| //===- LiveValues.cpp - Liveness information for LLVM IR Values. ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the implementation for the LLVM IR Value liveness |
| // analysis pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LiveValues.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| using namespace llvm; |
| |
| namespace llvm { |
| FunctionPass *createLiveValuesPass() { return new LiveValues(); } |
| } |
| |
| char LiveValues::ID = 0; |
| INITIALIZE_PASS_BEGIN(LiveValues, "live-values", |
| "Value Liveness Analysis", false, true) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
| INITIALIZE_PASS_END(LiveValues, "live-values", |
| "Value Liveness Analysis", false, true) |
| |
| LiveValues::LiveValues() : FunctionPass(ID) {} |
| |
| void LiveValues::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<LoopInfo>(); |
| AU.setPreservesAll(); |
| } |
| |
| bool LiveValues::runOnFunction(Function &F) { |
| DT = &getAnalysis<DominatorTree>(); |
| LI = &getAnalysis<LoopInfo>(); |
| |
| // This pass' values are computed lazily, so there's nothing to do here. |
| |
| return false; |
| } |
| |
| void LiveValues::releaseMemory() { |
| Memos.clear(); |
| } |
| |
| /// isUsedInBlock - Test if the given value is used in the given block. |
| /// |
| bool LiveValues::isUsedInBlock(const Value *V, const BasicBlock *BB) { |
| Memo &M = getMemo(V); |
| return M.Used.count(BB); |
| } |
| |
| /// isLiveThroughBlock - Test if the given value is known to be |
| /// live-through the given block, meaning that the block is properly |
| /// dominated by the value's definition, and there exists a block |
| /// reachable from it that contains a use. This uses a conservative |
| /// approximation that errs on the side of returning false. |
| /// |
| bool LiveValues::isLiveThroughBlock(const Value *V, |
| const BasicBlock *BB) { |
| Memo &M = getMemo(V); |
| return M.LiveThrough.count(BB); |
| } |
| |
| /// isKilledInBlock - Test if the given value is known to be killed in |
| /// the given block, meaning that the block contains a use of the value, |
| /// and no blocks reachable from the block contain a use. This uses a |
| /// conservative approximation that errs on the side of returning false. |
| /// |
| bool LiveValues::isKilledInBlock(const Value *V, const BasicBlock *BB) { |
| Memo &M = getMemo(V); |
| return M.Killed.count(BB); |
| } |
| |
| /// getMemo - Retrieve an existing Memo for the given value if one |
| /// is available, otherwise compute a new one. |
| /// |
| LiveValues::Memo &LiveValues::getMemo(const Value *V) { |
| DenseMap<const Value *, Memo>::iterator I = Memos.find(V); |
| if (I != Memos.end()) |
| return I->second; |
| return compute(V); |
| } |
| |
| /// getImmediateDominator - A handy utility for the specific DominatorTree |
| /// query that we need here. |
| /// |
| static const BasicBlock *getImmediateDominator(const BasicBlock *BB, |
| const DominatorTree *DT) { |
| DomTreeNode *Node = DT->getNode(const_cast<BasicBlock *>(BB))->getIDom(); |
| return Node ? Node->getBlock() : 0; |
| } |
| |
| /// compute - Compute a new Memo for the given value. |
| /// |
| LiveValues::Memo &LiveValues::compute(const Value *V) { |
| Memo &M = Memos[V]; |
| |
| // Determine the block containing the definition. |
| const BasicBlock *DefBB; |
| // Instructions define values with meaningful live ranges. |
| if (const Instruction *I = dyn_cast<Instruction>(V)) |
| DefBB = I->getParent(); |
| // Arguments can be analyzed as values defined in the entry block. |
| else if (const Argument *A = dyn_cast<Argument>(V)) |
| DefBB = &A->getParent()->getEntryBlock(); |
| // Constants and other things aren't meaningful here, so just |
| // return having computed an empty Memo so that we don't come |
| // here again. The assumption here is that client code won't |
| // be asking about such values very often. |
| else |
| return M; |
| |
| // Determine if the value is defined inside a loop. This is used |
| // to track whether the value is ever used outside the loop, so |
| // it'll be set to null if the value is either not defined in a |
| // loop or used outside the loop in which it is defined. |
| const Loop *L = LI->getLoopFor(DefBB); |
| |
| // Track whether the value is used anywhere outside of the block |
| // in which it is defined. |
| bool LiveOutOfDefBB = false; |
| |
| // Examine each use of the value. |
| for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); |
| I != E; ++I) { |
| const User *U = *I; |
| const BasicBlock *UseBB = cast<Instruction>(U)->getParent(); |
| |
| // Note the block in which this use occurs. |
| M.Used.insert(UseBB); |
| |
| // If the use block doesn't have successors, the value can be |
| // considered killed. |
| if (succ_begin(UseBB) == succ_end(UseBB)) |
| M.Killed.insert(UseBB); |
| |
| // Observe whether the value is used outside of the loop in which |
| // it is defined. Switch to an enclosing loop if necessary. |
| for (; L; L = L->getParentLoop()) |
| if (L->contains(UseBB)) |
| break; |
| |
| // Search for live-through blocks. |
| const BasicBlock *BB; |
| if (const PHINode *PHI = dyn_cast<PHINode>(U)) { |
| // For PHI nodes, start the search at the incoming block paired with the |
| // incoming value, which must be dominated by the definition. |
| unsigned Num = PHI->getIncomingValueNumForOperand(I.getOperandNo()); |
| BB = PHI->getIncomingBlock(Num); |
| |
| // A PHI-node use means the value is live-out of it's defining block |
| // even if that block also contains the only use. |
| LiveOutOfDefBB = true; |
| } else { |
| // Otherwise just start the search at the use. |
| BB = UseBB; |
| |
| // Note if the use is outside the defining block. |
| LiveOutOfDefBB |= UseBB != DefBB; |
| } |
| |
| // Climb the immediate dominator tree from the use to the definition |
| // and mark all intermediate blocks as live-through. |
| for (; BB != DefBB; BB = getImmediateDominator(BB, DT)) { |
| if (BB != UseBB && !M.LiveThrough.insert(BB)) |
| break; |
| } |
| } |
| |
| // If the value is defined inside a loop and is not live outside |
| // the loop, then each exit block of the loop in which the value |
| // is used is a kill block. |
| if (L) { |
| SmallVector<BasicBlock *, 4> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { |
| const BasicBlock *ExitingBlock = ExitingBlocks[i]; |
| if (M.Used.count(ExitingBlock)) |
| M.Killed.insert(ExitingBlock); |
| } |
| } |
| |
| // If the value was never used outside the block in which it was |
| // defined, it's killed in that block. |
| if (!LiveOutOfDefBB) |
| M.Killed.insert(DefBB); |
| |
| return M; |
| } |