| //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This transformation analyzes and transforms the induction variables (and |
| // computations derived from them) into simpler forms suitable for subsequent |
| // analysis and transformation. |
| // |
| // This transformation makes the following changes to each loop with an |
| // identifiable induction variable: |
| // 1. All loops are transformed to have a SINGLE canonical induction variable |
| // which starts at zero and steps by one. |
| // 2. The canonical induction variable is guaranteed to be the first PHI node |
| // in the loop header block. |
| // 3. Any pointer arithmetic recurrences are raised to use array subscripts. |
| // |
| // If the trip count of a loop is computable, this pass also makes the following |
| // changes: |
| // 1. The exit condition for the loop is canonicalized to compare the |
| // induction value against the exit value. This turns loops like: |
| // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' |
| // 2. Any use outside of the loop of an expression derived from the indvar |
| // is changed to compute the derived value outside of the loop, eliminating |
| // the dependence on the exit value of the induction variable. If the only |
| // purpose of the loop is to compute the exit value of some derived |
| // expression, this transformation will make the loop dead. |
| // |
| // This transformation should be followed by strength reduction after all of the |
| // desired loop transformations have been performed. Additionally, on targets |
| // where it is profitable, the loop could be transformed to count down to zero |
| // (the "do loop" optimization). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "indvars" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Type.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| using namespace llvm; |
| |
| STATISTIC(NumRemoved , "Number of aux indvars removed"); |
| STATISTIC(NumPointer , "Number of pointer indvars promoted"); |
| STATISTIC(NumInserted, "Number of canonical indvars added"); |
| STATISTIC(NumReplaced, "Number of exit values replaced"); |
| STATISTIC(NumLFTR , "Number of loop exit tests replaced"); |
| |
| namespace { |
| class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass { |
| LoopInfo *LI; |
| ScalarEvolution *SE; |
| bool Changed; |
| public: |
| |
| static char ID; // Pass identification, replacement for typeid |
| IndVarSimplify() : LoopPass(&ID) {} |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM); |
| bool doInitialization(Loop *L, LPPassManager &LPM); |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<ScalarEvolution>(); |
| AU.addRequiredID(LCSSAID); |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addRequired<LoopInfo>(); |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addPreservedID(LCSSAID); |
| AU.setPreservesCFG(); |
| } |
| |
| private: |
| |
| void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader, |
| std::set<Instruction*> &DeadInsts); |
| Instruction *LinearFunctionTestReplace(Loop *L, SCEV *IterationCount, |
| SCEVExpander &RW); |
| void RewriteLoopExitValues(Loop *L, SCEV *IterationCount); |
| |
| void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts); |
| |
| void OptimizeCanonicalIVType(Loop *L); |
| }; |
| } |
| |
| char IndVarSimplify::ID = 0; |
| static RegisterPass<IndVarSimplify> |
| X("indvars", "Canonicalize Induction Variables"); |
| |
| Pass *llvm::createIndVarSimplifyPass() { |
| return new IndVarSimplify(); |
| } |
| |
| /// DeleteTriviallyDeadInstructions - If any of the instructions is the |
| /// specified set are trivially dead, delete them and see if this makes any of |
| /// their operands subsequently dead. |
| void IndVarSimplify:: |
| DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) { |
