| //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass performs loop invariant code motion, attempting to remove as much |
| // code from the body of a loop as possible. It does this by either hoisting |
| // code into the preheader block, or by sinking code to the exit blocks if it is |
| // safe. This pass also promotes must-aliased memory locations in the loop to |
| // live in registers, thus hoisting and sinking "invariant" loads and stores. |
| // |
| // This pass uses alias analysis for two purposes: |
| // |
| // 1. Moving loop invariant loads and calls out of loops. If we can determine |
| // that a load or call inside of a loop never aliases anything stored to, |
| // we can hoist it or sink it like any other instruction. |
| // 2. Scalar Promotion of Memory - If there is a store instruction inside of |
| // the loop, we try to move the store to happen AFTER the loop instead of |
| // inside of the loop. This can only happen if a few conditions are true: |
| // A. The pointer stored through is loop invariant |
| // B. There are no stores or loads in the loop which _may_ alias the |
| // pointer. There are no calls in the loop which mod/ref the pointer. |
| // If these conditions are true, we can promote the loads and stores in the |
| // loop of the pointer to use a temporary alloca'd variable. We then use |
| // the SSAUpdater to construct the appropriate SSA form for the value. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "licm" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AliasSetTracker.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumSunk , "Number of instructions sunk out of loop"); |
| STATISTIC(NumHoisted , "Number of instructions hoisted out of loop"); |
| STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); |
| STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); |
| STATISTIC(NumPromoted , "Number of memory locations promoted to registers"); |
| |
| static cl::opt<bool> |
| DisablePromotion("disable-licm-promotion", cl::Hidden, |
| cl::desc("Disable memory promotion in LICM pass")); |
| |
| namespace { |
| struct LICM : public LoopPass { |
| static char ID; // Pass identification, replacement for typeid |
| LICM() : LoopPass(ID) {} |
| |
| virtual bool runOnLoop(Loop *L, LPPassManager &LPM); |
| |
| /// This transformation requires natural loop information & requires that |
| /// loop preheaders be inserted into the CFG... |
| /// |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<LoopInfo>(); |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addPreserved<ScalarEvolution>(); |
| AU.addPreservedID(LoopSimplifyID); |
| } |
| |
| bool doFinalization() { |
| assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets"); |
| return false; |
| } |
| |
| private: |
| AliasAnalysis *AA; // Current AliasAnalysis information |
| LoopInfo *LI; // Current LoopInfo |
| DominatorTree *DT; // Dominator Tree for the current Loop. |
| |
| // State that is updated as we process loops. |
| bool Changed; // Set to true when we change anything. |
| BasicBlock *Preheader; // The preheader block of the current loop... |
| Loop *CurLoop; // The current loop we are working on... |
| AliasSetTracker *CurAST; // AliasSet information for the current loop... |
| DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap; |
| |
| /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. |
| void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L); |
| |
| /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias |
| /// set. |
| void deleteAnalysisValue(Value *V, Loop *L); |
| |
| /// SinkRegion - Walk the specified region of the CFG (defined by all blocks |
| /// dominated by the specified block, and that are in the current loop) in |
| /// reverse depth first order w.r.t the DominatorTree. This allows us to |
| /// visit uses before definitions, allowing us to sink a loop body in one |
| /// pass without iteration. |
| /// |
| void SinkRegion(DomTreeNode *N); |
| |
| /// HoistRegion - Walk the specified region of the CFG (defined by all |
| /// blocks dominated by the specified block, and that are in the current |
| /// loop) in depth first order w.r.t the DominatorTree. This allows us to |
