| //===- Reader.cpp - Code to read bytecode files ---------------------------===// | 
 | //  | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by the LLVM research group and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | //  | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This library implements the functionality defined in llvm/Bytecode/Reader.h | 
 | // | 
 | // Note that this library should be as fast as possible, reentrant, and  | 
 | // threadsafe!! | 
 | // | 
 | // TODO: Allow passing in an option to ignore the symbol table | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "Reader.h" | 
 | #include "llvm/Bytecode/BytecodeHandler.h" | 
 | #include "llvm/BasicBlock.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/SymbolTable.h" | 
 | #include "llvm/Bytecode/Format.h" | 
 | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
 | #include "Support/StringExtras.h" | 
 | #include <sstream> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | namespace { | 
 |  | 
 | /// @brief A class for maintaining the slot number definition | 
 | /// as a placeholder for the actual definition for forward constants defs. | 
 | class ConstantPlaceHolder : public ConstantExpr { | 
 |   unsigned ID; | 
 |   ConstantPlaceHolder();                       // DO NOT IMPLEMENT | 
 |   void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT | 
 | public: | 
 |   ConstantPlaceHolder(const Type *Ty, unsigned id)  | 
 |     : ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty), | 
 |     ID(id) {} | 
 |   unsigned getID() { return ID; } | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | // Provide some details on error | 
 | inline void BytecodeReader::error(std::string err) { | 
 |   err +=  " (Vers=" ; | 
 |   err += itostr(RevisionNum) ; | 
 |   err += ", Pos=" ; | 
 |   err += itostr(At-MemStart); | 
 |   err += ")"; | 
 |   throw err; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Bytecode Reading Methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// Determine if the current block being read contains any more data. | 
 | inline bool BytecodeReader::moreInBlock() { | 
 |   return At < BlockEnd; | 
 | } | 
 |  | 
 | /// Throw an error if we've read past the end of the current block | 
 | inline void BytecodeReader::checkPastBlockEnd(const char * block_name) { | 
 |   if (At > BlockEnd) | 
 |     error(std::string("Attempt to read past the end of ") + block_name + " block."); | 
 | } | 
 |  | 
 | /// Align the buffer position to a 32 bit boundary | 
 | inline void BytecodeReader::align32() { | 
 |   BufPtr Save = At; | 
 |   At = (const unsigned char *)((unsigned long)(At+3) & (~3UL)); | 
 |   if (At > Save)  | 
 |     if (Handler) Handler->handleAlignment(At - Save); | 
 |   if (At > BlockEnd)  | 
 |     error("Ran out of data while aligning!"); | 
 | } | 
 |  | 
 | /// Read a whole unsigned integer | 
 | inline unsigned BytecodeReader::read_uint() { | 
 |   if (At+4 > BlockEnd)  | 
 |     error("Ran out of data reading uint!"); | 
 |   At += 4; | 
 |   return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24); | 
 | } | 
 |  | 
 | /// Read a variable-bit-rate encoded unsigned integer | 
 | inline unsigned BytecodeReader::read_vbr_uint() { | 
 |   unsigned Shift = 0; | 
 |   unsigned Result = 0; | 
 |   BufPtr Save = At; | 
 |    | 
 |   do { | 
 |     if (At == BlockEnd)  | 
 |       error("Ran out of data reading vbr_uint!"); | 
 |     Result |= (unsigned)((*At++) & 0x7F) << Shift; | 
 |     Shift += 7; | 
 |   } while (At[-1] & 0x80); | 
 |   if (Handler) Handler->handleVBR32(At-Save); | 
 |   return Result; | 
 | } | 
 |  | 
 | /// Read a variable-bit-rate encoded unsigned 64-bit integer. | 
 | inline uint64_t BytecodeReader::read_vbr_uint64() { | 
 |   unsigned Shift = 0; | 
 |   uint64_t Result = 0; | 
 |   BufPtr Save = At; | 
 |    | 
 |   do { | 
 |     if (At == BlockEnd)  | 
 |       error("Ran out of data reading vbr_uint64!"); | 
 |     Result |= (uint64_t)((*At++) & 0x7F) << Shift; | 
 |     Shift += 7; | 
 |   } while (At[-1] & 0x80); | 
 |   if (Handler) Handler->handleVBR64(At-Save); | 
 |   return Result; | 
 | } | 
 |  | 
 | /// Read a variable-bit-rate encoded signed 64-bit integer. | 
 | inline int64_t BytecodeReader::read_vbr_int64() { | 
 |   uint64_t R = read_vbr_uint64(); | 
 |   if (R & 1) { | 
 |     if (R != 1) | 
 |       return -(int64_t)(R >> 1); | 
 |     else   // There is no such thing as -0 with integers.  "-0" really means | 
 |            // 0x8000000000000000. | 
 |       return 1LL << 63; | 
 |   } else | 
 |     return  (int64_t)(R >> 1); | 
 | } | 
 |  | 
 | /// Read a pascal-style string (length followed by text) | 
 | inline std::string BytecodeReader::read_str() { | 
 |   unsigned Size = read_vbr_uint(); | 
 |   const unsigned char *OldAt = At; | 
 |   At += Size; | 
 |   if (At > BlockEnd)             // Size invalid? | 
 |     error("Ran out of data reading a string!"); | 
 |   return std::string((char*)OldAt, Size); | 
 | } | 
 |  | 
 | /// Read an arbitrary block of data | 
 | inline void BytecodeReader::read_data(void *Ptr, void *End) { | 
 |   unsigned char *Start = (unsigned char *)Ptr; | 
 |   unsigned Amount = (unsigned char *)End - Start; | 
 |   if (At+Amount > BlockEnd)  | 
 |     error("Ran out of data!"); | 
 |   std::copy(At, At+Amount, Start); | 
 |   At += Amount; | 
 | } | 
 |  | 
 | /// Read a float value in little-endian order | 
 | inline void BytecodeReader::read_float(float& FloatVal) { | 
 |   /// FIXME: This is a broken implementation! It reads | 
 |   /// it in a platform-specific endianess. Need to make | 
 |   /// it little endian always. | 
 |   read_data(&FloatVal, &FloatVal+1); | 
 | } | 
 |  | 
 | /// Read a double value in little-endian order | 
 | inline void BytecodeReader::read_double(double& DoubleVal) { | 
 |   /// FIXME: This is a broken implementation! It reads | 
 |   /// it in a platform-specific endianess. Need to make | 
 |   /// it little endian always. | 
 |   read_data(&DoubleVal, &DoubleVal+1); | 
 | } | 
 |  | 
 | /// Read a block header and obtain its type and size | 
 | inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) { | 
 |   Type = read_uint(); | 
 |   Size = read_uint(); | 
 |   BlockStart = At; | 
 |   if (At + Size > BlockEnd) | 
 |     error("Attempt to size a block past end of memory"); | 
 |   BlockEnd = At + Size; | 
 |   if (Handler) Handler->handleBlock(Type, BlockStart, Size); | 
 | } | 
 |  | 
 |  | 
 | /// In LLVM 1.2 and before, Types were derived from Value and so they were | 
 | /// written as part of the type planes along with any other Value. In LLVM | 
 | /// 1.3 this changed so that Type does not derive from Value. Consequently, | 
 | /// the BytecodeReader's containers for Values can't contain Types because | 