| while (!Insts.empty()) { |
| Instruction *I = *Insts.begin(); |
| Insts.erase(Insts.begin()); |
| if (isInstructionTriviallyDead(I)) { |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i))) |
| Insts.insert(U); |
| SE->deleteValueFromRecords(I); |
| DOUT << "INDVARS: Deleting: " << *I; |
| I->eraseFromParent(); |
| Changed = true; |
| } |
| } |
| } |
| |
| |
| /// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer |
| /// recurrence. If so, change it into an integer recurrence, permitting |
| /// analysis by the SCEV routines. |
| void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN, |
| BasicBlock *Preheader, |
| std::set<Instruction*> &DeadInsts) { |
| assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!"); |
| unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader); |
| unsigned BackedgeIdx = PreheaderIdx^1; |
| if (GetElementPtrInst *GEPI = |
| dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx))) |
| if (GEPI->getOperand(0) == PN) { |
| assert(GEPI->getNumOperands() == 2 && "GEP types must match!"); |
| DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI; |
| |
| // Okay, we found a pointer recurrence. Transform this pointer |
| // recurrence into an integer recurrence. Compute the value that gets |
| // added to the pointer at every iteration. |
| Value *AddedVal = GEPI->getOperand(1); |
| |
| // Insert a new integer PHI node into the top of the block. |
| PHINode *NewPhi = PHINode::Create(AddedVal->getType(), |
| PN->getName()+".rec", PN); |
| NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader); |
| |
| // Create the new add instruction. |
| Value *NewAdd = BinaryOperator::CreateAdd(NewPhi, AddedVal, |
| GEPI->getName()+".rec", GEPI); |
| NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx)); |
| |
| // Update the existing GEP to use the recurrence. |
| GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx)); |
| |
| // Update the GEP to use the new recurrence we just inserted. |
| GEPI->setOperand(1, NewAdd); |
| |
| // If the incoming value is a constant expr GEP, try peeling out the array |
| // 0 index if possible to make things simpler. |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0))) |
| if (CE->getOpcode() == Instruction::GetElementPtr) { |
| unsigned NumOps = CE->getNumOperands(); |
| assert(NumOps > 1 && "CE folding didn't work!"); |
| if (CE->getOperand(NumOps-1)->isNullValue()) { |
| // Check to make sure the last index really is an array index. |
| gep_type_iterator GTI = gep_type_begin(CE); |
| for (unsigned i = 1, e = CE->getNumOperands()-1; |
| i != e; ++i, ++GTI) |
| /*empty*/; |
| if (isa<SequentialType>(*GTI)) { |
| // Pull the last index out of the constant expr GEP. |
| SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1); |
| Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0), |
| &CEIdxs[0], |
| CEIdxs.size()); |
| Value *Idx[2]; |
| Idx[0] = Constant::getNullValue(Type::Int32Ty); |
| Idx[1] = NewAdd; |
| GetElementPtrInst *NGEPI = GetElementPtrInst::Create( |
| NCE, Idx, Idx + 2, |
| GEPI->getName(), GEPI); |
| SE->deleteValueFromRecords(GEPI); |
| GEPI->replaceAllUsesWith(NGEPI); |
| GEPI->eraseFromParent(); |
| GEPI = NGEPI; |
| } |
| } |
| } |
| |
| |
| // Finally, if there are any other users of the PHI node, we must |
| // insert a new GEP instruction that uses the pre-incremented version |
| // of the induction amount. |
| if (!PN->use_empty()) { |
| BasicBlock::iterator InsertPos = PN; ++InsertPos; |
| while (isa<PHINode>(InsertPos)) ++InsertPos; |
| Value *PreInc = |
| GetElementPtrInst::Create(PN->getIncomingValue(PreheaderIdx), |
| NewPhi, "", InsertPos); |
| PreInc->takeName(PN); |
| PN->replaceAllUsesWith(PreInc); |
| } |
| |
| // Delete the old PHI for sure, and the GEP if its otherwise unused. |