| /// visit definitions before uses, allowing us to hoist a loop body in one |
| /// pass without iteration. |
| /// |
| void HoistRegion(DomTreeNode *N); |
| |
| /// inSubLoop - Little predicate that returns true if the specified basic |
| /// block is in a subloop of the current one, not the current one itself. |
| /// |
| bool inSubLoop(BasicBlock *BB) { |
| assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); |
| for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I) |
| if ((*I)->contains(BB)) |
| return true; // A subloop actually contains this block! |
| return false; |
| } |
| |
| /// isExitBlockDominatedByBlockInLoop - This method checks to see if the |
| /// specified exit block of the loop is dominated by the specified block |
| /// that is in the body of the loop. We use these constraints to |
| /// dramatically limit the amount of the dominator tree that needs to be |
| /// searched. |
| bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock, |
| BasicBlock *BlockInLoop) const { |
| // If the block in the loop is the loop header, it must be dominated! |
| BasicBlock *LoopHeader = CurLoop->getHeader(); |
| if (BlockInLoop == LoopHeader) |
| return true; |
| |
| DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop); |
| DomTreeNode *IDom = DT->getNode(ExitBlock); |
| |
| // Because the exit block is not in the loop, we know we have to get _at |
| // least_ its immediate dominator. |
| IDom = IDom->getIDom(); |
| |
| while (IDom && IDom != BlockInLoopNode) { |
| // If we have got to the header of the loop, then the instructions block |
| // did not dominate the exit node, so we can't hoist it. |
| if (IDom->getBlock() == LoopHeader) |
| return false; |
| |
| // Get next Immediate Dominator. |
| IDom = IDom->getIDom(); |
| }; |
| |
| return true; |
| } |
| |
| /// sink - When an instruction is found to only be used outside of the loop, |
| /// this function moves it to the exit blocks and patches up SSA form as |
| /// needed. |
| /// |
| void sink(Instruction &I); |
| |
| /// hoist - When an instruction is found to only use loop invariant operands |
| /// that is safe to hoist, this instruction is called to do the dirty work. |
| /// |
| void hoist(Instruction &I); |
| |
| /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it |
| /// is not a trapping instruction or if it is a trapping instruction and is |
| /// guaranteed to execute. |
| /// |
| bool isSafeToExecuteUnconditionally(Instruction &I); |
| |
| /// pointerInvalidatedByLoop - Return true if the body of this loop may |
| /// store into the memory location pointed to by V. |
| /// |
| bool pointerInvalidatedByLoop(Value *V, unsigned Size) { |
| // Check to see if any of the basic blocks in CurLoop invalidate *V. |
| return CurAST->getAliasSetForPointer(V, Size).isMod(); |
| } |
| |
| bool canSinkOrHoistInst(Instruction &I); |
| bool isNotUsedInLoop(Instruction &I); |
| |
| void PromoteAliasSet(AliasSet &AS); |
| }; |
| } |
| |
| char LICM::ID = 0; |
| INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false) |
| |
| Pass *llvm::createLICMPass() { return new LICM(); } |
| |
| /// Hoist expressions out of the specified loop. Note, alias info for inner |
| /// loop is not preserved so it is not a good idea to run LICM multiple |
| /// times on one loop. |
| /// |
| bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) { |
| Changed = false; |
| |
| // Get our Loop and Alias Analysis information... |
| LI = &getAnalysis<LoopInfo>(); |
| AA = &getAnalysis<AliasAnalysis>(); |
| DT = &getAnalysis<DominatorTree>(); |
| |
| CurAST = new AliasSetTracker(*AA); |
| // Collect Alias info from subloops. |
| for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end(); |
| LoopItr != LoopItrE; ++LoopItr) { |
| Loop *InnerL = *LoopItr; |
| AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL]; |
| assert(InnerAST && "Where is my AST?"); |
| |
| // What if InnerLoop was modified by other passes ? |
| CurAST->add(*InnerAST); |
| |
| // Once we've incorporated the inner loop's AST into ours, we don't need the |
| // subloop's anymore. |
| delete InnerAST; |
| LoopToAliasSetMap.erase(InnerL); |
| } |
| |
| CurLoop = L; |
| |
| // Get the preheader block to move instructions into... |
