blob: aaf7812ca1b8383239f302c66cb3958368ae5f64 [file] [log] [blame]
//===-- StackerCompiler.cpp - Parser for llvm assembly files ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and donated to the LLVM research
// group and is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the compiler for the "Stacker" language.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Globasl - Global variables we use
//===----------------------------------------------------------------------===//
#include "llvm/PassManager.h"
#include "llvm/Analysis/LoadValueNumbering.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/Statistic.h"
#include "StackerCompiler.h"
#include "StackerParser.h"
#include <string>
// Lexer/Parser defined variables and functions
extern std::FILE *Stackerin;
extern int Stackerlineno;
extern char* Stackertext;
extern int Stackerleng;
extern int Stackerparse();
StackerCompiler* StackerCompiler::TheInstance = 0;
static Statistic<> NumDefinitions(
"numdefs","The # of definitions encoutered while compiling Stacker");
StackerCompiler::StackerCompiler()
: CurFilename("")
, TheModule(0)
, TheFunction(0)
, DefinitionType(0)
, TheStack(0)
, TheIndex(0)
, TheScanf(0)
, ThePrintf(0)
, TheExit(0)
, StrFormat(0)
, NumFormat(0)
, ChrFormat(0)
, InStrFormat(0)
, InNumFormat(0)
, InChrFormat(0)
, Zero(0)
, One(0)
, Two(0)
, Three(0)
, Four(0)
, Five(0)
, no_arguments()
, echo(false)
, stack_size(256)
, stack_type(0)
{
}
StackerCompiler::~StackerCompiler()
{
// delete TheModule; << don't do this!
// TheModule is passed to caller of the compile() method .. its their
// problem. Likewise for the other allocated objects (which become part
// of TheModule.
TheModule = 0;
DefinitionType = 0;
TheStack = 0;
TheIndex = 0;
}
Module*
StackerCompiler::compile(
const std::string& filename,
bool should_echo,
unsigned optLevel,
size_t the_stack_size
)
{
// TODO: Provide a global lock to protect the singled-threaded compiler
// and its global variables. Should be in guard object on the stack so
// that its destructor causes lock to be released (multiple exits from
// this function).
// Assign parameters
CurFilename = filename;
echo = should_echo;
stack_size = the_stack_size;
/// Default the file to read
FILE *F = stdin;
///
if (filename != "-")
{
F = fopen(filename.c_str(), "r");
if (F == 0)
{
ParseError Err;
Err.setError(filename, "Could not open file '" + filename + "'");
throw Err;
}
}
try
{
// Create the module we'll return
TheModule = new Module( CurFilename );
// Tell the module about our runtime library
TheModule->addLibrary("stkr_runtime");
// Create a type to represent the stack. This is the same as the LLVM
// Assembly type [ 256 x long ]
stack_type = ArrayType::get( Type::LongTy, stack_size );
// Create a global variable for the stack. Note the use of appending
// linkage linkage so that multiple modules will make the stack larger.
// Also note that the last argument causes the global to be inserted
// automatically into the module.
TheStack = new GlobalVariable(
/*type=*/ stack_type,
/*isConstant=*/ false,
/*Linkage=*/ GlobalValue::LinkOnceLinkage,
/*initializer=*/ Constant::getNullValue(stack_type),
/*name=*/ "_stack_",
/*parent=*/ TheModule
);
// Create a global variable for indexing into the stack. Note the use
// of LinkOnce linkage. Only one copy of _index_ will be retained
// after linking
TheIndex = new GlobalVariable(
/*type=*/Type::LongTy,
/*isConstant=*/false,
/*Linkage=*/GlobalValue::LinkOnceLinkage,
/*initializer=*/ Constant::getNullValue(Type::LongTy),
/*name=*/"_index_",
/*parent=*/TheModule
);
// Create a function prototype for definitions. No parameters, no
// result. This is used below any time a function is created.
std::vector<const Type*> params; // No parameters
DefinitionType = FunctionType::get( Type::VoidTy, params, false );
// Create a function for printf(3)
params.push_back( PointerType::get( Type::SByteTy ) );
FunctionType* printf_type =
FunctionType::get( Type::IntTy, params, true );
ThePrintf = new Function(
printf_type, GlobalValue::ExternalLinkage, "printf", TheModule);
// Create a function for scanf(3)
TheScanf = new Function(
printf_type, GlobalValue::ExternalLinkage, "scanf", TheModule);
// Create a function for exit(3)
params.clear();
params.push_back( Type::IntTy );
FunctionType* exit_type =
FunctionType::get( Type::VoidTy, params, false );
TheExit = new Function(
exit_type, GlobalValue::ExternalLinkage, "exit", TheModule);
Constant* str_format = ConstantArray::get("%s");
StrFormat = new GlobalVariable(
/*type=*/ArrayType::get( Type::SByteTy, 3 ),
/*isConstant=*/true,
/*Linkage=*/GlobalValue::LinkOnceLinkage,
/*initializer=*/str_format,
/*name=*/"_str_format_",
/*parent=*/TheModule
);
Constant* in_str_format = ConstantArray::get(" %as");
InStrFormat = new GlobalVariable(
/*type=*/ArrayType::get( Type::SByteTy, 5 ),
/*isConstant=*/true,
/*Linkage=*/GlobalValue::LinkOnceLinkage,
/*initializer=*/in_str_format,
/*name=*/"_in_str_format_",
/*parent=*/TheModule
);
Constant* num_format = ConstantArray::get("%d");
NumFormat = new GlobalVariable(
/*type=*/ArrayType::get( Type::SByteTy, 3 ),
/*isConstant=*/true,
/*Linkage=*/GlobalValue::LinkOnceLinkage,
/*initializer=*/num_format,
/*name=*/"_num_format_",
/*parent=*/TheModule
);
Constant* in_num_format = ConstantArray::get(" %d");
InNumFormat = new GlobalVariable(
/*type=*/ArrayType::get( Type::SByteTy, 4 ),
/*isConstant=*/true,
/*Linkage=*/GlobalValue::LinkOnceLinkage,
/*initializer=*/in_num_format,
/*name=*/"_in_num_format_",
/*parent=*/TheModule
);
Constant* chr_format = ConstantArray::get("%c");
ChrFormat = new GlobalVariable(
/*type=*/ArrayType::get( Type::SByteTy, 3 ),
/*isConstant=*/true,
/*Linkage=*/GlobalValue::LinkOnceLinkage,
/*initializer=*/chr_format,
/*name=*/"_chr_format_",
/*parent=*/TheModule
);
Constant* in_chr_format = ConstantArray::get(" %c");
InChrFormat = new GlobalVariable(
/*type=*/ArrayType::get( Type::SByteTy, 4 ),
/*isConstant=*/true,
/*Linkage=*/GlobalValue::LinkOnceLinkage,
/*initializer=*/in_chr_format,
/*name=*/"_in_chr_format_",
/*parent=*/TheModule
);
// Get some constants so we aren't always creating them
Zero = ConstantInt::get( Type::LongTy, 0 );
One = ConstantInt::get( Type::LongTy, 1 );
Two = ConstantInt::get( Type::LongTy, 2 );
Three = ConstantInt::get( Type::LongTy, 3 );
Four = ConstantInt::get( Type::LongTy, 4 );
Five = ConstantInt::get( Type::LongTy, 5 );
// Reset the current line number
Stackerlineno = 1;
// Reset the parser's input to F
Stackerin = F; // Set the input file.