| DeadInsts.insert(PN); |
| |
| ++NumPointer; |
| Changed = true; |
| } |
| } |
| |
| /// LinearFunctionTestReplace - This method rewrites the exit condition of the |
| /// loop to be a canonical != comparison against the incremented loop induction |
| /// variable. This pass is able to rewrite the exit tests of any loop where the |
| /// SCEV analysis can determine a loop-invariant trip count of the loop, which |
| /// is actually a much broader range than just linear tests. |
| /// |
| /// This method returns a "potentially dead" instruction whose computation chain |
| /// should be deleted when convenient. |
| Instruction *IndVarSimplify::LinearFunctionTestReplace(Loop *L, |
| SCEV *IterationCount, |
| SCEVExpander &RW) { |
| // Find the exit block for the loop. We can currently only handle loops with |
| // a single exit. |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| L->getExitBlocks(ExitBlocks); |
| if (ExitBlocks.size() != 1) return 0; |
| BasicBlock *ExitBlock = ExitBlocks[0]; |
| |
| // Make sure there is only one predecessor block in the loop. |
| BasicBlock *ExitingBlock = 0; |
| for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); |
| PI != PE; ++PI) |
| if (L->contains(*PI)) { |
| if (ExitingBlock == 0) |
| ExitingBlock = *PI; |
| else |
| return 0; // Multiple exits from loop to this block. |
| } |
| assert(ExitingBlock && "Loop info is broken"); |
| |
| if (!isa<BranchInst>(ExitingBlock->getTerminator())) |
| return 0; // Can't rewrite non-branch yet |
| BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator()); |
| assert(BI->isConditional() && "Must be conditional to be part of loop!"); |
| |
| Instruction *PotentiallyDeadInst = dyn_cast<Instruction>(BI->getCondition()); |
| |
| // If the exiting block is not the same as the backedge block, we must compare |
| // against the preincremented value, otherwise we prefer to compare against |
| // the post-incremented value. |
| BasicBlock *Header = L->getHeader(); |
| pred_iterator HPI = pred_begin(Header); |
| assert(HPI != pred_end(Header) && "Loop with zero preds???"); |
| if (!L->contains(*HPI)) ++HPI; |
| assert(HPI != pred_end(Header) && L->contains(*HPI) && |
| "No backedge in loop?"); |
| |
| SCEVHandle TripCount = IterationCount; |
| Value *IndVar; |
| if (*HPI == ExitingBlock) { |
| // The IterationCount expression contains the number of times that the |
| // backedge actually branches to the loop header. This is one less than the |
| // number of times the loop executes, so add one to it. |
| ConstantInt *OneC = ConstantInt::get(IterationCount->getType(), 1); |
| TripCount = SE->getAddExpr(IterationCount, SE->getConstant(OneC)); |
| IndVar = L->getCanonicalInductionVariableIncrement(); |
| } else { |
| // We have to use the preincremented value... |
| IndVar = L->getCanonicalInductionVariable(); |
| } |
| |
| DOUT << "INDVARS: LFTR: TripCount = " << *TripCount |
| << " IndVar = " << *IndVar << "\n"; |
| |
| // Expand the code for the iteration count into the preheader of the loop. |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator()); |
| |
| // Insert a new icmp_ne or icmp_eq instruction before the branch. |
| ICmpInst::Predicate Opcode; |
| if (L->contains(BI->getSuccessor(0))) |
| Opcode = ICmpInst::ICMP_NE; |
| else |
| Opcode = ICmpInst::ICMP_EQ; |
| |
| Value *Cond = new ICmpInst(Opcode, IndVar, ExitCnt, "exitcond", BI); |
| BI->setCondition(Cond); |
| ++NumLFTR; |
| Changed = true; |
| return PotentiallyDeadInst; |
| } |
| |
| |
| /// RewriteLoopExitValues - Check to see if this loop has a computable |
| /// loop-invariant execution count. If so, this means that we can compute the |
| /// final value of any expressions that are recurrent in the loop, and |
| /// substitute the exit values from the loop into any instructions outside of |