| Preheader = L->getLoopPreheader(); |
| |
| // Loop over the body of this loop, looking for calls, invokes, and stores. |
| // Because subloops have already been incorporated into AST, we skip blocks in |
| // subloops. |
| // |
| for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); |
| I != E; ++I) { |
| BasicBlock *BB = *I; |
| if (LI->getLoopFor(BB) == L) // Ignore blocks in subloops. |
| CurAST->add(*BB); // Incorporate the specified basic block |
| } |
| |
| // We want to visit all of the instructions in this loop... that are not parts |
| // of our subloops (they have already had their invariants hoisted out of |
| // their loop, into this loop, so there is no need to process the BODIES of |
| // the subloops). |
| // |
| // Traverse the body of the loop in depth first order on the dominator tree so |
| // that we are guaranteed to see definitions before we see uses. This allows |
| // us to sink instructions in one pass, without iteration. After sinking |
| // instructions, we perform another pass to hoist them out of the loop. |
| // |
| if (L->hasDedicatedExits()) |
| SinkRegion(DT->getNode(L->getHeader())); |
| if (Preheader) |
| HoistRegion(DT->getNode(L->getHeader())); |
| |
| // Now that all loop invariants have been removed from the loop, promote any |
| // memory references to scalars that we can. |
| if (!DisablePromotion && Preheader && L->hasDedicatedExits()) { |
| // Loop over all of the alias sets in the tracker object. |
| for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end(); |
| I != E; ++I) |
| PromoteAliasSet(*I); |
| } |
| |
| // Clear out loops state information for the next iteration |
| CurLoop = 0; |
| Preheader = 0; |
| |
| // If this loop is nested inside of another one, save the alias information |
| // for when we process the outer loop. |
| if (L->getParentLoop()) |
| LoopToAliasSetMap[L] = CurAST; |
| else |
| delete CurAST; |
| return Changed; |
| } |
| |
| /// SinkRegion - Walk the specified region of the CFG (defined by all blocks |
| /// dominated by the specified block, and that are in the current loop) in |
| /// reverse depth first order w.r.t the DominatorTree. This allows us to visit |
| /// uses before definitions, allowing us to sink a loop body in one pass without |
| /// iteration. |
| /// |
| void LICM::SinkRegion(DomTreeNode *N) { |
| assert(N != 0 && "Null dominator tree node?"); |
| BasicBlock *BB = N->getBlock(); |
| |
| // If this subregion is not in the top level loop at all, exit. |
| if (!CurLoop->contains(BB)) return; |
| |
| // We are processing blocks in reverse dfo, so process children first. |
| const std::vector<DomTreeNode*> &Children = N->getChildren(); |
| for (unsigned i = 0, e = Children.size(); i != e; ++i) |
| SinkRegion(Children[i]); |
| |
| // Only need to process the contents of this block if it is not part of a |
| // subloop (which would already have been processed). |
| if (inSubLoop(BB)) return; |
| |
| for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) { |
| Instruction &I = *--II; |
| |
| // If the instruction is dead, we would try to sink it because it isn't used |
| // in the loop, instead, just delete it. |
| if (isInstructionTriviallyDead(&I)) { |
| DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); |
| ++II; |
| CurAST->deleteValue(&I); |
| I.eraseFromParent(); |
| Changed = true; |
| continue; |
| } |
| |
| // Check to see if we can sink this instruction to the exit blocks |
| // of the loop. We can do this if the all users of the instruction are |
| // outside of the loop. In this case, it doesn't even matter if the |
| // operands of the instruction are loop invariant. |
| // |
| if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) { |
| ++II; |
| sink(I); |
| } |
| } |
| } |
| |
| /// HoistRegion - Walk the specified region of the CFG (defined by all blocks |
| /// dominated by the specified block, and that are in the current loop) in depth |
| /// first order w.r.t the DominatorTree. This allows us to visit definitions |
| /// before uses, allowing us to hoist a loop body in one pass without iteration. |
| /// |
| void LICM::HoistRegion(DomTreeNode *N) { |
| assert(N != 0 && "Null dominator tree node?"); |
| BasicBlock *BB = N->getBlock(); |