 | /// there's no inheritance relationship. This means that the "Type Type" | 
 | /// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3  | 
 | /// whenever a bytecode construct must have both types and values together,  | 
 | /// the types are always read/written first and then the Values. Furthermore | 
 | /// since Type::TypeTyID no longer exists, its value (12) now corresponds to | 
 | /// Type::LabelTyID. In order to overcome this we must "sanitize" all the | 
 | /// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change. | 
 | /// For LLVM 1.2 and before, this function will decrement the type id by | 
 | /// one to account for the missing Type::TypeTyID enumerator if the value is | 
 | /// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this | 
 | /// function returns true, otherwise false. This helps detect situations | 
 | /// where the pre 1.3 bytecode is indicating that what follows is a type. | 
 | /// @returns true iff type id corresponds to pre 1.3 "type type"  | 
 | inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) { | 
 |   if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later | 
 |     if (TypeId == Type::LabelTyID) { | 
 |       TypeId = Type::VoidTyID; // sanitize it | 
 |       return true; // indicate we got TypeTyID in pre 1.3 bytecode | 
 |     } else if (TypeId > Type::LabelTyID) | 
 |       --TypeId; // shift all planes down because type type plane is missing | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// Reads a vbr uint to read in a type id and does the necessary | 
 | /// conversion on it by calling sanitizeTypeId. | 
 | /// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type" | 
 | /// @see sanitizeTypeId | 
 | inline bool BytecodeReader::read_typeid(unsigned &TypeId) { | 
 |   TypeId = read_vbr_uint(); | 
 |   return sanitizeTypeId(TypeId); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // IR Lookup Methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// Determine if a type id has an implicit null value | 
 | inline bool BytecodeReader::hasImplicitNull(unsigned TyID) { | 
 |   if (!hasExplicitPrimitiveZeros) | 
 |     return TyID != Type::LabelTyID && TyID != Type::VoidTyID; | 
 |   return TyID >= Type::FirstDerivedTyID; | 
 | } | 
 |  | 
 | /// Obtain a type given a typeid and account for things like compaction tables, | 
 | /// function level vs module level, and the offsetting for the primitive types. | 
 | const Type *BytecodeReader::getType(unsigned ID) { | 
 |   if (ID < Type::FirstDerivedTyID) | 
 |     if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID)) | 
 |       return T;   // Asked for a primitive type... | 
 |  | 
 |   // Otherwise, derived types need offset... | 
 |   ID -= Type::FirstDerivedTyID; | 
 |  | 
 |   if (!CompactionTypes.empty()) { | 
 |     if (ID >= CompactionTypes.size()) | 
 |       error("Type ID out of range for compaction table!"); | 
 |     return CompactionTypes[ID]; | 
 |   } | 
 |  | 
 |   // Is it a module-level type? | 
 |   if (ID < ModuleTypes.size()) | 
 |     return ModuleTypes[ID].get(); | 
 |  | 
 |   // Nope, is it a function-level type? | 
 |   ID -= ModuleTypes.size(); | 
 |   if (ID < FunctionTypes.size()) | 
 |     return FunctionTypes[ID].get(); | 
 |  | 
 |   error("Illegal type reference!"); | 
 |   return Type::VoidTy; | 
 | } | 
 |  | 
 | /// Get a sanitized type id. This just makes sure that the \p ID | 
 | /// is both sanitized and not the "type type" of pre-1.3 bytecode. | 
 | /// @see sanitizeTypeId | 
 | inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) { | 
 |   if (sanitizeTypeId(ID)) | 
 |     error("Invalid type id encountered"); | 
 |   return getType(ID); | 
 | } | 
 |  | 
 | /// This method just saves some coding. It uses read_typeid to read | 
 | /// in a sanitized type id, errors that its not the type type, and | 
 | /// then calls getType to return the type value. | 
 | inline const Type* BytecodeReader::readSanitizedType() { | 
 |   unsigned ID; | 
 |   if (read_typeid(ID)) | 
 |     error("Invalid type id encountered"); | 
 |   return getType(ID); | 
 | } | 
 |  | 
 | /// Get the slot number associated with a type accounting for primitive | 
 | /// types, compaction tables, and function level vs module level. | 
 | unsigned BytecodeReader::getTypeSlot(const Type *Ty) { | 
 |   if (Ty->isPrimitiveType()) | 
 |     return Ty->getTypeID(); | 
 |  | 
 |   // Scan the compaction table for the type if needed. | 
 |   if (!CompactionTypes.empty()) { | 
 |     std::vector<const Type*>::const_iterator I =  | 
 |       find(CompactionTypes.begin(), CompactionTypes.end(), Ty); | 
 |  | 
 |     if (I == CompactionTypes.end()) | 
 |       error("Couldn't find type specified in compaction table!"); | 
 |     return Type::FirstDerivedTyID + (&*I - &CompactionTypes[0]); | 
 |   } | 
 |  | 
 |   // Check the function level types first... | 
 |   TypeListTy::iterator I = find(FunctionTypes.begin(), FunctionTypes.end(), Ty); | 
 |  | 
 |   if (I != FunctionTypes.end()) | 
 |     return Type::FirstDerivedTyID + ModuleTypes.size() +  | 
 |            (&*I - &FunctionTypes[0]); | 
 |  | 
 |   // Check the module level types now... | 
 |   I = find(ModuleTypes.begin(), ModuleTypes.end(), Ty); | 
 |   if (I == ModuleTypes.end()) | 
 |     error("Didn't find type in ModuleTypes."); | 
 |   return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]); | 
 | } | 
 |  | 
 | /// This is just like getType, but when a compaction table is in use, it is | 
 | /// ignored.  It also ignores function level types. | 
 | /// @see getType | 
 | const Type *BytecodeReader::getGlobalTableType(unsigned Slot) { | 
 |   if (Slot < Type::FirstDerivedTyID) { | 
 |     const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot); | 
 |     if (!Ty) | 
 |       error("Not a primitive type ID?"); | 
 |     return Ty; | 
 |   } | 
 |   Slot -= Type::FirstDerivedTyID; | 
 |   if (Slot >= ModuleTypes.size()) | 
 |     error("Illegal compaction table type reference!"); | 
 |   return ModuleTypes[Slot]; | 
 | } | 
 |  | 
 | /// This is just like getTypeSlot, but when a compaction table is in use, it | 
 | /// is ignored. It also ignores function level types. | 
 | unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) { | 
 |   if (Ty->isPrimitiveType()) | 
 |     return Ty->getTypeID(); | 
 |   TypeListTy::iterator I = find(ModuleTypes.begin(), | 
 |                                       ModuleTypes.end(), Ty); | 
 |   if (I == ModuleTypes.end()) | 
 |     error("Didn't find type in ModuleTypes."); | 
 |   return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]); | 
 | } | 
 |  | 
 | /// Retrieve a value of a given type and slot number, possibly creating  | 
 | /// it if it doesn't already exist.  | 
 | Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) { | 
 |   assert(type != Type::LabelTyID && "getValue() cannot get blocks!"); | 
 |   unsigned Num = oNum; | 
 |  | 
 |   // If there is a compaction table active, it defines the low-level numbers. | 
 |   // If not, the module values define the low-level numbers. | 
 |   if (CompactionValues.size() > type && !CompactionValues[type].empty()) { | 
 |     if (Num < CompactionValues[type].size()) | 
 |       return CompactionValues[type][Num]; | 
 |     Num -= CompactionValues[type].size(); | 
 |   } else { | 
 |     // By default, the global type id is the type id passed in | 
 |     unsigned GlobalTyID = type; | 
 |  | 
 |     // If the type plane was compactified, figure out the global type ID | 
 |     // by adding the derived type ids and the distance. | 
 |     if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID) { | 
 |       const Type *Ty = CompactionTypes[type-Type::FirstDerivedTyID]; | 
 |       TypeListTy::iterator I =  | 
 |         find(ModuleTypes.begin(), ModuleTypes.end(), Ty); | 
 |       assert(I != ModuleTypes.end()); | 
 |       GlobalTyID = Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]); | 
 |     } | 
 |  | 
 |     if (hasImplicitNull(GlobalTyID)) { | 
 |       if (Num == 0) | 
 |         return Constant::getNullValue(getType(type)); | 
 |       --Num; | 
 |     } | 
 |  | 
 |     if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) { | 
 |       if (Num < ModuleValues[GlobalTyID]->size()) | 
 |         return ModuleValues[GlobalTyID]->getOperand(Num); | 
 |       Num -= ModuleValues[GlobalTyID]->size(); | 
 |     } | 
 |   } | 
 |  | 
 |   if (FunctionValues.size() > type &&  | 
 |       FunctionValues[type] &&  | 
 |       Num < FunctionValues[type]->size()) | 
 |     return FunctionValues[type]->getOperand(Num); | 
 |  | 
 |   if (!Create) return 0;  // Do not create a placeholder? | 
 |  | 
 |   std::pair<unsigned,unsigned> KeyValue(type, oNum); | 
 |   ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue); | 
 |   if (I != ForwardReferences.end() && I->first == KeyValue) | 
 |     return I->second;   // We have already created this placeholder | 
 |  | 
 |   Value *Val = new Argument(getType(type)); | 
 |   ForwardReferences.insert(I, std::make_pair(KeyValue, Val)); | 
 |   return Val; | 
 | } | 
 |  | 
 | /// This is just like getValue, but when a compaction table is in use, it  | 
 | /// is ignored.  Also, no forward references or other fancy features are  | 
 | /// supported. | 
 | Value* BytecodeReader::getGlobalTableValue(const Type *Ty, unsigned SlotNo) { | 
 |   // FIXME: getTypeSlot is inefficient! | 
 |   unsigned TyID = getGlobalTableTypeSlot(Ty); | 
 |    | 
 |   if (TyID != Type::LabelTyID) { | 
 |     if (SlotNo == 0) | 
 |       return Constant::getNullValue(Ty); | 
 |     --SlotNo; | 
 |   } | 
 |  | 
 |   if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 || | 
 |       SlotNo >= ModuleValues[TyID]->size()) { | 
 |     error("Corrupt compaction table entry!" | 
 |         + utostr(TyID) + ", " + utostr(SlotNo) + ": "  | 
 |         + utostr(ModuleValues.size()) + ", " | 
 |         + utohexstr(int((void*)ModuleValues[TyID])) + ", " | 
 |         + utostr(ModuleValues[TyID]->size())); | 
 |   } | 
 |   return ModuleValues[TyID]->getOperand(SlotNo); | 
 | } | 
 |  | 
 | /// Just like getValue, except that it returns a null pointer | 
 | /// only on error.  It always returns a constant (meaning that if the value is | 
 | /// defined, but is not a constant, that is an error).  If the specified | 
 | /// constant hasn't been parsed yet, a placeholder is defined and used.   | 
 | /// Later, after the real value is parsed, the placeholder is eliminated. | 
 | Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) { | 
 |   if (Value *V = getValue(TypeSlot, Slot, false)) | 
 |     if (Constant *C = dyn_cast<Constant>(V)) | 
 |       return C;   // If we already have the value parsed, just return it | 
 |     else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) | 
 |       // ConstantPointerRef's are an abomination, but at least they don't have | 
 |       // to infest bytecode files. | 
 |       return ConstantPointerRef::get(GV); | 
 |     else | 
 |       error("Reference of a value is expected to be a constant!"); | 
 |  | 
 |   const Type *Ty = getType(TypeSlot); | 
 |   std::pair<const Type*, unsigned> Key(Ty, Slot); | 
 |   ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key); | 
 |  | 
 |   if (I != ConstantFwdRefs.end() && I->first == Key) { | 
 |     return I->second; | 
 |   } else { | 
 |     // Create a placeholder for the constant reference and | 
 |     // keep track of the fact that we have a forward ref to recycle it | 
 |     Constant *C = new ConstantPlaceHolder(Ty, Slot); | 
 |      | 
 |     // Keep track of the fact that we have a forward ref to recycle it | 
 |     ConstantFwdRefs.insert(I, std::make_pair(Key, C)); | 
 |     return C; | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // IR Construction Methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// As values are created, they are inserted into the appropriate place | 
 | /// with this method. The ValueTable argument must be one of ModuleValues | 
 | /// or FunctionValues data members of this class. | 
 | unsigned BytecodeReader::insertValue(Value *Val, unsigned type,  | 
 |                                       ValueTable &ValueTab) { | 
 |   assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) || | 
 |           !hasImplicitNull(type) && | 
 |          "Cannot read null values from bytecode!"); | 
 |  | 
 |   if (ValueTab.size() <= type) | 
 |     ValueTab.resize(type+1); | 
 |  | 
 |   if (!ValueTab[type]) ValueTab[type] = new ValueList(); | 
 |  | 
 |   ValueTab[type]->push_back(Val); | 
 |  | 
 |   bool HasOffset = hasImplicitNull(type); | 
 |   return ValueTab[type]->size()-1 + HasOffset; | 
 | } | 
 |  | 
 | /// Insert the arguments of a function as new values in the reader. | 
 | void BytecodeReader::insertArguments(Function* F) { | 
 |   const FunctionType *FT = F->getFunctionType(); | 
 |   Function::aiterator AI = F->abegin(); | 
 |   for (FunctionType::param_iterator It = FT->param_begin(); | 
 |        It != FT->param_end(); ++It, ++AI) | 
 |     insertValue(AI, getTypeSlot(AI->getType()), FunctionValues); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Bytecode Parsing Methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// This method parses a single instruction. The instruction is | 
 | /// inserted at the end of the \p BB provided. The arguments of | 
 | /// the instruction are provided in the \p Args vector. | 
 | void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds, | 