| /// the loop that use the final values of the current expressions. |
| void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEV *IterationCount) { |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| |
| // Scan all of the instructions in the loop, looking at those that have |
| // extra-loop users and which are recurrences. |
| SCEVExpander Rewriter(*SE, *LI); |
| |
| // We insert the code into the preheader of the loop if the loop contains |
| // multiple exit blocks, or in the exit block if there is exactly one. |
| BasicBlock *BlockToInsertInto; |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| L->getUniqueExitBlocks(ExitBlocks); |
| if (ExitBlocks.size() == 1) |
| BlockToInsertInto = ExitBlocks[0]; |
| else |
| BlockToInsertInto = Preheader; |
| BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI(); |
| |
| bool HasConstantItCount = isa<SCEVConstant>(IterationCount); |
| |
| std::set<Instruction*> InstructionsToDelete; |
| std::map<Instruction*, Value*> ExitValues; |
| |
| // Find all values that are computed inside the loop, but used outside of it. |
| // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan |
| // the exit blocks of the loop to find them. |
| for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { |
| BasicBlock *ExitBB = ExitBlocks[i]; |
| |
| // If there are no PHI nodes in this exit block, then no values defined |
| // inside the loop are used on this path, skip it. |
| PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); |
| if (!PN) continue; |
| |
| unsigned NumPreds = PN->getNumIncomingValues(); |
| |
| // Iterate over all of the PHI nodes. |
| BasicBlock::iterator BBI = ExitBB->begin(); |
| while ((PN = dyn_cast<PHINode>(BBI++))) { |
| |
| // Iterate over all of the values in all the PHI nodes. |
| for (unsigned i = 0; i != NumPreds; ++i) { |
| // If the value being merged in is not integer or is not defined |
| // in the loop, skip it. |
| Value *InVal = PN->getIncomingValue(i); |
| if (!isa<Instruction>(InVal) || |
| // SCEV only supports integer expressions for now. |
| !isa<IntegerType>(InVal->getType())) |
| continue; |
| |
| // If this pred is for a subloop, not L itself, skip it. |
| if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) |
| continue; // The Block is in a subloop, skip it. |
| |
| // Check that InVal is defined in the loop. |
| Instruction *Inst = cast<Instruction>(InVal); |
| if (!L->contains(Inst->getParent())) |
| continue; |
| |
| // We require that this value either have a computable evolution or that |
| // the loop have a constant iteration count. In the case where the loop |
| // has a constant iteration count, we can sometimes force evaluation of |
| // the exit value through brute force. |
| SCEVHandle SH = SE->getSCEV(Inst); |
| if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount) |
| continue; // Cannot get exit evolution for the loop value. |
| |
| // Okay, this instruction has a user outside of the current loop |
| // and varies predictably *inside* the loop. Evaluate the value it |
| // contains when the loop exits, if possible. |
| SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); |
| if (isa<SCEVCouldNotCompute>(ExitValue) || |
| !ExitValue->isLoopInvariant(L)) |
| continue; |
| |
| Changed = true; |
| ++NumReplaced; |
| |
| // See if we already computed the exit value for the instruction, if so, |
| // just reuse it. |
| Value *&ExitVal = ExitValues[Inst]; |
| if (!ExitVal) |
| ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt); |
| |
| DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal |
| << " LoopVal = " << *Inst << "\n"; |
| |
| PN->setIncomingValue(i, ExitVal); |
| |
| // If this instruction is dead now, schedule it to be removed. |
| if (Inst->use_empty()) |