| |
| // If this subregion is not in the top level loop at all, exit. |
| if (!CurLoop->contains(BB)) return; |
| |
| // Only need to process the contents of this block if it is not part of a |
| // subloop (which would already have been processed). |
| if (!inSubLoop(BB)) |
| for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) { |
| Instruction &I = *II++; |
| |
| // Try constant folding this instruction. If all the operands are |
| // constants, it is technically hoistable, but it would be better to just |
| // fold it. |
| if (Constant *C = ConstantFoldInstruction(&I)) { |
| DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n'); |
| CurAST->copyValue(&I, C); |
| CurAST->deleteValue(&I); |
| I.replaceAllUsesWith(C); |
| I.eraseFromParent(); |
| continue; |
| } |
| |
| // Try hoisting the instruction out to the preheader. We can only do this |
| // if all of the operands of the instruction are loop invariant and if it |
| // is safe to hoist the instruction. |
| // |
| if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) && |
| isSafeToExecuteUnconditionally(I)) |
| hoist(I); |
| } |
| |
| const std::vector<DomTreeNode*> &Children = N->getChildren(); |
| for (unsigned i = 0, e = Children.size(); i != e; ++i) |
| HoistRegion(Children[i]); |
| } |
| |
| /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this |
| /// instruction. |
| /// |
| bool LICM::canSinkOrHoistInst(Instruction &I) { |
| // Loads have extra constraints we have to verify before we can hoist them. |
| if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { |
| if (LI->isVolatile()) |
| return false; // Don't hoist volatile loads! |
| |
| // Loads from constant memory are always safe to move, even if they end up |
| // in the same alias set as something that ends up being modified. |
| if (AA->pointsToConstantMemory(LI->getOperand(0))) |
| return true; |
| |
| // Don't hoist loads which have may-aliased stores in loop. |
| unsigned Size = 0; |
| if (LI->getType()->isSized()) |
| Size = AA->getTypeStoreSize(LI->getType()); |
| return !pointerInvalidatedByLoop(LI->getOperand(0), Size); |
| } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { |
| // Handle obvious cases efficiently. |
| AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI); |
| if (Behavior == AliasAnalysis::DoesNotAccessMemory) |
| return true; |
| else if (Behavior == AliasAnalysis::OnlyReadsMemory) { |
| // If this call only reads from memory and there are no writes to memory |
| // in the loop, we can hoist or sink the call as appropriate. |
| bool FoundMod = false; |
| for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end(); |
| I != E; ++I) { |
| AliasSet &AS = *I; |
| if (!AS.isForwardingAliasSet() && AS.isMod()) { |
| FoundMod = true; |
| break; |
| } |
| } |
| if (!FoundMod) return true; |
| } |
| |
| // FIXME: This should use mod/ref information to see if we can hoist or sink |
| // the call. |
| |
| return false; |
| } |
| |
| // Otherwise these instructions are hoistable/sinkable |
| return isa<BinaryOperator>(I) || isa<CastInst>(I) || |
| isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || |
| isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || |
| isa<ShuffleVectorInst>(I); |
| } |
| |
| /// isNotUsedInLoop - Return true if the only users of this instruction are |
| /// outside of the loop. If this is true, we can sink the instruction to the |
| /// exit blocks of the loop. |
| /// |
| bool LICM::isNotUsedInLoop(Instruction &I) { |
| for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) { |
| Instruction *User = cast<Instruction>(*UI); |
| if (PHINode *PN = dyn_cast<PHINode>(User)) { |
| // PHI node uses occur in predecessor blocks! |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) == &I) |
| if (CurLoop->contains(PN->getIncomingBlock(i))) |
| return false; |
| } else if (CurLoop->contains(User)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| /// sink - When an instruction is found to only be used outside of the loop, |
| /// this function moves it to the exit blocks and patches up SSA form as needed. |
| /// This method is guaranteed to remove the original instruction from its |
| /// position, and may either delete it or move it to outside of the loop. |
