV->getAlignment()); |
| NumBits = std::max(NumBits, ForcedAlignBits); |
| |
| if (NumBits == 0) return; // No need to emit alignment. |
| if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; |
| O << TAI->getAlignDirective() << NumBits; |
| if (UseFillExpr) O << ",0x" << std::hex << FillValue << std::dec; |
| O << "\n"; |
| } |
| |
| |
| /// EmitZeros - Emit a block of zeros. |
| /// |
| void AsmPrinter::EmitZeros(uint64_t NumZeros) const { |
| if (NumZeros) { |
| if (TAI->getZeroDirective()) { |
| O << TAI->getZeroDirective() << NumZeros; |
| if (TAI->getZeroDirectiveSuffix()) |
| O << TAI->getZeroDirectiveSuffix(); |
| O << "\n"; |
| } else { |
| for (; NumZeros; --NumZeros) |
| O << TAI->getData8bitsDirective() << "0\n"; |
| } |
| } |
| } |
| |
| // Print out the specified constant, without a storage class. Only the |
| // constants valid in constant expressions can occur here. |
| void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { |
| if (CV->isNullValue() || isa<UndefValue>(CV)) |
| O << "0"; |
| else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| O << CI->getZExtValue(); |
| } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { |
| // This is a constant address for a global variable or function. Use the |
| // name of the variable or function as the address value, possibly |
| // decorating it with GlobalVarAddrPrefix/Suffix or |
| // FunctionAddrPrefix/Suffix (these all default to "" ) |
| if (isa<Function>(GV)) { |
| O << TAI->getFunctionAddrPrefix() |
| << Mang->getValueName(GV) |
| << TAI->getFunctionAddrSuffix(); |
| } else { |
| O << TAI->getGlobalVarAddrPrefix() |
| << Mang->getValueName(GV) |
| << TAI->getGlobalVarAddrSuffix(); |
| } |
| } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| const TargetData *TD = TM.getTargetData(); |
| unsigned Opcode = CE->getOpcode(); |
| switch (Opcode) { |
| case Instruction::GetElementPtr: { |
| // generate a symbolic expression for the byte address |
| const Constant *ptrVal = CE->getOperand(0); |
| SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); |
| if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], |
| idxVec.size())) { |
| if (Offset) |
| O << "("; |
| EmitConstantValueOnly(ptrVal); |
| if (Offset > 0) |
| O << ") + " << Offset; |
| else if (Offset < 0) |
| O << ") - " << -Offset; |
| } else { |
| EmitConstantValueOnly(ptrVal); |
| } |
| break; |
| } |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); |
| break; |
| case Instruction::BitCast: |
| return EmitConstantValueOnly(CE->getOperand(0)); |
| |
| case Instruction::IntToPtr: { |
| // Handle casts to pointers by changing them into casts to the appropriate |
| // integer type. This promotes constant folding and simplifies this code. |
| Constant *Op = CE->getOperand(0); |
| Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); |
| return EmitConstantValueOnly(Op); |
| } |
| |
| |
| case Instruction::PtrToInt: { |
| // Support only foldable casts to/from pointers that can be eliminated by |
| // changing the pointer to the appropriately sized integer type. |
| Constant *Op = CE->getOperand(0); |
| const Type *Ty = CE->getType(); |
| |
| // We can emit the pointer value into this slot if the slot is an |
| // integer slot greater or equal to the size of the pointer. |
| if (Ty->isInteger() && |
| TD->getTypeSize(Ty) >= TD->getTypeSize(Op->getType())) |
| return EmitConstantValueOnly(Op); |
| |
| assert(0 && "FIXME: Don't yet support this kind of constant cast expr"); |
| EmitConstantValueOnly(Op); |
| break; |
| } |
| case Instruction::Add: |
| case Instruction::Sub: |
| O << "("; |
| EmitConstantValueOnly(CE->getOperand(0)); |
| O << (Opcode==Instruction::Add ? ") + (" : ") - ("); |
| EmitConstantValueOnly(CE->getOperand(1)); |
| O << ")"; |
| break; |
| default: |
| assert(0 && "Unsupported operator!"); |
| } |
| } else { |