// Let the parse know about this instance
TheInstance = this;
// Parse the file. The parser (see StackParser.y) will call back to
// the StackerCompiler via the "handle*" methods
Stackerparse();
// Avoid potential illegal use (TheInstance might be on the stack)
TheInstance = 0;
// Set up a pass manager
PassManager Passes;
// Add in the passes we want to execute
Passes.add(new TargetData(TheModule));
// Verify we start with valid
Passes.add(createVerifierPass());
if (optLevel > 0) {
if (optLevel > 1) {
// Clean up disgusting code
Passes.add(createCFGSimplificationPass());
// Remove unused globals
Passes.add(createGlobalDCEPass());
// IP Constant Propagation
Passes.add(createIPConstantPropagationPass());
// Clean up after IPCP
Passes.add(createInstructionCombiningPass());
// Clean up after IPCP
Passes.add(createCFGSimplificationPass());
// Inline small definitions (functions)
Passes.add(createFunctionInliningPass());
// Simplify cfg by copying code
Passes.add(createTailDuplicationPass());
if (optLevel > 2) {
// Merge & remove BBs
Passes.add(createCFGSimplificationPass());
// Compile silly sequences
Passes.add(createInstructionCombiningPass());
// Reassociate expressions
Passes.add(createReassociatePass());
// Combine silly seq's
Passes.add(createInstructionCombiningPass());
// Eliminate tail calls
Passes.add(createTailCallEliminationPass());
// Merge & remove BBs
Passes.add(createCFGSimplificationPass());
// Hoist loop invariants
Passes.add(createLICMPass());
// Clean up after the unroller
Passes.add(createInstructionCombiningPass());
// Canonicalize indvars
Passes.add(createIndVarSimplifyPass());
// Unroll small loops
Passes.add(createLoopUnrollPass());
// Clean up after the unroller
Passes.add(createInstructionCombiningPass());
// GVN for load instructions
Passes.add(createLoadValueNumberingPass());
// Remove common subexprs
Passes.add(createGCSEPass());
// Constant prop with SCCP
Passes.add(createSCCPPass());
}
if (optLevel > 3) {
// Run instcombine again after redundancy elimination
Passes.add(createInstructionCombiningPass());
// Delete dead stores
Passes.add(createDeadStoreEliminationPass());
// SSA based 'Aggressive DCE'
Passes.add(createAggressiveDCEPass());
// Merge & remove BBs
Passes.add(createCFGSimplificationPass());
// Merge dup global constants
Passes.add(createConstantMergePass());
}
}
// Merge & remove BBs
Passes.add(createCFGSimplificationPass());
// Memory To Register
Passes.add(createPromoteMemoryToRegisterPass());
// Compile silly sequences
Passes.add(createInstructionCombiningPass());
// Make sure everything is still good.
Passes.add(createVerifierPass());
}
// Run our queue of passes all at once now, efficiently.
Passes.run(*TheModule);
} catch (...) {
if (F != stdin) fclose(F); // Make sure to close file descriptor
throw; // if an exception is thrown
}
// Close the file
if (F != stdin) fclose(F);
// Return the compiled module to the caller
return TheModule;
}
//===----------------------------------------------------------------------===//
// Internal Functions, used by handleXXX below.
// These represent the basic stack operations.
//===----------------------------------------------------------------------===//
Instruction*
StackerCompiler::incr_stack_index( BasicBlock* bb, Value* ival = 0 )
{
// Load the value from the TheIndex
LoadInst* loadop = new LoadInst( TheIndex );
bb->getInstList().push_back( loadop );
// Increment the loaded index value
if ( ival == 0 ) ival = One;
CastInst* caster = CastInst::createInferredCast( ival, Type::LongTy );
bb->getInstList().push_back( caster );
BinaryOperator* addop = BinaryOperator::create( Instruction::Add,
loadop, caster);
bb->getInstList().push_back( addop );
// Store the incremented value
StoreInst* storeop = new StoreInst( addop, TheIndex );
bb->getInstList().push_back( storeop );
return storeop;
}
Instruction*
StackerCompiler::decr_stack_index( BasicBlock* bb, Value* ival = 0 )
{
// Load the value from the TheIndex
LoadInst* loadop = new LoadInst( TheIndex );
bb->getInstList().push_back( loadop );
// Decrement the loaded index value
if ( ival == 0 ) ival = One;
CastInst* caster = CastInst::createInferredCast( ival, Type::LongTy );
bb->getInstList().push_back( caster );
BinaryOperator* subop = BinaryOperator::create( Instruction::Sub,
loadop, caster);
bb->getInstList().push_back( subop );
// Store the incremented value
StoreInst* storeop = new StoreInst( subop, TheIndex );
bb->getInstList().push_back( storeop );
return storeop;
}
Instruction*
StackerCompiler::get_stack_pointer( BasicBlock* bb, Value* index = 0 )
{
// Load the value of the Stack Index
LoadInst* loadop = new LoadInst( TheIndex );
bb->getInstList().push_back( loadop );
// Index into the stack to get its address. NOTE the use of two
// elements in this vector. The first de-references the pointer that
// "TheStack" represents. The second indexes into the pointed to array.