| /// |
| void LICM::sink(Instruction &I) { |
| DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); |
| |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| CurLoop->getUniqueExitBlocks(ExitBlocks); |
| |
| if (isa<LoadInst>(I)) ++NumMovedLoads; |
| else if (isa<CallInst>(I)) ++NumMovedCalls; |
| ++NumSunk; |
| Changed = true; |
| |
| // The case where there is only a single exit node of this loop is common |
| // enough that we handle it as a special (more efficient) case. It is more |
| // efficient to handle because there are no PHI nodes that need to be placed. |
| if (ExitBlocks.size() == 1) { |
| if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) { |
| // Instruction is not used, just delete it. |
| CurAST->deleteValue(&I); |
| // If I has users in unreachable blocks, eliminate. |
| // If I is not void type then replaceAllUsesWith undef. |
| // This allows ValueHandlers and custom metadata to adjust itself. |
| if (!I.use_empty()) |
| I.replaceAllUsesWith(UndefValue::get(I.getType())); |
| I.eraseFromParent(); |
| } else { |
| // Move the instruction to the start of the exit block, after any PHI |
| // nodes in it. |
| I.moveBefore(ExitBlocks[0]->getFirstNonPHI()); |
| |
| // This instruction is no longer in the AST for the current loop, because |
| // we just sunk it out of the loop. If we just sunk it into an outer |
| // loop, we will rediscover the operation when we process it. |
| CurAST->deleteValue(&I); |
| } |
| return; |
| } |
| |
| if (ExitBlocks.empty()) { |
| // The instruction is actually dead if there ARE NO exit blocks. |
| CurAST->deleteValue(&I); |
| // If I has users in unreachable blocks, eliminate. |
| // If I is not void type then replaceAllUsesWith undef. |
| // This allows ValueHandlers and custom metadata to adjust itself. |
| if (!I.use_empty()) |
| I.replaceAllUsesWith(UndefValue::get(I.getType())); |
| I.eraseFromParent(); |
| return; |
| } |
| |
| // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the |
| // hard work of inserting PHI nodes as necessary. |
| SmallVector<PHINode*, 8> NewPHIs; |
| SSAUpdater SSA(&NewPHIs); |
| |
| if (!I.use_empty()) |
| SSA.Initialize(I.getType(), I.getName()); |
| |
| // Insert a copy of the instruction in each exit block of the loop that is |
| // dominated by the instruction. Each exit block is known to only be in the |
| // ExitBlocks list once. |
| BasicBlock *InstOrigBB = I.getParent(); |
| unsigned NumInserted = 0; |
| |
| for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { |
| BasicBlock *ExitBlock = ExitBlocks[i]; |
| |
| if (!isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) |
| continue; |
| |
| // Insert the code after the last PHI node. |
| BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI(); |
| |
| // If this is the first exit block processed, just move the original |
| // instruction, otherwise clone the original instruction and insert |
| // the copy. |
| Instruction *New; |
| if (NumInserted++ == 0) { |
| I.moveBefore(InsertPt); |
| New = &I; |
| } else { |
| New = I.clone(); |
| if (!I.getName().empty()) |
| New->setName(I.getName()+".le"); |
| ExitBlock->getInstList().insert(InsertPt, New); |
| } |
| |
| // Now that we have inserted the instruction, inform SSAUpdater. |
| if (!I.use_empty()) |
| SSA.AddAvailableValue(ExitBlock, New); |
| } |
| |
| // If the instruction doesn't dominate any exit blocks, it must be dead. |
| if (NumInserted == 0) { |
| CurAST->deleteValue(&I); |
| if (!I.use_empty()) |
| I.replaceAllUsesWith(UndefValue::get(I.getType())); |
| I.eraseFromParent(); |
| return; |
| } |
| |
| // Next, rewrite uses of the instruction, inserting PHI nodes as needed. |
| for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) { |
| // Grab the use before incrementing the iterator. |
| Use &U = UI.getUse(); |
| // Increment the iterator before removing the use from the list. |
| ++UI; |
| SSA.RewriteUseAfterInsertions(U); |
| } |
| |
| // Update CurAST for NewPHIs if I had pointer type. |
| if (I.getType()->isPointerTy()) |
| for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) |
| CurAST->copyValue(&I, NewPHIs[i]); |
| |
| // Finally, remove the instruction from CurAST. It is no longer in the loop. |
