| //===- LoopInfo.cpp - Natural Loop Calculator -------------------------------=// |
| // |
| // This file defines the LoopInfo class that is used to identify natural loops |
| // and determine the loop depth of various nodes of the CFG. Note that the |
| // loops identified may actually be several natural loops that share the same |
| // header node... not just a single natural loop. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "Support/DepthFirstIterator.h" |
| #include <algorithm> |
| |
| static RegisterAnalysis<LoopInfo> |
| X("loops", "Natural Loop Construction", true); |
| |
| //===----------------------------------------------------------------------===// |
| // Loop implementation |
| // |
| bool Loop::contains(const BasicBlock *BB) const { |
| return find(Blocks.begin(), Blocks.end(), BB) != Blocks.end(); |
| } |
| |
| bool Loop::isLoopExit(const BasicBlock *BB) const { |
| for (BasicBlock::succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); |
| SI != SE; ++SI) { |
| if (!contains(*SI)) |
| return true; |
| } |
| return false; |
| } |
| |
| unsigned Loop::getNumBackEdges() const { |
| unsigned NumBackEdges = 0; |
| BasicBlock *H = getHeader(); |
| |
| for (std::vector<BasicBlock*>::const_iterator I = Blocks.begin(), |
| E = Blocks.end(); I != E; ++I) |
| for (BasicBlock::succ_iterator SI = succ_begin(*I), SE = succ_end(*I); |
| SI != SE; ++SI) |
| if (*SI == H) |
| ++NumBackEdges; |
| |
| return NumBackEdges; |
| } |
| |
| void Loop::print(std::ostream &OS, unsigned Depth) const { |
| OS << std::string(Depth*2, ' ') << "Loop Containing: "; |
| |
| for (unsigned i = 0; i < getBlocks().size(); ++i) { |
| if (i) OS << ","; |
| WriteAsOperand(OS, getBlocks()[i], false); |
| } |
| if (!ExitBlocks.empty()) { |
| OS << "\tExitBlocks: "; |
| for (unsigned i = 0; i < getExitBlocks().size(); ++i) { |
| if (i) OS << ","; |
| WriteAsOperand(OS, getExitBlocks()[i], false); |
| } |
| } |
| |
| OS << "\n"; |
| |
| for (unsigned i = 0, e = getSubLoops().size(); i != e; ++i) |
| getSubLoops()[i]->print(OS, Depth+2); |
| } |
| |
| void Loop::dump() const { |
| print(std::cerr); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // LoopInfo implementation |
| // |
| void LoopInfo::stub() {} |
| |
| bool LoopInfo::runOnFunction(Function &) { |
| releaseMemory(); |
| Calculate(getAnalysis<DominatorSet>()); // Update |
| return false; |
| } |
| |
| void LoopInfo::releaseMemory() { |
| for (std::vector<Loop*>::iterator I = TopLevelLoops.begin(), |
| E = TopLevelLoops.end(); I != E; ++I) |
| delete *I; // Delete all of the loops... |
| |
| BBMap.clear(); // Reset internal state of analysis |
| TopLevelLoops.clear(); |
| } |
| |
| |
| void LoopInfo::Calculate(const DominatorSet &DS) { |
| BasicBlock *RootNode = DS.getRoot(); |
| |
| for (df_iterator<BasicBlock*> NI = df_begin(RootNode), |
| NE = df_end(RootNode); NI != NE; ++NI) |
| if (Loop *L = ConsiderForLoop(*NI, DS)) |
| TopLevelLoops.push_back(L); |
| |
| for (unsigned i = 0; i < TopLevelLoops.size(); ++i) |
| TopLevelLoops[i]->setLoopDepth(1); |
| } |
| |
| void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<DominatorSet>(); |
| } |
| |
| void LoopInfo::print(std::ostream &OS) const { |
| for (unsigned i = 0; i < TopLevelLoops.size(); ++i) |
| TopLevelLoops[i]->print(OS); |
| #if 0 |
| for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(), |
| E = BBMap.end(); I != E; ++I) |
| OS << "BB '" << I->first->getName() << "' level = " |
| << I->second->LoopDepth << "\n"; |
| #endif |
| } |
| |
| static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) { |
| if (SubLoop == 0) return true; |
| if (SubLoop == ParentLoop) return false; |
| return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); |
| } |
| |
| Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS) { |
| if (BBMap.find(BB) != BBMap.end()) return 0; // Haven't processed this node? |
| |
| std::vector<BasicBlock *> TodoStack; |
| |
| // Scan the predecessors of BB, checking to see if BB dominates any of |
| // them. This identifies backedges which target this node... |
| for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) |
| if (DS.dominates(BB, *I)) // If BB dominates it's predecessor... |
| TodoStack.push_back(*I); |
| |
| if (TodoStack.empty()) return 0; // No backedges to this block... |
| |
| // Create a new loop to represent this basic block... |
| Loop *L = new Loop(BB); |
| BBMap[BB] = L; |
| |
| while (!TodoStack.empty()) { // Process all the nodes in the loop |