| assert(0 && "Unknown constant value!"); |
| } |
| } |
| |
| /// printAsCString - Print the specified array as a C compatible string, only if |
| /// the predicate isString is true. |
| /// |
| static void printAsCString(std::ostream &O, const ConstantArray *CVA, |
| unsigned LastElt) { |
| assert(CVA->isString() && "Array is not string compatible!"); |
| |
| O << "\""; |
| for (unsigned i = 0; i != LastElt; ++i) { |
| unsigned char C = |
| (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); |
| printStringChar(O, C); |
| } |
| O << "\""; |
| } |
| |
| /// EmitString - Emit a zero-byte-terminated string constant. |
| /// |
| void AsmPrinter::EmitString(const ConstantArray *CVA) const { |
| unsigned NumElts = CVA->getNumOperands(); |
| if (TAI->getAscizDirective() && NumElts && |
| cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { |
| O << TAI->getAscizDirective(); |
| printAsCString(O, CVA, NumElts-1); |
| } else { |
| O << TAI->getAsciiDirective(); |
| printAsCString(O, CVA, NumElts); |
| } |
| O << "\n"; |
| } |
| |
| /// EmitGlobalConstant - Print a general LLVM constant to the .s file. |
| /// |
| void AsmPrinter::EmitGlobalConstant(const Constant *CV) { |
| const TargetData *TD = TM.getTargetData(); |
| |
| if (CV->isNullValue() || isa<UndefValue>(CV)) { |
| EmitZeros(TD->getTypeSize(CV->getType())); |
| return; |
| } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { |
| if (CVA->isString()) { |
| EmitString(CVA); |
| } else { // Not a string. Print the values in successive locations |
| for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) { |
| EmitGlobalConstant(CVA->getOperand(i)); |
| const Type* EltTy = CVA->getType()->getElementType(); |
| uint64_t padSize = TD->getABITypeSize(EltTy) - TD->getTypeSize(EltTy); |
| EmitZeros(padSize); |
| } |
| } |
| return; |
| } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { |
| // Print the fields in successive locations. Pad to align if needed! |
| const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); |
| uint64_t sizeSoFar = 0; |
| for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { |
| const Constant* field = CVS->getOperand(i); |
| |
| // Check if padding is needed and insert one or more 0s. |
| uint64_t fieldSize = TD->getTypeSize(field->getType()); |
| uint64_t padSize = ((i == e-1? cvsLayout->getSizeInBytes() |
| : cvsLayout->getElementOffset(i+1)) |
| - cvsLayout->getElementOffset(i)) - fieldSize; |
| sizeSoFar += fieldSize + padSize; |
| |
| // Now print the actual field value |
| EmitGlobalConstant(field); |
| |
| // Insert the field padding unless it's zero bytes... |
| EmitZeros(padSize); |
| } |
| assert(sizeSoFar == cvsLayout->getSizeInBytes() && |
| "Layout of constant struct may be incorrect!"); |
| return; |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| // FP Constants are printed as integer constants to avoid losing |
| // precision... |
| if (CFP->getType() == Type::DoubleTy) { |
| double Val = CFP->getValueAPF().convertToDouble(); // for comment only |
| uint64_t i = CFP->getValueAPF().convertToAPInt().getZExtValue(); |
| if (TAI->getData64bitsDirective()) |
| O << TAI->getData64bitsDirective() << i << "\t" |
| << TAI->getCommentString() << " double value: " << Val << "\n"; |
| else if (TD->isBigEndian()) { |
| O << TAI->getData32bitsDirective() << unsigned(i >> 32) |
| << "\t" << TAI->getCommentString() |
| << " double most significant word " << Val << "\n"; |
| O << TAI->getData32bitsDirective() << unsigned(i) |
| << "\t" << TAI->getCommentString() |
| << " double least significant word " << Val << "\n"; |
| } else { |
| O << TAI->getData32bitsDirective() << unsigned(i) |
| << "\t" << TAI->getCommentString() |
| << " double least significant word " << Val << "\n"; |
| O << TAI->getData32bitsDirective() << unsigned(i >> 32) |
| << "\t" << TAI->getCommentString() |
| << " double most significant word " << Val << "\n"; |