// Think of the first index as getting the address of the 0th element
// of the array.
std::vector<Value*> indexVec;
indexVec.push_back( Zero );
if ( index == 0 )
{
indexVec.push_back(loadop);
}
else
{
CastInst* caster = CastInst::createInferredCast( index, Type::LongTy );
bb->getInstList().push_back( caster );
BinaryOperator* subop = BinaryOperator::create(
Instruction::Sub, loadop, caster );
bb->getInstList().push_back( subop );
indexVec.push_back(subop);
}
// Get the address of the indexed stack element
GetElementPtrInst* gep = new GetElementPtrInst( TheStack, indexVec );
bb->getInstList().push_back( gep ); // Put GEP in Block
return gep;
}
Instruction*
StackerCompiler::push_value( BasicBlock* bb, Value* val )
{
// Get location of
incr_stack_index(bb);
// Get the stack pointer
GetElementPtrInst* gep = cast<GetElementPtrInst>(
get_stack_pointer( bb ) );
// Cast the value to a long .. hopefully it works
CastInst* cast_inst = CastInst::createInferredCast( val, Type::LongTy );
bb->getInstList().push_back( cast_inst );
// Store the value
StoreInst* storeop = new StoreInst( cast_inst, gep );
bb->getInstList().push_back( storeop );
return storeop;
}
Instruction*
StackerCompiler::push_integer(BasicBlock* bb, int64_t value )
{
// Just push a constant integer value
return push_value( bb, ConstantInt::get( Type::LongTy, value ) );
}
Instruction*
StackerCompiler::pop_integer( BasicBlock*bb )
{
// Get the stack pointer
GetElementPtrInst* gep = cast<GetElementPtrInst>(
get_stack_pointer( bb ));
// Load the value
LoadInst* load_inst = new LoadInst( gep );
bb->getInstList().push_back( load_inst );
// Decrement the stack index
decr_stack_index( bb );
// Return the value
return load_inst;
}
Instruction*
StackerCompiler::push_string( BasicBlock* bb, const char* value )
{
// Get length of the string
size_t len = strlen( value );
// Create a type for the string constant. Length is +1 for
// the terminating 0.
ArrayType* char_array = ArrayType::get( Type::SByteTy, len + 1 );
// Create an initializer for the value
Constant* initVal = ConstantArray::get( value );
// Create an internal linkage global variable to hold the constant.
GlobalVariable* strconst = new GlobalVariable(
char_array,
/*isConstant=*/true,
GlobalValue::InternalLinkage,
/*initializer=*/initVal,
"",
TheModule
);
// Push the casted value
return push_value( bb, strconst );
}
Instruction*
StackerCompiler::pop_string( BasicBlock* bb )
{
// Get location of stack pointer
GetElementPtrInst* gep = cast<GetElementPtrInst>(
get_stack_pointer( bb ));
// Load the value from the stack
LoadInst* loader = new LoadInst( gep );
bb->getInstList().push_back( loader );
// Cast the integer to a sbyte*
CastInst* caster =
CastInst::createInferredCast( loader, PointerType::get(Type::SByteTy) );
bb->getInstList().push_back( caster );
// Decrement stack index
decr_stack_index( bb );
// Return the value
return caster;
}
Instruction*
StackerCompiler::replace_top( BasicBlock* bb, Value* new_top, Value* index = 0 )
{
// Get the stack pointer
GetElementPtrInst* gep = cast<GetElementPtrInst>(
get_stack_pointer( bb, index ));
// Store the value there
StoreInst* store_inst = new StoreInst( new_top, gep );
bb->getInstList().push_back( store_inst );
// Return the value
return store_inst;
}
Instruction*
StackerCompiler::stack_top( BasicBlock* bb, Value* index = 0 )
{
// Get the stack pointer
GetElementPtrInst* gep = cast<GetElementPtrInst>(
get_stack_pointer( bb, index ));
// Load the value
LoadInst* load_inst = new LoadInst( gep );
bb->getInstList().push_back( load_inst );
// Return the value
return load_inst;
}
Instruction*
StackerCompiler::stack_top_string( BasicBlock* bb, Value* index = 0 )
{
// Get location of stack pointer
GetElementPtrInst* gep = cast<GetElementPtrInst>(
get_stack_pointer( bb, index ));
// Load the value from the stack
LoadInst* loader = new LoadInst( gep );
bb->getInstList().push_back( loader );
// Cast the integer to a sbyte*
CastInst* caster =
CastInst::createInferredCast( loader, PointerType::get(Type::SByteTy) );
bb->getInstList().push_back( caster );
// Return the value
return caster;
}
static void
add_block( Function*f, BasicBlock* bb )
{
if ( ! f->empty() && f->back().getTerminator() == 0 )
{
BranchInst* branch = new BranchInst(bb);
f->back().getInstList().push_back( branch );
}
f->getBasicBlockList().push_back( bb );
}
//===----------------------------------------------------------------------===//
// handleXXX - Handle semantics of parser productions
//===----------------------------------------------------------------------===//
Module*
StackerCompiler::handle_module_start( )
{
// Return the newly created module
return TheModule;
}
Module*
StackerCompiler::handle_module_end( Module* mod )
{
// Return the module.
return mod;
}
Module*
StackerCompiler::handle_definition_list_start()
{
return TheModule;
}
Module*
StackerCompiler::handle_definition_list_end( Module* mod, Function* definition )
{
if ( ! definition->empty() )
{
BasicBlock& last_block = definition->back();
if ( last_block.getTerminator() == 0 )
{
last_block.getInstList().push_back( new ReturnInst() );
}
}
// Insert the definition into the module
mod->getFunctionList().push_back( definition );
// Bump our (sample) statistic.
++NumDefinitions;
return mod;
}
Function*
StackerCompiler::handle_main_definition( Function* func )
{
// Set the name of the function defined as the Stacker main
// This will get called by the "main" that is defined in
// the runtime library.
func->setName( "_MAIN_");
// Turn "_stack_" into an initialized variable since this is the main
// module. This causes it to not be "external" but defined in this module.
TheStack->setInitializer( Constant::getNullValue(stack_type) );
TheStack->setLinkage( GlobalValue::LinkOnceLinkage );
// Turn "_index_" into an intialized variable for the same reason.
TheIndex->setInitializer( Constant::getNullValue(Type::LongTy) );
TheIndex->setLinkage( GlobalValue::LinkOnceLinkage );
return func;
}
Function*
StackerCompiler::handle_forward( char * name )
{
// Just create a placeholder function
Function* the_function = new Function (
DefinitionType,
GlobalValue::ExternalLinkage,
name );
assert( the_function->isExternal() );
free( name );
return the_function;
}
Function*
StackerCompiler::handle_definition( char * name, Function* f )
{
// Look up the function name in the module to see if it was forward
// declared.