 |                                       BasicBlock* BB) { | 
 |   BufPtr SaveAt = At; | 
 |  | 
 |   // Clear instruction data | 
 |   Oprnds.clear(); | 
 |   unsigned iType = 0; | 
 |   unsigned Opcode = 0; | 
 |   unsigned Op = read_uint(); | 
 |  | 
 |   // bits   Instruction format:        Common to all formats | 
 |   // -------------------------- | 
 |   // 01-00: Opcode type, fixed to 1. | 
 |   // 07-02: Opcode | 
 |   Opcode    = (Op >> 2) & 63; | 
 |   Oprnds.resize((Op >> 0) & 03); | 
 |  | 
 |   // Extract the operands | 
 |   switch (Oprnds.size()) { | 
 |   case 1: | 
 |     // bits   Instruction format: | 
 |     // -------------------------- | 
 |     // 19-08: Resulting type plane | 
 |     // 31-20: Operand #1 (if set to (2^12-1), then zero operands) | 
 |     // | 
 |     iType   = (Op >>  8) & 4095; | 
 |     Oprnds[0] = (Op >> 20) & 4095; | 
 |     if (Oprnds[0] == 4095)    // Handle special encoding for 0 operands... | 
 |       Oprnds.resize(0); | 
 |     break; | 
 |   case 2: | 
 |     // bits   Instruction format: | 
 |     // -------------------------- | 
 |     // 15-08: Resulting type plane | 
 |     // 23-16: Operand #1 | 
 |     // 31-24: Operand #2   | 
 |     // | 
 |     iType   = (Op >>  8) & 255; | 
 |     Oprnds[0] = (Op >> 16) & 255; | 
 |     Oprnds[1] = (Op >> 24) & 255; | 
 |     break; | 
 |   case 3: | 
 |     // bits   Instruction format: | 
 |     // -------------------------- | 
 |     // 13-08: Resulting type plane | 
 |     // 19-14: Operand #1 | 
 |     // 25-20: Operand #2 | 
 |     // 31-26: Operand #3 | 
 |     // | 
 |     iType   = (Op >>  8) & 63; | 
 |     Oprnds[0] = (Op >> 14) & 63; | 
 |     Oprnds[1] = (Op >> 20) & 63; | 
 |     Oprnds[2] = (Op >> 26) & 63; | 
 |     break; | 
 |   case 0: | 
 |     At -= 4;  // Hrm, try this again... | 
 |     Opcode = read_vbr_uint(); | 
 |     Opcode >>= 2; | 
 |     iType = read_vbr_uint(); | 
 |  | 
 |     unsigned NumOprnds = read_vbr_uint(); | 
 |     Oprnds.resize(NumOprnds); | 
 |  | 
 |     if (NumOprnds == 0) | 
 |       error("Zero-argument instruction found; this is invalid."); | 
 |  | 
 |     for (unsigned i = 0; i != NumOprnds; ++i) | 
 |       Oprnds[i] = read_vbr_uint(); | 
 |     align32(); | 
 |     break; | 
 |   } | 
 |  | 
 |   const Type *InstTy = getSanitizedType(iType); | 
 |  | 
 |   // We have enough info to inform the handler now. | 
 |   if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt); | 
 |  | 
 |   // Declare the resulting instruction we'll build. | 
 |   Instruction *Result = 0; | 
 |  | 
 |   // Handle binary operators | 
 |   if (Opcode >= Instruction::BinaryOpsBegin && | 
 |       Opcode <  Instruction::BinaryOpsEnd  && Oprnds.size() == 2) | 
 |     Result = BinaryOperator::create((Instruction::BinaryOps)Opcode, | 
 |                                     getValue(iType, Oprnds[0]), | 
 |                                     getValue(iType, Oprnds[1])); | 
 |  | 
 |   switch (Opcode) { | 
 |   default:  | 
 |     if (Result == 0)  | 
 |       error("Illegal instruction read!"); | 
 |     break; | 
 |   case Instruction::VAArg: | 
 |     Result = new VAArgInst(getValue(iType, Oprnds[0]),  | 
 |                            getSanitizedType(Oprnds[1])); | 
 |     break; | 
 |   case Instruction::VANext: | 
 |     Result = new VANextInst(getValue(iType, Oprnds[0]),  | 
 |                             getSanitizedType(Oprnds[1])); | 
 |     break; | 
 |   case Instruction::Cast: | 
 |     Result = new CastInst(getValue(iType, Oprnds[0]),  | 
 |                           getSanitizedType(Oprnds[1])); | 
 |     break; | 
 |   case Instruction::Select: | 
 |     Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]), | 
 |                             getValue(iType, Oprnds[1]), | 
 |                             getValue(iType, Oprnds[2])); | 
 |     break; | 
 |   case Instruction::PHI: { | 
 |     if (Oprnds.size() == 0 || (Oprnds.size() & 1)) | 
 |       error("Invalid phi node encountered!"); | 
 |  | 
 |     PHINode *PN = new PHINode(InstTy); | 
 |     PN->op_reserve(Oprnds.size()); | 
 |     for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2) | 
 |       PN->addIncoming(getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1])); | 
 |     Result = PN; | 
 |     break; | 
 |   } | 
 |  | 
 |   case Instruction::Shl: | 
 |   case Instruction::Shr: | 
 |     Result = new ShiftInst((Instruction::OtherOps)Opcode, | 
 |                            getValue(iType, Oprnds[0]), | 
 |                            getValue(Type::UByteTyID, Oprnds[1])); | 
 |     break; | 
 |   case Instruction::Ret: | 
 |     if (Oprnds.size() == 0) | 
 |       Result = new ReturnInst(); | 
 |     else if (Oprnds.size() == 1) | 
 |       Result = new ReturnInst(getValue(iType, Oprnds[0])); | 
 |     else | 
 |       error("Unrecognized instruction!"); | 
 |     break; | 
 |  | 
 |   case Instruction::Br: | 
 |     if (Oprnds.size() == 1) | 
 |       Result = new BranchInst(getBasicBlock(Oprnds[0])); | 
 |     else if (Oprnds.size() == 3) | 
 |       Result = new BranchInst(getBasicBlock(Oprnds[0]),  | 
 |           getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2])); | 
 |     else | 
 |       error("Invalid number of operands for a 'br' instruction!"); | 
 |     break; | 
 |   case Instruction::Switch: { | 
 |     if (Oprnds.size() & 1) | 
 |       error("Switch statement with odd number of arguments!"); | 
 |  | 
 |     SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]), | 
 |                                    getBasicBlock(Oprnds[1])); | 
 |     for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2) | 
 |       I->addCase(cast<Constant>(getValue(iType, Oprnds[i])), | 
 |                  getBasicBlock(Oprnds[i+1])); | 
 |     Result = I; | 
 |     break; | 
 |   } | 
 |  | 
 |   case Instruction::Call: { | 
 |     if (Oprnds.size() == 0) | 
 |       error("Invalid call instruction encountered!"); | 
 |  | 
 |     Value *F = getValue(iType, Oprnds[0]); | 
 |  | 
 |     // Check to make sure we have a pointer to function type | 
 |     const PointerType *PTy = dyn_cast<PointerType>(F->getType()); | 
 |     if (PTy == 0) error("Call to non function pointer value!"); | 
 |     const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType()); | 
 |     if (FTy == 0) error("Call to non function pointer value!"); | 
 |  | 
 |     std::vector<Value *> Params; | 
 |     if (!FTy->isVarArg()) { | 
 |       FunctionType::param_iterator It = FTy->param_begin(); | 
 |  | 
 |       for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) { | 
 |         if (It == FTy->param_end()) | 
 |           error("Invalid call instruction!"); | 
 |         Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i])); | 
 |       } | 