| } |
| return; |
| } else if (CFP->getType() == Type::FloatTy) { |
| float Val = CFP->getValueAPF().convertToFloat(); // for comment only |
| O << TAI->getData32bitsDirective() |
| << CFP->getValueAPF().convertToAPInt().getZExtValue() |
| << "\t" << TAI->getCommentString() << " float " << Val << "\n"; |
| return; |
| } else if (CFP->getType() == Type::X86_FP80Ty) { |
| // all long double variants are printed as hex |
| // api needed to prevent premature destruction |
| APInt api = CFP->getValueAPF().convertToAPInt(); |
| const uint64_t *p = api.getRawData(); |
| if (TD->isBigEndian()) { |
| O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) |
| << "\t" << TAI->getCommentString() |
| << " long double most significant halfword\n"; |
| O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) |
| << "\t" << TAI->getCommentString() |
| << " long double next halfword\n"; |
| O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) |
| << "\t" << TAI->getCommentString() |
| << " long double next halfword\n"; |
| O << TAI->getData16bitsDirective() << uint16_t(p[0]) |
| << "\t" << TAI->getCommentString() |
| << " long double next halfword\n"; |
| O << TAI->getData16bitsDirective() << uint16_t(p[1]) |
| << "\t" << TAI->getCommentString() |
| << " long double least significant halfword\n"; |
| } else { |
| O << TAI->getData16bitsDirective() << uint16_t(p[1]) |
| << "\t" << TAI->getCommentString() |
| << " long double least significant halfword\n"; |
| O << TAI->getData16bitsDirective() << uint16_t(p[0]) |
| << "\t" << TAI->getCommentString() |
| << " long double next halfword\n"; |
| O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 16) |
| << "\t" << TAI->getCommentString() |
| << " long double next halfword\n"; |
| O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 32) |
| << "\t" << TAI->getCommentString() |
| << " long double next halfword\n"; |
| O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48) |
| << "\t" << TAI->getCommentString() |
| << " long double most significant halfword\n"; |
| } |
| return; |
| } else if (CFP->getType() == Type::PPC_FP128Ty) { |
| // all long double variants are printed as hex |
| // api needed to prevent premature destruction |
| APInt api = CFP->getValueAPF().convertToAPInt(); |
| const uint64_t *p = api.getRawData(); |
| if (TD->isBigEndian()) { |
| O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) |
| << "\t" << TAI->getCommentString() |
| << " long double most significant word\n"; |
| O << TAI->getData32bitsDirective() << uint32_t(p[0]) |
| << "\t" << TAI->getCommentString() |
| << " long double next word\n"; |
| O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) |
| << "\t" << TAI->getCommentString() |
| << " long double next word\n"; |
| O << TAI->getData32bitsDirective() << uint32_t(p[1]) |
| << "\t" << TAI->getCommentString() |
| << " long double least significant word\n"; |
| } else { |
| O << TAI->getData32bitsDirective() << uint32_t(p[1]) |
| << "\t" << TAI->getCommentString() |
| << " long double least significant word\n"; |
| O << TAI->getData32bitsDirective() << uint32_t(p[1] >> 32) |
| << "\t" << TAI->getCommentString() |
| << " long double next word\n"; |
| O << TAI->getData32bitsDirective() << uint32_t(p[0]) |
| << "\t" << TAI->getCommentString() |
| << " long double next word\n"; |
| O << TAI->getData32bitsDirective() << uint32_t(p[0] >> 32) |
| << "\t" << TAI->getCommentString() |
| << " long double most significant word\n"; |
| } |
| return; |
| } else assert(0 && "Floating point constant type not handled"); |
| } else if (CV->getType() == Type::Int64Ty) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| uint64_t Val = CI->getZExtValue(); |
| |
| if (TAI->getData64bitsDirective()) |
| O << TAI->getData64bitsDirective() << Val << "\n"; |
| else if (TD->isBigEndian()) { |
| O << TAI->getData32bitsDirective() << unsigned(Val >> 32) |