#if 0
Function* existing_function = TheModule->getNamedFunction( name );
// If the function already exists...
if ( existing_function )
{
// Just get rid of the placeholder
existing_function->dropAllReferences();
delete existing_function;
}
#endif
// Just set the name of the function now that we know what it is.
f->setName( name );
free( name );
return f;
}
Function*
StackerCompiler::handle_word_list_start()
{
TheFunction = new Function(DefinitionType, GlobalValue::ExternalLinkage);
return TheFunction;
}
Function*
StackerCompiler::handle_word_list_end( Function* f, BasicBlock* bb )
{
add_block( f, bb );
return f;
}
BasicBlock*
StackerCompiler::handle_if( char* ifTrue, char* ifFalse )
{
// Create a basic block for the preamble
BasicBlock* bb = new BasicBlock((echo?"if":""));
// Get the condition value
LoadInst* cond = cast<LoadInst>( pop_integer(bb) );
// Compare the condition against 0
SetCondInst* cond_inst = new SetCondInst( Instruction::SetNE, cond,
ConstantInt::get( Type::LongTy, 0) );
bb->getInstList().push_back( cond_inst );
// Create an exit block
BasicBlock* exit_bb = new BasicBlock((echo?"endif":""));
// Create the true_block
BasicBlock* true_bb = new BasicBlock((echo?"then":""));
// Create the false_block
BasicBlock* false_bb = 0;
if ( ifFalse ) false_bb = new BasicBlock((echo?"else":""));
// Create a branch on the SetCond
BranchInst* br_inst = new BranchInst( true_bb,
( ifFalse ? false_bb : exit_bb ), cond_inst );
bb->getInstList().push_back( br_inst );
// Fill the true block
std::vector<Value*> args;
if ( Function* true_func = TheModule->getNamedFunction(ifTrue) )
{
true_bb->getInstList().push_back(
new CallInst( true_func, args ) );
true_bb->getInstList().push_back(
new BranchInst( exit_bb ) );
}
else
{
ThrowException(std::string("Function '") + ifTrue +
"' must be declared first.'");
}
free( ifTrue );
// Fill the false block
if ( false_bb )
{
if ( Function* false_func = TheModule->getNamedFunction(ifFalse) )
{
false_bb->getInstList().push_back(
new CallInst( false_func, args ) );
false_bb->getInstList().push_back(
new BranchInst( exit_bb ) );
}
else
{
ThrowException(std::string("Function '") + ifFalse +
"' must be declared first.'");
}
free( ifFalse );
}
// Add the blocks to the function
add_block( TheFunction, bb );
add_block( TheFunction, true_bb );
if ( false_bb ) add_block( TheFunction, false_bb );
return exit_bb;
}
BasicBlock*
StackerCompiler::handle_while( char* todo )
{
// Create a basic block for the loop test
BasicBlock* test = new BasicBlock((echo?"while":""));
// Create an exit block
BasicBlock* exit = new BasicBlock((echo?"end":""));
// Create a loop body block
BasicBlock* body = new BasicBlock((echo?"do":""));
// Create a root node
BasicBlock* bb = new BasicBlock((echo?"root":""));
BranchInst* root_br_inst = new BranchInst( test );
bb->getInstList().push_back( root_br_inst );
// Examine the condition value
LoadInst* cond = cast<LoadInst>( stack_top(test) );
// Compare the condition against 0
SetCondInst* cond_inst = new SetCondInst(
Instruction::SetNE, cond, ConstantInt::get( Type::LongTy, 0));
test->getInstList().push_back( cond_inst );
// Add the branch instruction
BranchInst* br_inst = new BranchInst( body, exit, cond_inst );
test->getInstList().push_back( br_inst );
// Fill in the body
std::vector<Value*> args;
if ( Function* body_func = TheModule->getNamedFunction(todo) )
{
body->getInstList().push_back( new CallInst( body_func, args ) );
body->getInstList().push_back( new BranchInst( test ) );
}
else
{
ThrowException(std::string("Function '") + todo +
"' must be declared first.'");
}
free( todo );
// Add the blocks
add_block( TheFunction, bb );
add_block( TheFunction, test );
add_block( TheFunction, body );
return exit;
}
BasicBlock*
StackerCompiler::handle_identifier( char * name )
{
Function* func = TheModule->getNamedFunction( name );
BasicBlock* bb = new BasicBlock((echo?"call":""));
if ( func )
{
CallInst* call_def = new CallInst( func , no_arguments );
bb->getInstList().push_back( call_def );
}
else
{
ThrowException(std::string("Definition '") + name +
"' must be defined before it can be used.");
}
free( name );
return bb;
}
BasicBlock*
StackerCompiler::handle_string( char * value )
{
// Create a new basic block for the push operation
BasicBlock* bb = new BasicBlock((echo?"string":""));
// Push the string onto the stack
push_string(bb, value);
// Free the strdup'd string
free( value );
return bb;
}
BasicBlock*
StackerCompiler::handle_integer( const int64_t value )
{
// Create a new basic block for the push operation
BasicBlock* bb = new BasicBlock((echo?"int":""));
// Push the integer onto the stack
push_integer(bb, value );
return bb;
}
BasicBlock*
StackerCompiler::handle_word( int tkn )
{
// Create a new basic block to hold the instruction(s)
BasicBlock* bb = new BasicBlock();
/* Fill the basic block with the appropriate instructions */
switch ( tkn )
{
case DUMP : // Dump the stack (debugging aid)
{
if (echo) bb->setName("DUMP");
Function* f = TheModule->getOrInsertFunction(
"_stacker_dump_stack_", DefinitionType);
std::vector<Value*> args;
bb->getInstList().push_back( new CallInst( f, args ) );
break;
}
// Logical Operations
case TRUETOK : // -- -1
{
if (echo) bb->setName("TRUE");
push_integer(bb,-1);
break;
}
case FALSETOK : // -- 0
{
if (echo) bb->setName("FALSE");
push_integer(bb,0);
break;
}
case LESS : // w1 w2 -- w2<w1
{
if (echo) bb->setName("LESS");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
SetCondInst* cond_inst =
new SetCondInst( Instruction::SetLT, op1, op2 );
bb->getInstList().push_back( cond_inst );
push_value( bb, cond_inst );
break;
}
case MORE : // w1 w2 -- w2>w1
{
if (echo) bb->setName("MORE");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
SetCondInst* cond_inst =
new SetCondInst( Instruction::SetGT, op1, op2 );
bb->getInstList().push_back( cond_inst );