 |       if (It != FTy->param_end()) | 
 |         error("Invalid call instruction!"); | 
 |     } else { | 
 |       Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1); | 
 |  | 
 |       unsigned FirstVariableOperand; | 
 |       if (Oprnds.size() < FTy->getNumParams()) | 
 |         error("Call instruction missing operands!"); | 
 |  | 
 |       // Read all of the fixed arguments | 
 |       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) | 
 |         Params.push_back(getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i])); | 
 |        | 
 |       FirstVariableOperand = FTy->getNumParams(); | 
 |  | 
 |       if ((Oprnds.size()-FirstVariableOperand) & 1) // Must be pairs of type/value | 
 |         error("Invalid call instruction!"); | 
 |          | 
 |       for (unsigned i = FirstVariableOperand, e = Oprnds.size();  | 
 |            i != e; i += 2) | 
 |         Params.push_back(getValue(Oprnds[i], Oprnds[i+1])); | 
 |     } | 
 |  | 
 |     Result = new CallInst(F, Params); | 
 |     break; | 
 |   } | 
 |   case Instruction::Invoke: { | 
 |     if (Oprnds.size() < 3)  | 
 |       error("Invalid invoke instruction!"); | 
 |     Value *F = getValue(iType, Oprnds[0]); | 
 |  | 
 |     // Check to make sure we have a pointer to function type | 
 |     const PointerType *PTy = dyn_cast<PointerType>(F->getType()); | 
 |     if (PTy == 0)  | 
 |       error("Invoke to non function pointer value!"); | 
 |     const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType()); | 
 |     if (FTy == 0)  | 
 |       error("Invoke to non function pointer value!"); | 
 |  | 
 |     std::vector<Value *> Params; | 
 |     BasicBlock *Normal, *Except; | 
 |  | 
 |     if (!FTy->isVarArg()) { | 
 |       Normal = getBasicBlock(Oprnds[1]); | 
 |       Except = getBasicBlock(Oprnds[2]); | 
 |  | 
 |       FunctionType::param_iterator It = FTy->param_begin(); | 
 |       for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) { | 
 |         if (It == FTy->param_end()) | 
 |           error("Invalid invoke instruction!"); | 
 |         Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i])); | 
 |       } | 
 |       if (It != FTy->param_end()) | 
 |         error("Invalid invoke instruction!"); | 
 |     } else { | 
 |       Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1); | 
 |  | 
 |       Normal = getBasicBlock(Oprnds[0]); | 
 |       Except = getBasicBlock(Oprnds[1]); | 
 |        | 
 |       unsigned FirstVariableArgument = FTy->getNumParams()+2; | 
 |       for (unsigned i = 2; i != FirstVariableArgument; ++i) | 
 |         Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)), | 
 |                                   Oprnds[i])); | 
 |        | 
 |       if (Oprnds.size()-FirstVariableArgument & 1) // Must be type/value pairs | 
 |         error("Invalid invoke instruction!"); | 
 |  | 
 |       for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2) | 
 |         Params.push_back(getValue(Oprnds[i], Oprnds[i+1])); | 
 |     } | 
 |  | 
 |     Result = new InvokeInst(F, Normal, Except, Params); | 
 |     break; | 
 |   } | 
 |   case Instruction::Malloc: | 
 |     if (Oprnds.size() > 2)  | 
 |       error("Invalid malloc instruction!"); | 
 |     if (!isa<PointerType>(InstTy)) | 
 |       error("Invalid malloc instruction!"); | 
 |  | 
 |     Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(), | 
 |                             Oprnds.size() ? getValue(Type::UIntTyID, | 
 |                                                    Oprnds[0]) : 0); | 
 |     break; | 
 |  | 
 |   case Instruction::Alloca: | 
 |     if (Oprnds.size() > 2)  | 
 |       error("Invalid alloca instruction!"); | 
 |     if (!isa<PointerType>(InstTy)) | 
 |       error("Invalid alloca instruction!"); | 
 |  | 
 |     Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(), | 
 |                             Oprnds.size() ? getValue(Type::UIntTyID,  | 
 |                             Oprnds[0]) :0); | 
 |     break; | 
 |   case Instruction::Free: | 
 |     if (!isa<PointerType>(InstTy)) | 
 |       error("Invalid free instruction!"); | 
 |     Result = new FreeInst(getValue(iType, Oprnds[0])); | 
 |     break; | 
 |   case Instruction::GetElementPtr: { | 
 |     if (Oprnds.size() == 0 || !isa<PointerType>(InstTy)) | 
 |       error("Invalid getelementptr instruction!"); | 
 |  | 
 |     std::vector<Value*> Idx; | 
 |  | 
 |     const Type *NextTy = InstTy; | 
 |     for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) { | 
 |       const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy); | 
 |       if (!TopTy)  | 
 |         error("Invalid getelementptr instruction!");  | 
 |  | 
 |       unsigned ValIdx = Oprnds[i]; | 
 |       unsigned IdxTy = 0; | 
 |       if (!hasRestrictedGEPTypes) { | 
 |         // Struct indices are always uints, sequential type indices can be any | 
 |         // of the 32 or 64-bit integer types.  The actual choice of type is | 
 |         // encoded in the low two bits of the slot number. | 
 |         if (isa<StructType>(TopTy)) | 
 |           IdxTy = Type::UIntTyID; | 
 |         else { | 
 |           switch (ValIdx & 3) { | 
 |           default: | 
 |           case 0: IdxTy = Type::UIntTyID; break; | 
 |           case 1: IdxTy = Type::IntTyID; break; | 
 |           case 2: IdxTy = Type::ULongTyID; break; | 
 |           case 3: IdxTy = Type::LongTyID; break; | 
 |           } | 
 |           ValIdx >>= 2; | 
 |         } | 
 |       } else { | 
 |         IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID; | 
 |       } | 
 |  | 
 |       Idx.push_back(getValue(IdxTy, ValIdx)); | 
 |  | 
 |       // Convert ubyte struct indices into uint struct indices. | 
 |       if (isa<StructType>(TopTy) && hasRestrictedGEPTypes) | 
 |         if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back())) | 
 |           Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy); | 
 |  | 
 |       NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true); | 
 |     } | 
 |  | 
 |     Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx); | 
 |     break; | 
 |   } | 
 |  | 
 |   case 62:   // volatile load | 
 |   case Instruction::Load: | 
 |     if (Oprnds.size() != 1 || !isa<PointerType>(InstTy)) | 
 |       error("Invalid load instruction!"); | 
 |     Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62); | 
 |     break; | 
 |  | 
 |   case 63:   // volatile store  | 
 |   case Instruction::Store: { | 
 |     if (!isa<PointerType>(InstTy) || Oprnds.size() != 2) | 
 |       error("Invalid store instruction!"); | 
 |  | 
 |     Value *Ptr = getValue(iType, Oprnds[1]); | 
 |     const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType(); | 
 |     Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr, | 