| BasicBlock *X = TodoStack.back(); |
| TodoStack.pop_back(); |
| |
| if (!L->contains(X)) { // As of yet unprocessed?? |
| // Check to see if this block already belongs to a loop. If this occurs |
| // then we have a case where a loop that is supposed to be a child of the |
| // current loop was processed before the current loop. When this occurs, |
| // this child loop gets added to a part of the current loop, making it a |
| // sibling to the current loop. We have to reparent this loop. |
| if (Loop *SubLoop = const_cast<Loop*>(getLoopFor(X))) |
| if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) { |
| // Remove the subloop from it's current parent... |
| assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L); |
| Loop *SLP = SubLoop->ParentLoop; // SubLoopParent |
| std::vector<Loop*>::iterator I = |
| std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop); |
| assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?"); |
| SLP->SubLoops.erase(I); // Remove from parent... |
| |
| // Add the subloop to THIS loop... |
| SubLoop->ParentLoop = L; |
| L->SubLoops.push_back(SubLoop); |
| } |
| |
| // Normal case, add the block to our loop... |
| L->Blocks.push_back(X); |
| |
| // Add all of the predecessors of X to the end of the work stack... |
| TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X)); |
| } |
| } |
| |
| // If there are any loops nested within this loop, create them now! |
| for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(), |
| E = L->Blocks.end(); I != E; ++I) |
| if (Loop *NewLoop = ConsiderForLoop(*I, DS)) { |
| L->SubLoops.push_back(NewLoop); |
| NewLoop->ParentLoop = L; |
| } |
| |
| // Add the basic blocks that comprise this loop to the BBMap so that this |
| // loop can be found for them. |
| // |
| for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(), |
| E = L->Blocks.end(); I != E; ++I) { |
| std::map<BasicBlock*, Loop*>::iterator BBMI = BBMap.lower_bound(*I); |
| if (BBMI == BBMap.end() || BBMI->first != *I) // Not in map yet... |
| BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level |
| } |
| |
| // Now that we have a list of all of the child loops of this loop, check to |
| // see if any of them should actually be nested inside of each other. We can |
| // accidentally pull loops our of their parents, so we must make sure to |
| // organize the loop nests correctly now. |
| { |
| std::map<BasicBlock*, Loop*> ContainingLoops; |
| for (unsigned i = 0; i != L->SubLoops.size(); ++i) { |
| Loop *Child = L->SubLoops[i]; |
| assert(Child->getParentLoop() == L && "Not proper child loop?"); |
| |
| if (Loop *ContainingLoop = ContainingLoops[Child->getHeader()]) { |
| // If there is already a loop which contains this loop, move this loop |
| // into the containing loop. |
| MoveSiblingLoopInto(Child, ContainingLoop); |
| --i; // The loop got removed from the SubLoops list. |
| } else { |
| // This is currently considered to be a top-level loop. Check to see if |
| // any of the contained blocks are loop headers for subloops we have |
| // already processed. |
| for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) { |
| Loop *&BlockLoop = ContainingLoops[Child->Blocks[b]]; |
| if (BlockLoop == 0) { // Child block not processed yet... |
| BlockLoop = Child; |
| } else if (BlockLoop != Child) { |
| Loop *SubLoop = BlockLoop; |
| // Reparent all of the blocks which used to belong to BlockLoops |
| for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j) |
| ContainingLoops[SubLoop->Blocks[j]] = Child; |
| |
| // There is already a loop which contains this block, that means |
| // that we should reparent the loop which the block is currently |
| // considered to belong to to be a child of this loop. |
| MoveSiblingLoopInto(SubLoop, Child); |
| --i; // We just shrunk the SubLoops list. |
| } |
| } |
| } |
| } |
| } |
| |
| // Now that we know all of the blocks that make up this loop, see if there are |
| // any branches to outside of the loop... building the ExitBlocks list. |
| for (std::vector<BasicBlock*>::iterator BI = L->Blocks.begin(), |
| BE = L->Blocks.end(); BI != BE; ++BI) |
| for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) |
| if (!L->contains(*I)) // Not in current loop? |
| L->ExitBlocks.push_back(*I); // It must be an exit block... |
| |
| return L; |
| } |
| |
| /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of |
| /// the NewParent Loop, instead of being a sibling of it. |