push_value( bb, cond_inst );
break;
}
case LESS_EQUAL : // w1 w2 -- w2<=w1
{
if (echo) bb->setName("LE");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
SetCondInst* cond_inst =
new SetCondInst( Instruction::SetLE, op1, op2 );
bb->getInstList().push_back( cond_inst );
push_value( bb, cond_inst );
break;
}
case MORE_EQUAL : // w1 w2 -- w2>=w1
{
if (echo) bb->setName("GE");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
SetCondInst* cond_inst =
new SetCondInst( Instruction::SetGE, op1, op2 );
bb->getInstList().push_back( cond_inst );
push_value( bb, cond_inst );
break;
}
case NOT_EQUAL : // w1 w2 -- w2!=w1
{
if (echo) bb->setName("NE");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
SetCondInst* cond_inst =
new SetCondInst( Instruction::SetNE, op1, op2 );
bb->getInstList().push_back( cond_inst );
push_value( bb, cond_inst );
break;
}
case EQUAL : // w1 w2 -- w1==w2
{
if (echo) bb->setName("EQ");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
SetCondInst* cond_inst =
new SetCondInst( Instruction::SetEQ, op1, op2 );
bb->getInstList().push_back( cond_inst );
push_value( bb, cond_inst );
break;
}
// Arithmetic Operations
case PLUS : // w1 w2 -- w2+w1
{
if (echo) bb->setName("ADD");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
BinaryOperator* addop =
BinaryOperator::create( Instruction::Add, op1, op2);
bb->getInstList().push_back( addop );
push_value( bb, addop );
break;
}
case MINUS : // w1 w2 -- w2-w1
{
if (echo) bb->setName("SUB");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
BinaryOperator* subop =
BinaryOperator::create( Instruction::Sub, op1, op2);
bb->getInstList().push_back( subop );
push_value( bb, subop );
break;
}
case INCR : // w1 -- w1+1
{
if (echo) bb->setName("INCR");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
BinaryOperator* addop =
BinaryOperator::create( Instruction::Add, op1, One );
bb->getInstList().push_back( addop );
push_value( bb, addop );
break;
}
case DECR : // w1 -- w1-1
{
if (echo) bb->setName("DECR");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
BinaryOperator* subop = BinaryOperator::create( Instruction::Sub, op1,
ConstantInt::get( Type::LongTy, 1 ) );
bb->getInstList().push_back( subop );
push_value( bb, subop );
break;
}
case MULT : // w1 w2 -- w2*w1
{
if (echo) bb->setName("MUL");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
BinaryOperator* multop =
BinaryOperator::create( Instruction::Mul, op1, op2);
bb->getInstList().push_back( multop );
push_value( bb, multop );
break;
}
case DIV :// w1 w2 -- w2/w1
{
if (echo) bb->setName("DIV");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
BinaryOperator* divop =
BinaryOperator::create( Instruction::SDiv, op1, op2);
bb->getInstList().push_back( divop );
push_value( bb, divop );
break;
}
case MODULUS : // w1 w2 -- w2%w1
{
if (echo) bb->setName("MOD");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
BinaryOperator* divop =
BinaryOperator::create( Instruction::SRem, op1, op2);
bb->getInstList().push_back( divop );
push_value( bb, divop );
break;
}
case STAR_SLASH : // w1 w2 w3 -- (w3*w2)/w1
{
if (echo) bb->setName("STAR_SLASH");
// Get the operands
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
LoadInst* op3 = cast<LoadInst>(pop_integer(bb));
// Multiply the first two
BinaryOperator* multop =
BinaryOperator::create( Instruction::Mul, op1, op2);
bb->getInstList().push_back( multop );
// Divide by the third operand
BinaryOperator* divop =
BinaryOperator::create( Instruction::SDiv, multop, op3);
bb->getInstList().push_back( divop );
// Push the result
push_value( bb, divop );
break;
}
case NEGATE : // w1 -- -w1
{
if (echo) bb->setName("NEG");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
// APPARENTLY, the following doesn't work:
// BinaryOperator* negop = BinaryOperator::createNeg( op1 );
// bb->getInstList().push_back( negop );
// So we'll multiply by -1 (ugh)
BinaryOperator* multop = BinaryOperator::create( Instruction::Mul, op1,
ConstantInt::get( Type::LongTy, -1 ) );
bb->getInstList().push_back( multop );
push_value( bb, multop );
break;
}
case ABS : // w1 -- |w1|
{
if (echo) bb->setName("ABS");
// Get the top of stack value
LoadInst* op1 = cast<LoadInst>(stack_top(bb));
// Determine if its negative
SetCondInst* cond_inst =
new SetCondInst( Instruction::SetLT, op1, Zero );
bb->getInstList().push_back( cond_inst );
// Create a block for storing the result
BasicBlock* exit_bb = new BasicBlock((echo?"exit":""));
// Create a block for making it a positive value
BasicBlock* pos_bb = new BasicBlock((echo?"neg":""));
// Create the branch on the SetCond
BranchInst* br_inst = new BranchInst( pos_bb, exit_bb, cond_inst );
bb->getInstList().push_back( br_inst );
// Fill out the negation block
LoadInst* pop_op = cast<LoadInst>( pop_integer(pos_bb) );
BinaryOperator* neg_op = BinaryOperator::createNeg( pop_op );
pos_bb->getInstList().push_back( neg_op );
push_value( pos_bb, neg_op );
pos_bb->getInstList().push_back( new BranchInst( exit_bb ) );
// Add the new blocks in the correct order
add_block( TheFunction, bb );
add_block( TheFunction, pos_bb );
bb = exit_bb;
break;
}
case MIN : // w1 w2 -- (w2<w1?w2:w1)
{
if (echo) bb->setName("MIN");
// Create the three blocks
BasicBlock* exit_bb = new BasicBlock((echo?"exit":""));
BasicBlock* op1_block = new BasicBlock((echo?"less":""));
BasicBlock* op2_block = new BasicBlock((echo?"more":""));
// Get the two operands
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
// Compare them
SetCondInst* cond_inst =
new SetCondInst( Instruction::SetLT, op1, op2);
bb->getInstList().push_back( cond_inst );
// Create a branch on the SetCond
BranchInst* br_inst =
new BranchInst( op1_block, op2_block, cond_inst );
bb->getInstList().push_back( br_inst );
// Create a block for pushing the first one
push_value(op1_block, op1);