 |                            Opcode == 63); | 
 |     break; | 
 |   } | 
 |   case Instruction::Unwind: | 
 |     if (Oprnds.size() != 0)  | 
 |       error("Invalid unwind instruction!"); | 
 |     Result = new UnwindInst(); | 
 |     break; | 
 |   }  // end switch(Opcode)  | 
 |  | 
 |   unsigned TypeSlot; | 
 |   if (Result->getType() == InstTy) | 
 |     TypeSlot = iType; | 
 |   else | 
 |     TypeSlot = getTypeSlot(Result->getType()); | 
 |  | 
 |   insertValue(Result, TypeSlot, FunctionValues); | 
 |   BB->getInstList().push_back(Result); | 
 | } | 
 |  | 
 | /// Get a particular numbered basic block, which might be a forward reference. | 
 | /// This works together with ParseBasicBlock to handle these forward references | 
 | /// in a clean manner.  This function is used when constructing phi, br, switch,  | 
 | /// and other instructions that reference basic blocks. Blocks are numbered  | 
 | /// sequentially as they appear in the function. | 
 | BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) { | 
 |   // Make sure there is room in the table... | 
 |   if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1); | 
 |  | 
 |   // First check to see if this is a backwards reference, i.e., ParseBasicBlock | 
 |   // has already created this block, or if the forward reference has already | 
 |   // been created. | 
 |   if (ParsedBasicBlocks[ID]) | 
 |     return ParsedBasicBlocks[ID]; | 
 |  | 
 |   // Otherwise, the basic block has not yet been created.  Do so and add it to | 
 |   // the ParsedBasicBlocks list. | 
 |   return ParsedBasicBlocks[ID] = new BasicBlock(); | 
 | } | 
 |  | 
 | /// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.   | 
 | /// This method reads in one of the basicblock packets. This method is not used | 
 | /// for bytecode files after LLVM 1.0 | 
 | /// @returns The basic block constructed. | 
 | BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) { | 
 |   if (Handler) Handler->handleBasicBlockBegin(BlockNo); | 
 |  | 
 |   BasicBlock *BB = 0; | 
 |  | 
 |   if (ParsedBasicBlocks.size() == BlockNo) | 
 |     ParsedBasicBlocks.push_back(BB = new BasicBlock()); | 
 |   else if (ParsedBasicBlocks[BlockNo] == 0) | 
 |     BB = ParsedBasicBlocks[BlockNo] = new BasicBlock(); | 
 |   else | 
 |     BB = ParsedBasicBlocks[BlockNo]; | 
 |  | 
 |   std::vector<unsigned> Operands; | 
 |   while (moreInBlock()) | 
 |     ParseInstruction(Operands, BB); | 
 |  | 
 |   if (Handler) Handler->handleBasicBlockEnd(BlockNo); | 
 |   return BB; | 
 | } | 
 |  | 
 | /// Parse all of the BasicBlock's & Instruction's in the body of a function. | 
 | /// In post 1.0 bytecode files, we no longer emit basic block individually,  | 
 | /// in order to avoid per-basic-block overhead. | 
 | /// @returns Rhe number of basic blocks encountered. | 
 | unsigned BytecodeReader::ParseInstructionList(Function* F) { | 
 |   unsigned BlockNo = 0; | 
 |   std::vector<unsigned> Args; | 
 |  | 
 |   while (moreInBlock()) { | 
 |     if (Handler) Handler->handleBasicBlockBegin(BlockNo); | 
 |     BasicBlock *BB; | 
 |     if (ParsedBasicBlocks.size() == BlockNo) | 
 |       ParsedBasicBlocks.push_back(BB = new BasicBlock()); | 
 |     else if (ParsedBasicBlocks[BlockNo] == 0) | 
 |       BB = ParsedBasicBlocks[BlockNo] = new BasicBlock(); | 
 |     else | 
 |       BB = ParsedBasicBlocks[BlockNo]; | 
 |     ++BlockNo; | 
 |     F->getBasicBlockList().push_back(BB); | 
 |  | 
 |     // Read instructions into this basic block until we get to a terminator | 
 |     while (moreInBlock() && !BB->getTerminator()) | 
 |       ParseInstruction(Args, BB); | 
 |  | 
 |     if (!BB->getTerminator()) | 
 |       error("Non-terminated basic block found!"); | 
 |  | 
 |     if (Handler) Handler->handleBasicBlockEnd(BlockNo-1); | 
 |   } | 
 |  | 
 |   return BlockNo; | 
 | } | 
 |  | 
 | /// Parse a symbol table. This works for both module level and function | 
 | /// level symbol tables.  For function level symbol tables, the CurrentFunction | 
 | /// parameter must be non-zero and the ST parameter must correspond to | 
 | /// CurrentFunction's symbol table. For Module level symbol tables, the | 
 | /// CurrentFunction argument must be zero. | 
 | void BytecodeReader::ParseSymbolTable(Function *CurrentFunction, | 
 |                                       SymbolTable *ST) { | 
 |   if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST); | 
 |  | 
 |   // Allow efficient basic block lookup by number. | 
 |   std::vector<BasicBlock*> BBMap; | 
 |   if (CurrentFunction) | 
 |     for (Function::iterator I = CurrentFunction->begin(), | 
 |            E = CurrentFunction->end(); I != E; ++I) | 
 |       BBMap.push_back(I); | 
 |  | 
 |   /// In LLVM 1.3 we write types separately from values so | 
 |   /// The types are always first in the symbol table. This is | 
 |   /// because Type no longer derives from Value. | 
 |   if (!hasTypeDerivedFromValue) { | 
 |     // Symtab block header: [num entries] | 
 |     unsigned NumEntries = read_vbr_uint(); | 
 |     for (unsigned i = 0; i < NumEntries; ++i) { | 
 |       // Symtab entry: [def slot #][name] | 
 |       unsigned slot = read_vbr_uint(); | 
 |       std::string Name = read_str(); | 
 |       const Type* T = getType(slot); | 
 |       ST->insert(Name, T); | 
 |     } | 
 |   } | 
 |  | 
 |   while (moreInBlock()) { | 
 |     // Symtab block header: [num entries][type id number] | 
 |     unsigned NumEntries = read_vbr_uint(); | 
 |     unsigned Typ = 0; | 
 |     bool isTypeType = read_typeid(Typ); | 
 |     const Type *Ty = getType(Typ); | 
 |  | 
 |     for (unsigned i = 0; i != NumEntries; ++i) { | 
 |       // Symtab entry: [def slot #][name] | 
 |       unsigned slot = read_vbr_uint(); | 
 |       std::string Name = read_str(); | 
 |  | 
 |       // if we're reading a pre 1.3 bytecode file and the type plane | 
 |       // is the "type type", handle it here | 
 |       if (isTypeType) { | 
 |         const Type* T = getType(slot); | 
 |         if (T == 0) | 
 |           error("Failed type look-up for name '" + Name + "'"); | 
 |         ST->insert(Name, T); | 
 |         continue; // code below must be short circuited | 
 |       } else { | 
 |         Value *V = 0; | 
 |         if (Typ == Type::LabelTyID) { | 
 |           if (slot < BBMap.size()) | 
 |             V = BBMap[slot]; | 
 |         } else { | 
 |           V = getValue(Typ, slot, false); // Find mapping... | 
 |         } | 
 |         if (V == 0) | 
 |           error("Failed value look-up for name '" + Name + "'"); | 
 |         V->setName(Name, ST); | 
 |       } | 
 |     } | 
 |   } | 
 |   checkPastBlockEnd("Symbol Table"); | 
 |   if (Handler) Handler->handleSymbolTableEnd(); | 
 | } | 
 |  | 