| << "\t" << TAI->getCommentString() |
| << " Double-word most significant word " << Val << "\n"; |
| O << TAI->getData32bitsDirective() << unsigned(Val) |
| << "\t" << TAI->getCommentString() |
| << " Double-word least significant word " << Val << "\n"; |
| } else { |
| O << TAI->getData32bitsDirective() << unsigned(Val) |
| << "\t" << TAI->getCommentString() |
| << " Double-word least significant word " << Val << "\n"; |
| O << TAI->getData32bitsDirective() << unsigned(Val >> 32) |
| << "\t" << TAI->getCommentString() |
| << " Double-word most significant word " << Val << "\n"; |
| } |
| return; |
| } |
| } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { |
| const VectorType *PTy = CP->getType(); |
| |
| for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) |
| EmitGlobalConstant(CP->getOperand(I)); |
| |
| return; |
| } |
| |
| const Type *type = CV->getType(); |
| printDataDirective(type); |
| EmitConstantValueOnly(CV); |
| O << "\n"; |
| } |
| |
| void |
| AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { |
| // Target doesn't support this yet! |
| abort(); |
| } |
| |
| /// PrintSpecial - Print information related to the specified machine instr |
| /// that is independent of the operand, and may be independent of the instr |
| /// itself. This can be useful for portably encoding the comment character |
| /// or other bits of target-specific knowledge into the asmstrings. The |
| /// syntax used is ${:comment}. Targets can override this to add support |
| /// for their own strange codes. |
| void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) { |
| if (!strcmp(Code, "private")) { |
| O << TAI->getPrivateGlobalPrefix(); |
| } else if (!strcmp(Code, "comment")) { |
| O << TAI->getCommentString(); |
| } else if (!strcmp(Code, "uid")) { |
| // Assign a unique ID to this machine instruction. |
| static const MachineInstr *LastMI = 0; |
| static const Function *F = 0; |
| static unsigned Counter = 0U-1; |
| |
| // Comparing the address of MI isn't sufficient, because machineinstrs may |
| // be allocated to the same address across functions. |
| const Function *ThisF = MI->getParent()->getParent()->getFunction(); |
| |
| // If this is a new machine instruction, bump the counter. |
| if (LastMI != MI || F != ThisF) { |
| ++Counter; |
| LastMI = MI; |
| F = ThisF; |
| } |
| O << Counter; |
| } else { |
| cerr << "Unknown special formatter '" << Code |
| << "' for machine instr: " << *MI; |
| exit(1); |
| } |
| } |
| |
| |
| /// printInlineAsm - This method formats and prints the specified machine |
| /// instruction that is an inline asm. |
| void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { |
| unsigned NumOperands = MI->getNumOperands(); |
| |
| // Count the number of register definitions. |
| unsigned NumDefs = 0; |
| for (; MI->getOperand(NumDefs).isRegister() && MI->getOperand(NumDefs).isDef(); |
| ++NumDefs) |
| assert(NumDefs != NumOperands-1 && "No asm string?"); |
| |
| assert(MI->getOperand(NumDefs).isExternalSymbol() && "No asm string?"); |
| |
| // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. |
| const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); |
| |
| // If this asmstr is empty, don't bother printing the #APP/#NOAPP markers. |
| if (AsmStr[0] == 0) { |
| O << "\n"; // Tab already printed, avoid double indenting next instr. |
| return; |
| } |
| |
| O << TAI->getInlineAsmStart() << "\n\t"; |
| |
| // The variant of the current asmprinter. |
| int AsmPrinterVariant = TAI->getAssemblerDialect(); |
| |
| int CurVariant = -1; // The number of the {.|.|.} region we are in. |
| const char *LastEmitted = AsmStr; // One past the last character emitted. |
| |
| while (*LastEmitted) { |
| switch (*LastEmitted) { |
| default: { |
| // Not a special case, emit the string section literally. |
| const char *LiteralEnd = LastEmitted+1; |