op1_block->getInstList().push_back( new BranchInst( exit_bb ) );
// Create a block for pushing the second one
push_value(op2_block, op2);
op2_block->getInstList().push_back( new BranchInst( exit_bb ) );
// Add the blocks
add_block( TheFunction, bb );
add_block( TheFunction, op1_block );
add_block( TheFunction, op2_block );
bb = exit_bb;
break;
}
case MAX : // w1 w2 -- (w2>w1?w2:w1)
{
if (echo) bb->setName("MAX");
// Get the two operands
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
// Compare them
SetCondInst* cond_inst =
new SetCondInst( Instruction::SetGT, op1, op2);
bb->getInstList().push_back( cond_inst );
// Create an exit block
BasicBlock* exit_bb = new BasicBlock((echo?"exit":""));
// Create a block for pushing the larger one
BasicBlock* op1_block = new BasicBlock((echo?"more":""));
push_value(op1_block, op1);
op1_block->getInstList().push_back( new BranchInst( exit_bb ) );
// Create a block for pushing the smaller or equal one
BasicBlock* op2_block = new BasicBlock((echo?"less":""));
push_value(op2_block, op2);
op2_block->getInstList().push_back( new BranchInst( exit_bb ) );
// Create a banch on the SetCond
BranchInst* br_inst =
new BranchInst( op1_block, op2_block, cond_inst );
bb->getInstList().push_back( br_inst );
// Add the blocks
add_block( TheFunction, bb );
add_block( TheFunction, op1_block );
add_block( TheFunction, op2_block );
bb = exit_bb;
break;
}
// Bitwise Operators
case AND : // w1 w2 -- w2&w1
{
if (echo) bb->setName("AND");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
BinaryOperator* andop =
BinaryOperator::create( Instruction::And, op1, op2);
bb->getInstList().push_back( andop );
push_value( bb, andop );
break;
}
case OR : // w1 w2 -- w2|w1
{
if (echo) bb->setName("OR");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
BinaryOperator* orop =
BinaryOperator::create( Instruction::Or, op1, op2);
bb->getInstList().push_back( orop );
push_value( bb, orop );
break;
}
case XOR : // w1 w2 -- w2^w1
{
if (echo) bb->setName("XOR");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
BinaryOperator* xorop =
BinaryOperator::create( Instruction::Xor, op1, op2);
bb->getInstList().push_back( xorop );
push_value( bb, xorop );
break;
}
case LSHIFT : // w1 w2 -- w1<<w2
{
if (echo) bb->setName("SHL");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
CastInst* castop = CastInst::createInferredCast( op1, Type::UByteTy );
bb->getInstList().push_back( castop );
ShiftInst* shlop = new ShiftInst( Instruction::Shl, op2, castop );
bb->getInstList().push_back( shlop );
push_value( bb, shlop );
break;
}
case RSHIFT : // w1 w2 -- w1>>w2
{
if (echo) bb->setName("SHR");
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
LoadInst* op2 = cast<LoadInst>(pop_integer(bb));
CastInst* castop = CastInst::createInferredCast( op1, Type::UByteTy );
bb->getInstList().push_back( castop );
ShiftInst* shrop = new ShiftInst( Instruction::AShr, op2, castop );
bb->getInstList().push_back( shrop );
push_value( bb, shrop );
break;
}
// Stack Manipulation Operations
case DROP: // w --
{
if (echo) bb->setName("DROP");
decr_stack_index(bb, One);
break;
}
case DROP2: // w1 w2 --
{
if (echo) bb->setName("DROP2");
decr_stack_index( bb, Two );
break;
}
case NIP: // w1 w2 -- w2
{
if (echo) bb->setName("NIP");
LoadInst* w2 = cast<LoadInst>( stack_top( bb ) );
decr_stack_index( bb );
replace_top( bb, w2 );
break;
}
case NIP2: // w1 w2 w3 w4 -- w3 w4
{
if (echo) bb->setName("NIP2");
LoadInst* w4 = cast<LoadInst>( stack_top( bb ) );
LoadInst* w3 = cast<LoadInst>( stack_top( bb, One ) );
decr_stack_index( bb, Two );
replace_top( bb, w4 );
replace_top( bb, w3, One );
break;
}
case DUP: // w -- w w
{
if (echo) bb->setName("DUP");
LoadInst* w = cast<LoadInst>( stack_top( bb ) );
push_value( bb, w );
break;
}
case DUP2: // w1 w2 -- w1 w2 w1 w2
{
if (echo) bb->setName("DUP2");
LoadInst* w2 = cast<LoadInst>( stack_top(bb) );
LoadInst* w1 = cast<LoadInst>( stack_top(bb, One ) );
incr_stack_index( bb, Two );
replace_top( bb, w1, One );
replace_top( bb, w2 );
break;
}
case SWAP: // w1 w2 -- w2 w1
{
if (echo) bb->setName("SWAP");
LoadInst* w2 = cast<LoadInst>( stack_top( bb ) );
LoadInst* w1 = cast<LoadInst>( stack_top( bb, One ) );
replace_top( bb, w1 );
replace_top( bb, w2, One );
break;
}
case SWAP2: // w1 w2 w3 w4 -- w3 w4 w1 w2
{
if (echo) bb->setName("SWAP2");
LoadInst* w4 = cast<LoadInst>( stack_top( bb ) );
LoadInst* w3 = cast<LoadInst>( stack_top( bb, One ) );
LoadInst* w2 = cast<LoadInst>( stack_top( bb, Two ) );
LoadInst* w1 = cast<LoadInst>( stack_top( bb, Three ) );
replace_top( bb, w2 );
replace_top( bb, w1, One );
replace_top( bb, w4, Two );
replace_top( bb, w3, Three );
break;
}
case OVER: // w1 w2 -- w1 w2 w1
{
if (echo) bb->setName("OVER");
LoadInst* w1 = cast<LoadInst>( stack_top( bb, One ) );
push_value( bb, w1 );
break;
}
case OVER2: // w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2
{
if (echo) bb->setName("OVER2");
LoadInst* w2 = cast<LoadInst>( stack_top( bb, Two ) );
LoadInst* w1 = cast<LoadInst>( stack_top( bb, Three ) );
incr_stack_index( bb, Two );
replace_top( bb, w2 );
replace_top( bb, w1, One );
break;
}
case ROT: // w1 w2 w3 -- w2 w3 w1
{
if (echo) bb->setName("ROT");
LoadInst* w3 = cast<LoadInst>( stack_top( bb ) );
LoadInst* w2 = cast<LoadInst>( stack_top( bb, One ) );
LoadInst* w1 = cast<LoadInst>( stack_top( bb, Two ) );
replace_top( bb, w1 );
replace_top( bb, w3, One );
replace_top( bb, w2, Two );
break;
}
case ROT2: // w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2
{
if (echo) bb->setName("ROT2");
LoadInst* w6 = cast<LoadInst>( stack_top( bb ) );
LoadInst* w5 = cast<LoadInst>( stack_top( bb, One ) );
LoadInst* w4 = cast<LoadInst>( stack_top( bb, Two ) );
LoadInst* w3 = cast<LoadInst>( stack_top( bb, Three) );
LoadInst* w2 = cast<LoadInst>( stack_top( bb, Four ) );
LoadInst* w1 = cast<LoadInst>( stack_top( bb, Five ) );