| CurAST->deleteValue(&I); |
| } |
| |
| /// hoist - When an instruction is found to only use loop invariant operands |
| /// that is safe to hoist, this instruction is called to do the dirty work. |
| /// |
| void LICM::hoist(Instruction &I) { |
| DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": " |
| << I << "\n"); |
| |
| // Move the new node to the Preheader, before its terminator. |
| I.moveBefore(Preheader->getTerminator()); |
| |
| if (isa<LoadInst>(I)) ++NumMovedLoads; |
| else if (isa<CallInst>(I)) ++NumMovedCalls; |
| ++NumHoisted; |
| Changed = true; |
| } |
| |
| /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is |
| /// not a trapping instruction or if it is a trapping instruction and is |
| /// guaranteed to execute. |
| /// |
| bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) { |
| // If it is not a trapping instruction, it is always safe to hoist. |
| if (Inst.isSafeToSpeculativelyExecute()) |
| return true; |
| |
| // Otherwise we have to check to make sure that the instruction dominates all |
| // of the exit blocks. If it doesn't, then there is a path out of the loop |
| // which does not execute this instruction, so we can't hoist it. |
| |
| // If the instruction is in the header block for the loop (which is very |
| // common), it is always guaranteed to dominate the exit blocks. Since this |
| // is a common case, and can save some work, check it now. |
| if (Inst.getParent() == CurLoop->getHeader()) |
| return true; |
| |
| // Get the exit blocks for the current loop. |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| CurLoop->getExitBlocks(ExitBlocks); |
| |
| // For each exit block, get the DT node and walk up the DT until the |
| // instruction's basic block is found or we exit the loop. |
| for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) |
| if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent())) |
| return false; |
| |
| return true; |
| } |
| |
| /// PromoteAliasSet - Try to promote memory values to scalars by sinking |
| /// stores out of the loop and moving loads to before the loop. We do this by |
| /// looping over the stores in the loop, looking for stores to Must pointers |
| /// which are loop invariant. |
| /// |
| void LICM::PromoteAliasSet(AliasSet &AS) { |
| // We can promote this alias set if it has a store, if it is a "Must" alias |
| // set, if the pointer is loop invariant, and if we are not eliminating any |
| // volatile loads or stores. |
| if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || |
| AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue())) |
| return; |
| |
| assert(!AS.empty() && |
| "Must alias set should have at least one pointer element in it!"); |
| Value *SomePtr = AS.begin()->getValue(); |
| |
| // It isn't safe to promote a load/store from the loop if the load/store is |
| // conditional. For example, turning: |
| // |
| // for () { if (c) *P += 1; } |
| // |
| // into: |
| // |
| // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; |
| // |
| // is not safe, because *P may only be valid to access if 'c' is true. |
| // |
| // It is safe to promote P if all uses are direct load/stores and if at |
| // least one is guaranteed to be executed. |
| bool GuaranteedToExecute = false; |
| |
| SmallVector<Instruction*, 64> LoopUses; |
| SmallPtrSet<Value*, 4> PointerMustAliases; |
| |
| // Check that all of the pointers in the alias set have the same type. We |
| // cannot (yet) promote a memory location that is loaded and stored in |
| // different sizes. |
| for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) { |
| Value *ASIV = ASI->getValue(); |
| PointerMustAliases.insert(ASIV); |
| |
| // Check that all of the pointers in the alias set have the same type. We |
| // cannot (yet) promote a memory location that is loaded and stored in |
| // different sizes. |
| if (SomePtr->getType() != ASIV->getType()) |
| return; |
| |
| for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end(); |
| UI != UE; ++UI) { |
| // Ignore instructions that are outside the loop. |
| Instruction *Use = dyn_cast<Instruction>(*UI); |
| if (!Use || !CurLoop->contains(Use)) |
| continue; |
| |
| // If there is an non-load/store instruction in the loop, we can't promote |