| void LoopInfo::MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent) { |
| Loop *OldParent = NewChild->getParentLoop(); |
| assert(OldParent && OldParent == NewParent->getParentLoop() && |
| NewChild != NewParent && "Not sibling loops!"); |
| |
| // Remove NewChild from being a child of OldParent |
| std::vector<Loop*>::iterator I = |
| std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild); |
| assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??"); |
| OldParent->SubLoops.erase(I); // Remove from parent's subloops list |
| NewChild->ParentLoop = 0; |
| |
| InsertLoopInto(NewChild, NewParent); |
| } |
| |
| /// InsertLoopInto - This inserts loop L into the specified parent loop. If the |
| /// parent loop contains a loop which should contain L, the loop gets inserted |
| /// into L instead. |
| void LoopInfo::InsertLoopInto(Loop *L, Loop *Parent) { |
| BasicBlock *LHeader = L->getHeader(); |
| assert(Parent->contains(LHeader) && "This loop should not be inserted here!"); |
| |
| // Check to see if it belongs in a child loop... |
| for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i) |
| if (Parent->SubLoops[i]->contains(LHeader)) { |
| InsertLoopInto(L, Parent->SubLoops[i]); |
| return; |
| } |
| |
| // If not, insert it here! |
| Parent->SubLoops.push_back(L); |
| L->ParentLoop = Parent; |
| } |
| |
| |
| |
| /// getLoopPreheader - If there is a preheader for this loop, return it. A |
| /// loop has a preheader if there is only one edge to the header of the loop |
| /// from outside of the loop. If this is the case, the block branching to the |
| /// header of the loop is the preheader node. The "preheaders" pass can be |
| /// "Required" to ensure that there is always a preheader node for every loop. |
| /// |
| /// This method returns null if there is no preheader for the loop (either |
| /// because the loop is dead or because multiple blocks branch to the header |
| /// node of this loop). |
| /// |
| BasicBlock *Loop::getLoopPreheader() const { |
| // Keep track of nodes outside the loop branching to the header... |
| BasicBlock *Out = 0; |
| |
| // Loop over the predecessors of the header node... |
| BasicBlock *Header = getHeader(); |
| for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); |
| PI != PE; ++PI) |
| if (!contains(*PI)) { // If the block is not in the loop... |
| if (Out && Out != *PI) |
| return 0; // Multiple predecessors outside the loop |
| Out = *PI; |
| } |
| |
| // Make sure there is only one exit out of the preheader... |
| succ_iterator SI = succ_begin(Out); |
| ++SI; |
| if (SI != succ_end(Out)) |
| return 0; // Multiple exits from the block, must not be a preheader. |
| |
| |
| // If there is exactly one preheader, return it. If there was zero, then Out |
| // is still null. |
| return Out; |
| } |
| |
| /// addBasicBlockToLoop - This function is used by other analyses to update loop |
| /// information. NewBB is set to be a new member of the current loop. Because |
| /// of this, it is added as a member of all parent loops, and is added to the |
| /// specified LoopInfo object as being in the current basic block. It is not |
| /// valid to replace the loop header with this method. |
| /// |
| void Loop::addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI) { |
| assert(LI[getHeader()] == this && "Incorrect LI specified for this loop!"); |
| assert(NewBB && "Cannot add a null basic block to the loop!"); |
| assert(LI[NewBB] == 0 && "BasicBlock already in the loop!"); |
| |
| // Add the loop mapping to the LoopInfo object... |
| LI.BBMap[NewBB] = this; |
| |
| // Add the basic block to this loop and all parent loops... |
| Loop *L = this; |
| while (L) { |
| L->Blocks.push_back(NewBB); |
| L = L->getParentLoop(); |
| } |
| } |
| |
| /// changeExitBlock - This method is used to update loop information. All |
| /// instances of the specified Old basic block are removed from the exit list |
| /// and replaced with New. |
| /// |
| void Loop::changeExitBlock(BasicBlock *Old, BasicBlock *New) { |
| assert(Old != New && "Cannot changeExitBlock to the same thing!"); |
| assert(Old && New && "Cannot changeExitBlock to or from a null node!"); |
| assert(hasExitBlock(Old) && "Old exit block not found!"); |
| std::vector<BasicBlock*>::iterator |
| I = std::find(ExitBlocks.begin(), ExitBlocks.end(), Old); |
| while (I != ExitBlocks.end()) { |
| *I = New; |
| I = std::find(I+1, ExitBlocks.end(), Old); |
| } |
| } |