replace_top( bb, w2 );
replace_top( bb, w1, One );
replace_top( bb, w6, Two );
replace_top( bb, w5, Three );
replace_top( bb, w4, Four );
replace_top( bb, w3, Five );
break;
}
case RROT: // w1 w2 w3 -- w3 w1 w2
{
if (echo) bb->setName("RROT2");
LoadInst* w3 = cast<LoadInst>( stack_top( bb ) );
LoadInst* w2 = cast<LoadInst>( stack_top( bb, One ) );
LoadInst* w1 = cast<LoadInst>( stack_top( bb, Two ) );
replace_top( bb, w2 );
replace_top( bb, w1, One );
replace_top( bb, w3, Two );
break;
}
case RROT2: // w1 w2 w3 w4 w5 w6 -- w5 w6 w1 w2 w3 w4
{
if (echo) bb->setName("RROT2");
LoadInst* w6 = cast<LoadInst>( stack_top( bb ) );
LoadInst* w5 = cast<LoadInst>( stack_top( bb, One ) );
LoadInst* w4 = cast<LoadInst>( stack_top( bb, Two ) );
LoadInst* w3 = cast<LoadInst>( stack_top( bb, Three) );
LoadInst* w2 = cast<LoadInst>( stack_top( bb, Four ) );
LoadInst* w1 = cast<LoadInst>( stack_top( bb, Five ) );
replace_top( bb, w4 );
replace_top( bb, w3, One );
replace_top( bb, w2, Two );
replace_top( bb, w1, Three );
replace_top( bb, w6, Four );
replace_top( bb, w5, Five );
break;
}
case TUCK: // w1 w2 -- w2 w1 w2
{
if (echo) bb->setName("TUCK");
LoadInst* w2 = cast<LoadInst>( stack_top( bb ) );
LoadInst* w1 = cast<LoadInst>( stack_top( bb, One ) );
incr_stack_index( bb );
replace_top( bb, w2 );
replace_top( bb, w1, One );
replace_top( bb, w2, Two );
break;
}
case TUCK2: // w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4
{
if (echo) bb->setName("TUCK2");
LoadInst* w4 = cast<LoadInst>( stack_top( bb ) );
LoadInst* w3 = cast<LoadInst>( stack_top( bb, One ) );
LoadInst* w2 = cast<LoadInst>( stack_top( bb, Two ) );
LoadInst* w1 = cast<LoadInst>( stack_top( bb, Three) );
incr_stack_index( bb, Two );
replace_top( bb, w4 );
replace_top( bb, w3, One );
replace_top( bb, w2, Two );
replace_top( bb, w1, Three );
replace_top( bb, w4, Four );
replace_top( bb, w3, Five );
break;
}
case ROLL: // x0 x1 .. xn n -- x1 .. xn x0
{
/// THIS OEPRATOR IS OMITTED PURPOSEFULLY AND IS LEFT TO THE
/// READER AS AN EXERCISE. THIS IS ONE OF THE MORE COMPLICATED
/// OPERATORS. IF YOU CAN GET THIS ONE RIGHT, YOU COMPLETELY
/// UNDERSTAND HOW BOTH LLVM AND STACKER WOR.
/// HINT: LOOK AT PICK AND SELECT. ROLL IS SIMILAR.
if (echo) bb->setName("ROLL");
break;
}
case PICK: // x0 ... Xn n -- x0 ... Xn x0
{
if (echo) bb->setName("PICK");
LoadInst* n = cast<LoadInst>( stack_top( bb ) );
BinaryOperator* addop =
BinaryOperator::create( Instruction::Add, n, One );
bb->getInstList().push_back( addop );
LoadInst* x0 = cast<LoadInst>( stack_top( bb, addop ) );
replace_top( bb, x0 );
break;
}
case SELECT: // m n X0..Xm Xm+1 .. Xn -- Xm
{
if (echo) bb->setName("SELECT");
LoadInst* m = cast<LoadInst>( stack_top(bb) );
LoadInst* n = cast<LoadInst>( stack_top(bb, One) );
BinaryOperator* index =
BinaryOperator::create( Instruction::Add, m, One );
bb->getInstList().push_back( index );
LoadInst* Xm = cast<LoadInst>( stack_top(bb, index ) );
BinaryOperator* n_plus_1 =
BinaryOperator::create( Instruction::Add, n, One );
bb->getInstList().push_back( n_plus_1 );
decr_stack_index( bb, n_plus_1 );
replace_top( bb, Xm );
break;
}
case MALLOC : // n -- p
{
if (echo) bb->setName("MALLOC");
// Get the number of bytes to mallocate
LoadInst* op1 = cast<LoadInst>( pop_integer(bb) );
// Make sure its a UIntTy
CastInst* caster = CastInst::createInferredCast( op1, Type::UIntTy );
bb->getInstList().push_back( caster );
// Allocate the bytes
MallocInst* mi = new MallocInst( Type::SByteTy, caster );
bb->getInstList().push_back( mi );
// Push the pointer
push_value( bb, mi );
break;
}
case FREE : // p --
{
if (echo) bb->setName("FREE");
// Pop the value off the stack
CastInst* ptr = cast<CastInst>( pop_string(bb) );
// Free the memory
FreeInst* fi = new FreeInst( ptr );
bb->getInstList().push_back( fi );
break;
}
case GET : // p w1 -- p w2
{
if (echo) bb->setName("GET");
// Get the character index
LoadInst* op1 = cast<LoadInst>( stack_top(bb) );
CastInst* chr_idx = CastInst::createInferredCast( op1, Type::LongTy );
bb->getInstList().push_back( chr_idx );
// Get the String pointer
CastInst* ptr = cast<CastInst>( stack_top_string(bb,One) );
// Get address of op1'th element of the string
std::vector<Value*> indexVec;
indexVec.push_back( chr_idx );
GetElementPtrInst* gep = new GetElementPtrInst( ptr, indexVec );
bb->getInstList().push_back( gep );
// Get the value and push it
LoadInst* loader = new LoadInst( gep );
bb->getInstList().push_back( loader );
CastInst* caster = CastInst::createInferredCast( loader, Type::IntTy );
bb->getInstList().push_back( caster );
// Push the result back on stack
replace_top( bb, caster );
break;
}
case PUT : // p w2 w1 -- p
{
if (echo) bb->setName("PUT");
// Get the value to put
LoadInst* w1 = cast<LoadInst>( pop_integer(bb) );
// Get the character index
LoadInst* w2 = cast<LoadInst>( pop_integer(bb) );
CastInst* chr_idx = CastInst::createInferredCast( w2, Type::LongTy );
bb->getInstList().push_back( chr_idx );
// Get the String pointer
CastInst* ptr = cast<CastInst>( stack_top_string(bb) );
// Get address of op2'th element of the string
std::vector<Value*> indexVec;
indexVec.push_back( chr_idx );
GetElementPtrInst* gep = new GetElementPtrInst( ptr, indexVec );
bb->getInstList().push_back( gep );
// Cast the value and put it
CastInst* caster = CastInst::createInferredCast( w1, Type::SByteTy );
bb->getInstList().push_back( caster );
StoreInst* storer = new StoreInst( caster, gep );
bb->getInstList().push_back( storer );
break;
}
case RECURSE :
{
if (echo) bb->setName("RECURSE");
std::vector<Value*> params;
CallInst* call_inst = new CallInst( TheFunction, params );
bb->getInstList().push_back( call_inst );
break;
}
case RETURN :
{
if (echo) bb->setName("RETURN");
bb->getInstList().push_back( new ReturnInst() );
break;
}
case EXIT :
{
if (echo) bb->setName("EXIT");
// Get the result value