| // it. |
| if (isa<LoadInst>(Use)) |
| assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken"); |
| else if (isa<StoreInst>(Use)) { |
| assert(!cast<StoreInst>(Use)->isVolatile() && "AST broken"); |
| if (Use->getOperand(0) == ASIV) return; |
| } else |
| return; // Not a load or store. |
| |
| if (!GuaranteedToExecute) |
| GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use); |
| |
| LoopUses.push_back(Use); |
| } |
| } |
| |
| // If there isn't a guaranteed-to-execute instruction, we can't promote. |
| if (!GuaranteedToExecute) |
| return; |
| |
| // Otherwise, this is safe to promote, lets do it! |
| DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n'); |
| Changed = true; |
| ++NumPromoted; |
| |
| // We use the SSAUpdater interface to insert phi nodes as required. |
| SmallVector<PHINode*, 16> NewPHIs; |
| SSAUpdater SSA(&NewPHIs); |
| |
| // It wants to know some value of the same type as what we'll be inserting. |
| Value *SomeValue; |
| if (isa<LoadInst>(LoopUses[0])) |
| SomeValue = LoopUses[0]; |
| else |
| SomeValue = cast<StoreInst>(LoopUses[0])->getOperand(0); |
| SSA.Initialize(SomeValue->getType(), SomeValue->getName()); |
| |
| // First step: bucket up uses of the pointers by the block they occur in. |
| // This is important because we have to handle multiple defs/uses in a block |
| // ourselves: SSAUpdater is purely for cross-block references. |
| // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element. |
| DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock; |
| for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) { |
| Instruction *User = LoopUses[i]; |
| UsesByBlock[User->getParent()].push_back(User); |
| } |
| |
| // Okay, now we can iterate over all the blocks in the loop with uses, |
| // processing them. Keep track of which loads are loading a live-in value. |
| SmallVector<LoadInst*, 32> LiveInLoads; |
| DenseMap<Value*, Value*> ReplacedLoads; |
| |
| for (unsigned LoopUse = 0, e = LoopUses.size(); LoopUse != e; ++LoopUse) { |
| Instruction *User = LoopUses[LoopUse]; |
| std::vector<Instruction*> &BlockUses = UsesByBlock[User->getParent()]; |
| |
| // If this block has already been processed, ignore this repeat use. |
| if (BlockUses.empty()) continue; |
| |
| // Okay, this is the first use in the block. If this block just has a |
| // single user in it, we can rewrite it trivially. |
| if (BlockUses.size() == 1) { |
| // If it is a store, it is a trivial def of the value in the block. |
| if (isa<StoreInst>(User)) { |
| SSA.AddAvailableValue(User->getParent(), |
| cast<StoreInst>(User)->getOperand(0)); |
| } else { |
| // Otherwise it is a load, queue it to rewrite as a live-in load. |
| LiveInLoads.push_back(cast<LoadInst>(User)); |
| } |
| BlockUses.clear(); |
| continue; |
| } |
| |
| // Otherwise, check to see if this block is all loads. If so, we can queue |
| // them all as live in loads. |
| bool HasStore = false; |
| for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) { |
| if (isa<StoreInst>(BlockUses[i])) { |
| HasStore = true; |
| break; |
| } |
| } |
| |
| if (!HasStore) { |
| for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) |
| LiveInLoads.push_back(cast<LoadInst>(BlockUses[i])); |
| BlockUses.clear(); |
| continue; |
| } |
| |
| // Otherwise, we have mixed loads and stores (or just a bunch of stores). |
| // Since SSAUpdater is purely for cross-block values, we need to determine |
| // the order of these instructions in the block. If the first use in the |
| // block is a load, then it uses the live in value. The last store defines |
| // the live out value. We handle this by doing a linear scan of the block. |
| BasicBlock *BB = User->getParent(); |
| Value *StoredValue = 0; |
| for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { |
| if (LoadInst *L = dyn_cast<LoadInst>(II)) { |
| // If this is a load from an unrelated pointer, ignore it. |
| if (!PointerMustAliases.count(L->getOperand(0))) continue; |
| |
| // If we haven't seen a store yet, this is a live in use, otherwise |
| // use the stored value. |
| if (StoredValue) { |
| L->replaceAllUsesWith(StoredValue); |
| ReplacedLoads[L] = StoredValue; |
| } else { |