 | /// Read in the types portion of a compaction table.  | 
 | void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) { | 
 |   for (unsigned i = 0; i != NumEntries; ++i) { | 
 |     unsigned TypeSlot = 0; | 
 |     if (read_typeid(TypeSlot)) | 
 |       error("Invalid type in compaction table: type type"); | 
 |     const Type *Typ = getGlobalTableType(TypeSlot); | 
 |     CompactionTypes.push_back(Typ); | 
 |     if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ); | 
 |   } | 
 | } | 
 |  | 
 | /// Parse a compaction table. | 
 | void BytecodeReader::ParseCompactionTable() { | 
 |  | 
 |   // Notify handler that we're beginning a compaction table. | 
 |   if (Handler) Handler->handleCompactionTableBegin(); | 
 |  | 
 |   // In LLVM 1.3 Type no longer derives from Value. So,  | 
 |   // we always write them first in the compaction table | 
 |   // because they can't occupy a "type plane" where the | 
 |   // Values reside. | 
 |   if (! hasTypeDerivedFromValue) { | 
 |     unsigned NumEntries = read_vbr_uint(); | 
 |     ParseCompactionTypes(NumEntries); | 
 |   } | 
 |  | 
 |   // Compaction tables live in separate blocks so we have to loop | 
 |   // until we've read the whole thing. | 
 |   while (moreInBlock()) { | 
 |     // Read the number of Value* entries in the compaction table | 
 |     unsigned NumEntries = read_vbr_uint(); | 
 |     unsigned Ty = 0; | 
 |     unsigned isTypeType = false; | 
 |  | 
 |     // Decode the type from value read in. Most compaction table | 
 |     // planes will have one or two entries in them. If that's the | 
 |     // case then the length is encoded in the bottom two bits and | 
 |     // the higher bits encode the type. This saves another VBR value. | 
 |     if ((NumEntries & 3) == 3) { | 
 |       // In this case, both low-order bits are set (value 3). This | 
 |       // is a signal that the typeid follows. | 
 |       NumEntries >>= 2; | 
 |       isTypeType = read_typeid(Ty); | 
 |     } else { | 
 |       // In this case, the low-order bits specify the number of entries | 
 |       // and the high order bits specify the type. | 
 |       Ty = NumEntries >> 2; | 
 |       isTypeType = sanitizeTypeId(Ty); | 
 |       NumEntries &= 3; | 
 |     } | 
 |  | 
 |     // if we're reading a pre 1.3 bytecode file and the type plane | 
 |     // is the "type type", handle it here | 
 |     if (isTypeType) { | 
 |       ParseCompactionTypes(NumEntries); | 
 |     } else { | 
 |       // Make sure we have enough room  for the plane  | 
 |       if (Ty >= CompactionValues.size()) | 
 |         CompactionValues.resize(Ty+1); | 
 |  | 
 |       // Make sure the plane is empty or we have some kind of error | 
 |       if (!CompactionValues[Ty].empty()) | 
 |         error("Compaction table plane contains multiple entries!"); | 
 |  | 
 |       // Notify handler about the plane | 
 |       if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries); | 
 |  | 
 |       // Convert the type slot to a type | 
 |       const Type *Typ = getType(Ty); | 
 |  | 
 |       // Push the implicit zero | 
 |       CompactionValues[Ty].push_back(Constant::getNullValue(Typ)); | 
 |  | 
 |       // Read in each of the entries, put them in the compaction table | 
 |       // and notify the handler that we have a new compaction table value. | 
 |       for (unsigned i = 0; i != NumEntries; ++i) { | 
 |         unsigned ValSlot = read_vbr_uint(); | 
 |         Value *V = getGlobalTableValue(Typ, ValSlot); | 
 |         CompactionValues[Ty].push_back(V); | 
 |         if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot, Typ); | 
 |       } | 
 |     } | 
 |   } | 
 |   // Notify handler that the compaction table is done. | 
 |   if (Handler) Handler->handleCompactionTableEnd(); | 
 | } | 
 |      | 
 | // Parse a single type. The typeid is read in first. If its a primitive type | 
 | // then nothing else needs to be read, we know how to instantiate it. If its | 
 | // a derived type, then additional data is read to fill out the type  | 
 | // definition. | 
 | const Type *BytecodeReader::ParseType() { | 
 |   unsigned PrimType = 0; | 
 |   if (read_typeid(PrimType)) | 
 |     error("Invalid type (type type) in type constants!"); | 
 |  | 
 |   const Type *Result = 0; | 
 |   if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType))) | 
 |     return Result; | 
 |    | 
 |   switch (PrimType) { | 
 |   case Type::FunctionTyID: { | 
 |     const Type *RetType = readSanitizedType(); | 
 |  | 
 |     unsigned NumParams = read_vbr_uint(); | 
 |  | 
 |     std::vector<const Type*> Params; | 
 |     while (NumParams--)  | 
 |       Params.push_back(readSanitizedType()); | 
 |  | 
 |     bool isVarArg = Params.size() && Params.back() == Type::VoidTy; | 
 |     if (isVarArg) Params.pop_back(); | 
 |  | 
 |     Result = FunctionType::get(RetType, Params, isVarArg); | 
 |     break; | 
 |   } | 
 |   case Type::ArrayTyID: { | 
 |     const Type *ElementType = readSanitizedType(); | 
 |     unsigned NumElements = read_vbr_uint(); | 
 |     Result =  ArrayType::get(ElementType, NumElements); | 
 |     break; | 
 |   } | 
 |   case Type::StructTyID: { | 
 |     std::vector<const Type*> Elements; | 
 |     unsigned Typ = 0; | 
 |     if (read_typeid(Typ)) | 
 |       error("Invalid element type (type type) for structure!"); | 
 |  | 
 |     while (Typ) {         // List is terminated by void/0 typeid | 
 |       Elements.push_back(getType(Typ)); | 
 |       if (read_typeid(Typ)) | 
 |         error("Invalid element type (type type) for structure!"); | 
 |     } | 
 |  | 
 |     Result = StructType::get(Elements); | 
 |     break; | 
 |   } | 
 |   case Type::PointerTyID: { | 
 |     Result = PointerType::get(readSanitizedType()); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::OpaqueTyID: { | 
 |     Result = OpaqueType::get(); | 
 |     break; | 
 |   } | 
 |  | 
 |   default: | 
 |     error("Don't know how to deserialize primitive type " + utostr(PrimType)); | 
 |     break; | 
 |   } | 
 |   if (Handler) Handler->handleType(Result); | 
 |   return Result; | 
 | } | 
 |  | 
 | // ParseType - We have to use this weird code to handle recursive | 
 | // types.  We know that recursive types will only reference the current slab of | 
 | // values in the type plane, but they can forward reference types before they | 
 | // have been read.  For example, Type #0 might be '{ Ty#1 }' and Type #1 might | 
 | // be 'Ty#0*'.  When reading Type #0, type number one doesn't exist.  To fix | 
 | // this ugly problem, we pessimistically insert an opaque type for each type we | 
 | // are about to read.  This means that forward references will resolve to | 
 | // something and when we reread the type later, we can replace the opaque type | 