LoadInst* op1 = cast<LoadInst>(pop_integer(bb));
// Cast down to an integer
CastInst* caster = CastInst::createInferredCast( op1, Type::IntTy );
bb->getInstList().push_back( caster );
// Call exit(3)
std::vector<Value*> params;
params.push_back(caster);
CallInst* call_inst = new CallInst( TheExit, params );
bb->getInstList().push_back( call_inst );
break;
}
case TAB :
{
if (echo) bb->setName("TAB");
// Get the format string for a character
std::vector<Value*> indexVec;
indexVec.push_back( Zero );
indexVec.push_back( Zero );
GetElementPtrInst* format_gep =
new GetElementPtrInst( ChrFormat, indexVec );
bb->getInstList().push_back( format_gep );
// Get the character to print (a tab)
ConstantInt* newline = ConstantInt::get(Type::IntTy,
static_cast<int>('\t'));
// Call printf
std::vector<Value*> args;
args.push_back( format_gep );
args.push_back( newline );
bb->getInstList().push_back( new CallInst( ThePrintf, args ) );
break;
}
case SPACE :
{
if (echo) bb->setName("SPACE");
// Get the format string for a character
std::vector<Value*> indexVec;
indexVec.push_back( Zero );
indexVec.push_back( Zero );
GetElementPtrInst* format_gep =
new GetElementPtrInst( ChrFormat, indexVec );
bb->getInstList().push_back( format_gep );
// Get the character to print (a space)
ConstantInt* newline = ConstantInt::get(Type::IntTy,
static_cast<int>(' '));
// Call printf
std::vector<Value*> args;
args.push_back( format_gep );
args.push_back( newline );
bb->getInstList().push_back( new CallInst( ThePrintf, args ) );
break;
}
case CR :
{
if (echo) bb->setName("CR");
// Get the format string for a character
std::vector<Value*> indexVec;
indexVec.push_back( Zero );
indexVec.push_back( Zero );
GetElementPtrInst* format_gep =
new GetElementPtrInst( ChrFormat, indexVec );
bb->getInstList().push_back( format_gep );
// Get the character to print (a newline)
ConstantInt* newline = ConstantInt::get(Type::IntTy,
static_cast<int>('\n'));
// Call printf
std::vector<Value*> args;
args.push_back( format_gep );
args.push_back( newline );
bb->getInstList().push_back( new CallInst( ThePrintf, args ) );
break;
}
case IN_STR :
{
if (echo) bb->setName("IN_STR");
// Make room for the value result
incr_stack_index(bb);
GetElementPtrInst* gep_value =
cast<GetElementPtrInst>(get_stack_pointer(bb));
CastInst* caster =
new BitCastInst(gep_value, PointerType::get(Type::SByteTy));
// Make room for the count result
incr_stack_index(bb);
GetElementPtrInst* gep_count =
cast<GetElementPtrInst>(get_stack_pointer(bb));
// Call scanf(3)
std::vector<Value*> args;
args.push_back( InStrFormat );
args.push_back( caster );
CallInst* scanf = new CallInst( TheScanf, args );
bb->getInstList().push_back( scanf );
// Store the result
bb->getInstList().push_back( new StoreInst( scanf, gep_count ) );
break;
}
case IN_NUM :
{
if (echo) bb->setName("IN_NUM");
// Make room for the value result
incr_stack_index(bb);
GetElementPtrInst* gep_value =
cast<GetElementPtrInst>(get_stack_pointer(bb));
// Make room for the count result
incr_stack_index(bb);
GetElementPtrInst* gep_count =
cast<GetElementPtrInst>(get_stack_pointer(bb));
// Call scanf(3)
std::vector<Value*> args;
args.push_back( InStrFormat );
args.push_back( gep_value );
CallInst* scanf = new CallInst( TheScanf, args );
bb->getInstList().push_back( scanf );
// Store the result
bb->getInstList().push_back( new StoreInst( scanf, gep_count ) );
break;
}
case IN_CHAR :
{
if (echo) bb->setName("IN_CHAR");
// Make room for the value result
incr_stack_index(bb);
GetElementPtrInst* gep_value =
cast<GetElementPtrInst>(get_stack_pointer(bb));
// Make room for the count result
incr_stack_index(bb);
GetElementPtrInst* gep_count =
cast<GetElementPtrInst>(get_stack_pointer(bb));
// Call scanf(3)
std::vector<Value*> args;
args.push_back( InChrFormat );
args.push_back( gep_value );
CallInst* scanf = new CallInst( TheScanf, args );
bb->getInstList().push_back( scanf );
// Store the result
bb->getInstList().push_back( new StoreInst( scanf, gep_count ) );
break;
}
case OUT_STR :
{
if (echo) bb->setName("OUT_STR");
LoadInst* op1 = cast<LoadInst>(stack_top(bb));
// Get the address of the format string
std::vector<Value*> indexVec;
indexVec.push_back( Zero );
indexVec.push_back( Zero );
GetElementPtrInst* format_gep =
new GetElementPtrInst( StrFormat, indexVec );
bb->getInstList().push_back( format_gep );
// Build function call arguments
std::vector<Value*> args;
args.push_back( format_gep );
args.push_back( op1 );
// Call printf
bb->getInstList().push_back( new CallInst( ThePrintf, args ) );
break;
}
case OUT_NUM :
{
if (echo) bb->setName("OUT_NUM");
// Pop the numeric operand off the stack
LoadInst* op1 = cast<LoadInst>(stack_top(bb));
// Get the address of the format string
std::vector<Value*> indexVec;
indexVec.push_back( Zero );
indexVec.push_back( Zero );
GetElementPtrInst* format_gep =
new GetElementPtrInst( NumFormat, indexVec );
bb->getInstList().push_back( format_gep );
// Build function call arguments
std::vector<Value*> args;
args.push_back( format_gep );
args.push_back( op1 );
// Call printf
bb->getInstList().push_back( new CallInst( ThePrintf, args ) );
break;
}
case OUT_CHAR :
{
if (echo) bb->setName("OUT_CHAR");
// Pop the character operand off the stack
LoadInst* op1 = cast<LoadInst>(stack_top(bb));
// Get the address of the format string
std::vector<Value*> indexVec;
indexVec.push_back( Zero );
indexVec.push_back( Zero );
GetElementPtrInst* format_gep =
new GetElementPtrInst( ChrFormat, indexVec );
bb->getInstList().push_back( format_gep );
// Build function call arguments
std::vector<Value*> args;
args.push_back( format_gep );
args.push_back( op1 );
// Call printf
bb->getInstList().push_back( new CallInst( ThePrintf, args ) );
break;
}
default :
{
ThrowException(std::string("Compiler Error: Unhandled token #"));
}
}
// Return the basic block
return bb;
}