| LiveInLoads.push_back(L); |
| } |
| continue; |
| } |
| |
| if (StoreInst *S = dyn_cast<StoreInst>(II)) { |
| // If this is a store to an unrelated pointer, ignore it. |
| if (!PointerMustAliases.count(S->getOperand(1))) continue; |
| |
| // Remember that this is the active value in the block. |
| StoredValue = S->getOperand(0); |
| } |
| } |
| |
| // The last stored value that happened is the live-out for the block. |
| assert(StoredValue && "Already checked that there is a store in block"); |
| SSA.AddAvailableValue(BB, StoredValue); |
| BlockUses.clear(); |
| } |
| |
| // Now that all the intra-loop values are classified, set up the preheader. |
| // It gets a load of the pointer we're promoting, and it is the live-out value |
| // from the preheader. |
| LoadInst *PreheaderLoad = new LoadInst(SomePtr,SomePtr->getName()+".promoted", |
| Preheader->getTerminator()); |
| SSA.AddAvailableValue(Preheader, PreheaderLoad); |
| |
| // Now that the preheader is good to go, set up the exit blocks. Each exit |
| // block gets a store of the live-out values that feed them. Since we've |
| // already told the SSA updater about the defs in the loop and the preheader |
| // definition, it is all set and we can start using it. |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| CurLoop->getUniqueExitBlocks(ExitBlocks); |
| for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { |
| BasicBlock *ExitBlock = ExitBlocks[i]; |
| Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); |
| Instruction *InsertPos = ExitBlock->getFirstNonPHI(); |
| new StoreInst(LiveInValue, SomePtr, InsertPos); |
| } |
| |
| // Okay, now we rewrite all loads that use live-in values in the loop, |
| // inserting PHI nodes as necessary. |
| for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) { |
| LoadInst *ALoad = LiveInLoads[i]; |
| Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); |
| ALoad->replaceAllUsesWith(NewVal); |
| CurAST->copyValue(ALoad, NewVal); |
| ReplacedLoads[ALoad] = NewVal; |
| } |
| |
| // If the preheader load is itself a pointer, we need to tell alias analysis |
| // about the new pointer we created in the preheader block and about any PHI |
| // nodes that just got inserted. |
| if (PreheaderLoad->getType()->isPointerTy()) { |
| // Copy any value stored to or loaded from a must-alias of the pointer. |
| CurAST->copyValue(SomeValue, PreheaderLoad); |
| |
| for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) |
| CurAST->copyValue(SomeValue, NewPHIs[i]); |
| } |
| |
| // Now that everything is rewritten, delete the old instructions from the body |
| // of the loop. They should all be dead now. |
| for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) { |
| Instruction *User = LoopUses[i]; |
| |
| // If this is a load that still has uses, then the load must have been added |
| // as a live value in the SSAUpdate data structure for a block (e.g. because |
| // the loaded value was stored later). In this case, we need to recursively |
| // propagate the updates until we get to the real value. |
| if (!User->use_empty()) { |
| Value *NewVal = ReplacedLoads[User]; |
| assert(NewVal && "not a replaced load?"); |
| |
| // Propagate down to the ultimate replacee. The intermediately loads |
| // could theoretically already have been deleted, so we don't want to |
| // dereference the Value*'s. |
| DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); |
| while (RLI != ReplacedLoads.end()) { |
| NewVal = RLI->second; |
| RLI = ReplacedLoads.find(NewVal); |
| } |
| |
| User->replaceAllUsesWith(NewVal); |
| CurAST->copyValue(User, NewVal); |
| } |
| |
| CurAST->deleteValue(User); |
| User->eraseFromParent(); |
| } |
| |
| // fwew, we're done! |
| } |
| |
| |
| /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. |
| void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) { |
| AliasSetTracker *AST = LoopToAliasSetMap.lookup(L); |
| if (!AST) |
| return; |
| |
| AST->copyValue(From, To); |
| } |
| |
| /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias |
| /// set. |
| void LICM::deleteAnalysisValue(Value *V, Loop *L) { |
| AliasSetTracker *AST = LoopToAliasSetMap.lookup(L); |
| if (!AST) |
| return; |
| |
| AST->deleteValue(V); |
| } |