| while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && |
| *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') |
| ++LiteralEnd; |
| if (CurVariant == -1 || CurVariant == AsmPrinterVariant) |
| O.write(LastEmitted, LiteralEnd-LastEmitted); |
| LastEmitted = LiteralEnd; |
| break; |
| } |
| case '\n': |
| ++LastEmitted; // Consume newline character. |
| O << "\n"; // Indent code with newline. |
| break; |
| case '$': { |
| ++LastEmitted; // Consume '$' character. |
| bool Done = true; |
| |
| // Handle escapes. |
| switch (*LastEmitted) { |
| default: Done = false; break; |
| case '$': // $$ -> $ |
| if (CurVariant == -1 || CurVariant == AsmPrinterVariant) |
| O << '$'; |
| ++LastEmitted; // Consume second '$' character. |
| break; |
| case '(': // $( -> same as GCC's { character. |
| ++LastEmitted; // Consume '(' character. |
| if (CurVariant != -1) { |
| cerr << "Nested variants found in inline asm string: '" |
| << AsmStr << "'\n"; |
| exit(1); |
| } |
| CurVariant = 0; // We're in the first variant now. |
| break; |
| case '|': |
| ++LastEmitted; // consume '|' character. |
| if (CurVariant == -1) { |
| cerr << "Found '|' character outside of variant in inline asm " |
| << "string: '" << AsmStr << "'\n"; |
| exit(1); |
| } |
| ++CurVariant; // We're in the next variant. |
| break; |
| case ')': // $) -> same as GCC's } char. |
| ++LastEmitted; // consume ')' character. |
| if (CurVariant == -1) { |
| cerr << "Found '}' character outside of variant in inline asm " |
| << "string: '" << AsmStr << "'\n"; |
| exit(1); |
| } |
| CurVariant = -1; |
| break; |
| } |
| if (Done) break; |
| |
| bool HasCurlyBraces = false; |
| if (*LastEmitted == '{') { // ${variable} |
| ++LastEmitted; // Consume '{' character. |
| HasCurlyBraces = true; |
| } |
| |
| const char *IDStart = LastEmitted; |
| char *IDEnd; |
| errno = 0; |
| long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. |
| if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { |
| cerr << "Bad $ operand number in inline asm string: '" |
| << AsmStr << "'\n"; |
| exit(1); |
| } |
| LastEmitted = IDEnd; |
| |
| char Modifier[2] = { 0, 0 }; |
| |
| if (HasCurlyBraces) { |
| // If we have curly braces, check for a modifier character. This |
| // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. |
| if (*LastEmitted == ':') { |
| ++LastEmitted; // Consume ':' character. |
| if (*LastEmitted == 0) { |
| cerr << "Bad ${:} expression in inline asm string: '" |
| << AsmStr << "'\n"; |
| exit(1); |
| } |
| |
| Modifier[0] = *LastEmitted; |
| ++LastEmitted; // Consume modifier character. |
| } |
| |
| if (*LastEmitted != '}') { |
| cerr << "Bad ${} expression in inline asm string: '" |
| << AsmStr << "'\n"; |
| exit(1); |
| } |
| ++LastEmitted; // Consume '}' character. |
| } |
| |
| if ((unsigned)Val >= NumOperands-1) { |
| cerr << "Invalid $ operand number in inline asm string: '" |
| << AsmStr << "'\n"; |
| exit(1); |
| } |
| |
| // Okay, we finally have a value number. Ask the target to print this |
| // operand! |
| if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { |
| unsigned OpNo = 1; |
| |
| bool Error = false; |
| |
| // Scan to find the machine operand number for the operand. |
| for (; Val; --Val) { |
| if (OpNo >= MI->getNumOperands()) break; |
| unsigned OpFlags = MI->getOperand(OpNo).getImmedValue(); |
| OpNo += (OpFlags >> 3) + 1; |
| } |
| |
| if (OpNo >= MI->getNumOperands()) { |
| Error = true; |
| } else { |
| unsigned OpFlags = MI->getOperand(OpNo).getImmedValue(); |
| ++OpNo; // Skip over the ID number. |
| |
| AsmPrinter *AP = const_cast<AsmPrinter*>(this); |
| if ((OpFlags & 7) == 4 /*ADDR MODE*/) { |
| Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, |
| Modifier[0] ? Modifier : 0); |
| } else { |
| Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, |
| Modifier[0] ? Modifier : 0); |