| InstructionsToDelete.insert(Inst); |
| |
| // See if this is a single-entry LCSSA PHI node. If so, we can (and |
| // have to) remove |
| // the PHI entirely. This is safe, because the NewVal won't be variant |
| // in the loop, so we don't need an LCSSA phi node anymore. |
| if (NumPreds == 1) { |
| SE->deleteValueFromRecords(PN); |
| PN->replaceAllUsesWith(ExitVal); |
| PN->eraseFromParent(); |
| break; |
| } |
| } |
| } |
| } |
| |
| DeleteTriviallyDeadInstructions(InstructionsToDelete); |
| } |
| |
| bool IndVarSimplify::doInitialization(Loop *L, LPPassManager &LPM) { |
| |
| Changed = false; |
| // First step. Check to see if there are any trivial GEP pointer recurrences. |
| // If there are, change them into integer recurrences, permitting analysis by |
| // the SCEV routines. |
| // |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| SE = &LPM.getAnalysis<ScalarEvolution>(); |
| |
| std::set<Instruction*> DeadInsts; |
| for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| if (isa<PointerType>(PN->getType())) |
| EliminatePointerRecurrence(PN, Preheader, DeadInsts); |
| } |
| |
| if (!DeadInsts.empty()) |
| DeleteTriviallyDeadInstructions(DeadInsts); |
| |
| return Changed; |
| } |
| |
| bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { |
| |
| |
| LI = &getAnalysis<LoopInfo>(); |
| SE = &getAnalysis<ScalarEvolution>(); |
| |
| Changed = false; |
| BasicBlock *Header = L->getHeader(); |
| std::set<Instruction*> DeadInsts; |
| |
| // Verify the input to the pass in already in LCSSA form. |
| assert(L->isLCSSAForm()); |
| |
| // Check to see if this loop has a computable loop-invariant execution count. |
| // If so, this means that we can compute the final value of any expressions |
| // that are recurrent in the loop, and substitute the exit values from the |
| // loop into any instructions outside of the loop that use the final values of |
| // the current expressions. |
| // |
| SCEVHandle IterationCount = SE->getIterationCount(L); |
| if (!isa<SCEVCouldNotCompute>(IterationCount)) |
| RewriteLoopExitValues(L, IterationCount); |
| |
| // Next, analyze all of the induction variables in the loop, canonicalizing |
| // auxillary induction variables. |
| std::vector<std::pair<PHINode*, SCEVHandle> > IndVars; |
| |
| for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable! |
| SCEVHandle SCEV = SE->getSCEV(PN); |
| if (SCEV->hasComputableLoopEvolution(L)) |
| // FIXME: It is an extremely bad idea to indvar substitute anything more |
| // complex than affine induction variables. Doing so will put expensive |
| // polynomial evaluations inside of the loop, and the str reduction pass |
| // currently can only reduce affine polynomials. For now just disable |
| // indvar subst on anything more complex than an affine addrec. |
| if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV)) |
| if (AR->isAffine()) |
| IndVars.push_back(std::make_pair(PN, SCEV)); |
| } |
| } |
| |
| // If there are no induction variables in the loop, there is nothing more to |
| // do. |
| if (IndVars.empty()) { |
| // Actually, if we know how many times the loop iterates, lets insert a |
| // canonical induction variable to help subsequent passes. |
| if (!isa<SCEVCouldNotCompute>(IterationCount)) { |
| SCEVExpander Rewriter(*SE, *LI); |
| Rewriter.getOrInsertCanonicalInductionVariable(L, |
| IterationCount->getType()); |
| if (Instruction *I = LinearFunctionTestReplace(L, IterationCount, |
| Rewriter)) { |
| std::set<Instruction*> InstructionsToDelete; |
| InstructionsToDelete.insert(I); |
| DeleteTriviallyDeadInstructions(InstructionsToDelete); |
| } |
| } |
| return Changed; |
| } |
| |
| // Compute the type of the largest recurrence expression. |
| // |
| const Type *LargestType = IndVars[0].first->getType(); |