| } |
| } |
| if (Error) { |
| cerr << "Invalid operand found in inline asm: '" |
| << AsmStr << "'\n"; |
| MI->dump(); |
| exit(1); |
| } |
| } |
| break; |
| } |
| } |
| } |
| O << "\n\t" << TAI->getInlineAsmEnd() << "\n"; |
| } |
| |
| /// printLabel - This method prints a local label used by debug and |
| /// exception handling tables. |
| void AsmPrinter::printLabel(const MachineInstr *MI) const { |
| O << "\n" |
| << TAI->getPrivateGlobalPrefix() |
| << "label" |
| << MI->getOperand(0).getImmedValue() |
| << ":\n"; |
| } |
| |
| /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM |
| /// instruction, using the specified assembler variant. Targets should |
| /// overried this to format as appropriate. |
| bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, |
| unsigned AsmVariant, const char *ExtraCode) { |
| // Target doesn't support this yet! |
| return true; |
| } |
| |
| bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, |
| unsigned AsmVariant, |
| const char *ExtraCode) { |
| // Target doesn't support this yet! |
| return true; |
| } |
| |
| /// printBasicBlockLabel - This method prints the label for the specified |
| /// MachineBasicBlock |
| void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, |
| bool printColon, |
| bool printComment) const { |
| O << TAI->getPrivateGlobalPrefix() << "BB" << MBB->getNumber() << '_' |
| << CurrentFnName; |
| if (printColon) |
| O << ':'; |
| if (printComment && MBB->getBasicBlock()) |
| O << '\t' << TAI->getCommentString() << ' ' |
| << MBB->getBasicBlock()->getName(); |
| } |
| |
| /// printSetLabel - This method prints a set label for the specified |
| /// MachineBasicBlock |
| void AsmPrinter::printSetLabel(unsigned uid, |
| const MachineBasicBlock *MBB) const { |
| if (!TAI->getSetDirective()) |
| return; |
| |
| O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() |
| << uid << "_set_" << MBB->getNumber() << '_' << CurrentFnName << ','; |
| printBasicBlockLabel(MBB, false, false); |
| O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << uid |
| << '_' << CurrentFnName << '\n'; |
| } |
| |
| void AsmPrinter::printSetLabel(unsigned uid, unsigned uid2, |
| const MachineBasicBlock *MBB) const { |
| if (!TAI->getSetDirective()) |
| return; |
| |
| O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() |
| << uid << '_' << uid2 |
| << "_set_" << MBB->getNumber() << '_' << CurrentFnName << ','; |
| printBasicBlockLabel(MBB, false, false); |
| O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << uid |
| << '_' << uid2 << '_' << CurrentFnName << '\n'; |
| } |
| |
| /// printDataDirective - This method prints the asm directive for the |
| /// specified type. |
| void AsmPrinter::printDataDirective(const Type *type) { |
| const TargetData *TD = TM.getTargetData(); |
| switch (type->getTypeID()) { |
| case Type::IntegerTyID: { |
| unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); |
| if (BitWidth <= 8) |
| O << TAI->getData8bitsDirective(); |
| else if (BitWidth <= 16) |
| O << TAI->getData16bitsDirective(); |
| else if (BitWidth <= 32) |
| O << TAI->getData32bitsDirective(); |
| else if (BitWidth <= 64) { |
| assert(TAI->getData64bitsDirective() && |
| "Target cannot handle 64-bit constant exprs!"); |
| O << TAI->getData64bitsDirective(); |
| } |
| break; |
| } |
| case Type::PointerTyID: |
| if (TD->getPointerSize() == 8) { |
| assert(TAI->getData64bitsDirective() && |
| "Target cannot handle 64-bit pointer exprs!"); |
| O << TAI->getData64bitsDirective(); |
| } else { |
| O << TAI->getData32bitsDirective(); |
| } |
| break; |
| case Type::FloatTyID: case Type::DoubleTyID: |
| case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: |
| assert (0 && "Should have already output floating point constant."); |
| default: |
| assert (0 && "Can't handle printing this type of thing"); |
| break; |
| } |
| } |
| |