| bool DifferingSizes = false; |
| for (unsigned i = 1, e = IndVars.size(); i != e; ++i) { |
| const Type *Ty = IndVars[i].first->getType(); |
| DifferingSizes |= |
| Ty->getPrimitiveSizeInBits() != LargestType->getPrimitiveSizeInBits(); |
| if (Ty->getPrimitiveSizeInBits() > LargestType->getPrimitiveSizeInBits()) |
| LargestType = Ty; |
| } |
| |
| // Create a rewriter object which we'll use to transform the code with. |
| SCEVExpander Rewriter(*SE, *LI); |
| |
| // Now that we know the largest of of the induction variables in this loop, |
| // insert a canonical induction variable of the largest size. |
| Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType); |
| ++NumInserted; |
| Changed = true; |
| DOUT << "INDVARS: New CanIV: " << *IndVar; |
| |
| if (!isa<SCEVCouldNotCompute>(IterationCount)) { |
| IterationCount = SE->getTruncateOrZeroExtend(IterationCount, LargestType); |
| if (Instruction *DI = LinearFunctionTestReplace(L, IterationCount,Rewriter)) |
| DeadInsts.insert(DI); |
| } |
| |
| // Now that we have a canonical induction variable, we can rewrite any |
| // recurrences in terms of the induction variable. Start with the auxillary |
| // induction variables, and recursively rewrite any of their uses. |
| BasicBlock::iterator InsertPt = Header->getFirstNonPHI(); |
| |
| // If there were induction variables of other sizes, cast the primary |
| // induction variable to the right size for them, avoiding the need for the |
| // code evaluation methods to insert induction variables of different sizes. |
| if (DifferingSizes) { |
| SmallVector<unsigned,4> InsertedSizes; |
| InsertedSizes.push_back(LargestType->getPrimitiveSizeInBits()); |
| for (unsigned i = 0, e = IndVars.size(); i != e; ++i) { |
| unsigned ithSize = IndVars[i].first->getType()->getPrimitiveSizeInBits(); |
| if (std::find(InsertedSizes.begin(), InsertedSizes.end(), ithSize) |
| == InsertedSizes.end()) { |
| PHINode *PN = IndVars[i].first; |
| InsertedSizes.push_back(ithSize); |
| Instruction *New = new TruncInst(IndVar, PN->getType(), "indvar", |
| InsertPt); |
| Rewriter.addInsertedValue(New, SE->getSCEV(New)); |
| DOUT << "INDVARS: Made trunc IV for " << *PN |
| << " NewVal = " << *New << "\n"; |
| } |
| } |
| } |
| |
| // Rewrite all induction variables in terms of the canonical induction |
| // variable. |
| while (!IndVars.empty()) { |
| PHINode *PN = IndVars.back().first; |
| Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt); |
| DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN |
| << " into = " << *NewVal << "\n"; |
| NewVal->takeName(PN); |
| |
| // Replace the old PHI Node with the inserted computation. |
| PN->replaceAllUsesWith(NewVal); |
| DeadInsts.insert(PN); |
| IndVars.pop_back(); |
| ++NumRemoved; |
| Changed = true; |
| } |
| |
| #if 0 |
| // Now replace all derived expressions in the loop body with simpler |
| // expressions. |
| for (LoopInfo::block_iterator I = L->block_begin(), E = L->block_end(); |
| I != E; ++I) { |
| BasicBlock *BB = *I; |
| if (LI->getLoopFor(BB) == L) { // Not in a subloop... |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| if (I->getType()->isInteger() && // Is an integer instruction |
| !I->use_empty() && |
| !Rewriter.isInsertedInstruction(I)) { |
| SCEVHandle SH = SE->getSCEV(I); |
| Value *V = Rewriter.expandCodeFor(SH, I, I->getType()); |
| if (V != I) { |
| if (isa<Instruction>(V)) |
| V->takeName(I); |
| I->replaceAllUsesWith(V); |
| DeadInsts.insert(I); |
| ++NumRemoved; |
| Changed = true; |
| } |
| } |
| } |
| } |
| #endif |
| |
| DeleteTriviallyDeadInstructions(DeadInsts); |
| OptimizeCanonicalIVType(L); |
| assert(L->isLCSSAForm()); |
| return Changed; |
| } |
| |
| /// OptimizeCanonicalIVType - If loop induction variable is always |
| /// sign or zero extended then extend the type of the induction |
| /// variable. |
| void IndVarSimplify::OptimizeCanonicalIVType(Loop *L) { |
| PHINode *PH = L->getCanonicalInductionVariable(); |
| if (!PH) return; |
| |
| // Check loop iteration count. |
| SCEVHandle IC = SE->getIterationCount(L); |
| if (isa<SCEVCouldNotCompute>(IC)) return; |
| SCEVConstant *IterationCount = dyn_cast<SCEVConstant>(IC); |
| if (!IterationCount) return; |
| |
| unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0)); |
| unsigned BackEdge = IncomingEdge^1; |
| |
| // Check IV uses. If all IV uses are either SEXT or ZEXT (except |
| // IV increment instruction) then this IV is suitable for this |
| // transformation. |
| bool isSEXT = false; |
| BinaryOperator *Incr = NULL; |
| const Type *NewType = NULL; |
| for(Value::use_iterator UI = PH->use_begin(), UE = PH->use_end(); |
| UI != UE; ++UI) { |
| const Type *CandidateType = NULL; |
| if (ZExtInst *ZI = dyn_cast<ZExtInst>(UI)) |
| CandidateType = ZI->getDestTy(); |
| else if (SExtInst *SI = dyn_cast<SExtInst>(UI)) { |
| CandidateType = SI->getDestTy(); |
| isSEXT = true; |
| } |
| else if ((Incr = dyn_cast<BinaryOperator>(UI))) { |
| // Validate IV increment instruction. |
| if (PH->getIncomingValue(BackEdge) == Incr) |
| continue; |
| } |
| if (!CandidateType) { |
| NewType = NULL; |
| break; |
| } |
| if (!NewType) |
| NewType = CandidateType; |
| else if (NewType != CandidateType) { |
| NewType = NULL; |
| break; |
| } |
| } |
| |
| // IV uses are not suitable then avoid this transformation. |
| if (!NewType || !Incr) |
| return; |
| |
| // IV increment instruction has two uses, one is loop exit condition |
| // and second is the IV (phi node) itself. |
| ICmpInst *Exit = NULL; |
| for(Value::use_iterator II = Incr->use_begin(), IE = Incr->use_end(); |
| II != IE; ++II) { |
| if (PH == *II) continue; |
| Exit = dyn_cast<ICmpInst>(*II); |
| break; |
| } |
| if (!Exit) return; |
| ConstantInt *EV = dyn_cast<ConstantInt>(Exit->getOperand(0)); |
| if (!EV) |
| EV = dyn_cast<ConstantInt>(Exit->getOperand(1)); |
| if (!EV) return; |
| |
| // Check iteration count max value to avoid loops that wrap around IV. |
| APInt ICount = IterationCount->getValue()->getValue(); |
| if (ICount.isNegative()) return; |
| uint32_t BW = PH->getType()->getPrimitiveSizeInBits(); |
| APInt Max = (isSEXT ? APInt::getSignedMaxValue(BW) : APInt::getMaxValue(BW)); |
| if (ICount.getZExtValue() > Max.getZExtValue()) return; |
| |
| // Extend IV type. |
| |
| SCEVExpander Rewriter(*SE, *LI); |
| Value *NewIV = Rewriter.getOrInsertCanonicalInductionVariable(L,NewType); |
| PHINode *NewPH = cast<PHINode>(NewIV); |
| Instruction *NewIncr = cast<Instruction>(NewPH->getIncomingValue(BackEdge)); |
| |
| // Replace all SEXT or ZEXT uses. |
| SmallVector<Instruction *, 4> PHUses; |
| for(Value::use_iterator UI = PH->use_begin(), UE = PH->use_end(); |
| UI != UE; ++UI) { |
| Instruction *I = cast<Instruction>(UI); |
| PHUses.push_back(I); |
| } |
| while (!PHUses.empty()){ |
| Instruction *Use = PHUses.back(); PHUses.pop_back(); |
| if (Incr == Use) continue; |
| |
| SE->deleteValueFromRecords(Use); |
| Use->replaceAllUsesWith(NewIV); |
| Use->eraseFromParent(); |
| } |
| |
| // Replace exit condition. |
| ConstantInt *NEV = ConstantInt::get(NewType, EV->getZExtValue()); |
| Instruction *NE = new ICmpInst(Exit->getPredicate(), |
| NewIncr, NEV, "new.exit", |
| Exit->getParent()->getTerminator()); |
| SE->deleteValueFromRecords(Exit); |
| Exit->replaceAllUsesWith(NE); |
| Exit->eraseFromParent(); |
| |
| // Remove old IV and increment instructions. |
| SE->deleteValueFromRecords(PH); |
| PH->removeIncomingValue((unsigned)0); |
| PH->removeIncomingValue((unsigned)0); |
| SE->deleteValueFromRecords(Incr); |
| Incr->eraseFromParent(); |
| } |
| |