 | // with a new resolved concrete type. | 
 | // | 
 | void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){ | 
 |   assert(Tab.size() == 0 && "should not have read type constants in before!"); | 
 |  | 
 |   // Insert a bunch of opaque types to be resolved later... | 
 |   Tab.reserve(NumEntries); | 
 |   for (unsigned i = 0; i != NumEntries; ++i) | 
 |     Tab.push_back(OpaqueType::get()); | 
 |  | 
 |   // Loop through reading all of the types.  Forward types will make use of the | 
 |   // opaque types just inserted. | 
 |   // | 
 |   for (unsigned i = 0; i != NumEntries; ++i) { | 
 |     const Type* NewTy = ParseType(); | 
 |     const Type* OldTy = Tab[i].get(); | 
 |     if (NewTy == 0)  | 
 |       error("Couldn't parse type!"); | 
 |  | 
 |     // Don't directly push the new type on the Tab. Instead we want to replace  | 
 |     // the opaque type we previously inserted with the new concrete value. This | 
 |     // approach helps with forward references to types. The refinement from the | 
 |     // abstract (opaque) type to the new type causes all uses of the abstract | 
 |     // type to use the concrete type (NewTy). This will also cause the opaque | 
 |     // type to be deleted. | 
 |     cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy); | 
 |  | 
 |     // This should have replaced the old opaque type with the new type in the | 
 |     // value table... or with a preexisting type that was already in the system. | 
 |     // Let's just make sure it did. | 
 |     assert(Tab[i] != OldTy && "refineAbstractType didn't work!"); | 
 |   } | 
 | } | 
 |  | 
 | /// Parse a single constant value | 
 | Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) { | 
 |   // We must check for a ConstantExpr before switching by type because | 
 |   // a ConstantExpr can be of any type, and has no explicit value. | 
 |   //  | 
 |   // 0 if not expr; numArgs if is expr | 
 |   unsigned isExprNumArgs = read_vbr_uint(); | 
 |    | 
 |   if (isExprNumArgs) { | 
 |     // FIXME: Encoding of constant exprs could be much more compact! | 
 |     std::vector<Constant*> ArgVec; | 
 |     ArgVec.reserve(isExprNumArgs); | 
 |     unsigned Opcode = read_vbr_uint(); | 
 |      | 
 |     // Read the slot number and types of each of the arguments | 
 |     for (unsigned i = 0; i != isExprNumArgs; ++i) { | 
 |       unsigned ArgValSlot = read_vbr_uint(); | 
 |       unsigned ArgTypeSlot = 0; | 
 |       if (read_typeid(ArgTypeSlot)) | 
 |         error("Invalid argument type (type type) for constant value"); | 
 |        | 
 |       // Get the arg value from its slot if it exists, otherwise a placeholder | 
 |       ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot)); | 
 |     } | 
 |      | 
 |     // Construct a ConstantExpr of the appropriate kind | 
 |     if (isExprNumArgs == 1) {           // All one-operand expressions | 
 |       if (Opcode != Instruction::Cast) | 
 |         error("Only Cast instruction has one argument for ConstantExpr"); | 
 |  | 
 |       Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID)); | 
 |       if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); | 
 |       return Result; | 
 |     } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr | 
 |       std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end()); | 
 |  | 
 |       if (hasRestrictedGEPTypes) { | 
 |         const Type *BaseTy = ArgVec[0]->getType(); | 
 |         generic_gep_type_iterator<std::vector<Constant*>::iterator> | 
 |           GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()), | 
 |           E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end()); | 
 |         for (unsigned i = 0; GTI != E; ++GTI, ++i) | 
 |           if (isa<StructType>(*GTI)) { | 
 |             if (IdxList[i]->getType() != Type::UByteTy) | 
 |               error("Invalid index for getelementptr!"); | 
 |             IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy); | 
 |           } | 
 |       } | 
 |  | 
 |       Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList); | 
 |       if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); | 
 |       return Result; | 
 |     } else if (Opcode == Instruction::Select) { | 
 |       if (ArgVec.size() != 3) | 
 |         error("Select instruction must have three arguments."); | 
 |       Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],  | 
 |                                                  ArgVec[2]); | 
 |       if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); | 
 |       return Result; | 
 |     } else {                            // All other 2-operand expressions | 
 |       Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]); | 
 |       if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result); | 
 |       return Result; | 
 |     } | 
 |   } | 
 |    | 
 |   // Ok, not an ConstantExpr.  We now know how to read the given type... | 
 |   const Type *Ty = getType(TypeID); | 
 |   switch (Ty->getTypeID()) { | 
 |   case Type::BoolTyID: { | 
 |     unsigned Val = read_vbr_uint(); | 
 |     if (Val != 0 && Val != 1)  | 
 |       error("Invalid boolean value read."); | 
 |     Constant* Result = ConstantBool::get(Val == 1); | 
 |     if (Handler) Handler->handleConstantValue(Result); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   case Type::UByteTyID:   // Unsigned integer types... | 
 |   case Type::UShortTyID: | 
 |   case Type::UIntTyID: { | 
 |     unsigned Val = read_vbr_uint(); | 
 |     if (!ConstantUInt::isValueValidForType(Ty, Val))  | 
 |       error("Invalid unsigned byte/short/int read."); | 
 |     Constant* Result =  ConstantUInt::get(Ty, Val); | 
 |     if (Handler) Handler->handleConstantValue(Result); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   case Type::ULongTyID: { | 
 |     Constant* Result = ConstantUInt::get(Ty, read_vbr_uint64()); | 
 |     if (Handler) Handler->handleConstantValue(Result); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   case Type::SByteTyID:   // Signed integer types... | 
 |   case Type::ShortTyID: | 
 |   case Type::IntTyID: { | 
 |   case Type::LongTyID: | 
 |     int64_t Val = read_vbr_int64(); | 
 |     if (!ConstantSInt::isValueValidForType(Ty, Val))  | 
 |       error("Invalid signed byte/short/int/long read."); | 
 |     Constant* Result = ConstantSInt::get(Ty, Val); | 
 |     if (Handler) Handler->handleConstantValue(Result); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   case Type::FloatTyID: { | 
 |     float Val; | 
 |     read_float(Val); | 
 |     Constant* Result = ConstantFP::get(Ty, Val); | 
 |     if (Handler) Handler->handleConstantValue(Result); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   case Type::DoubleTyID: { | 
 |     double Val; | 
 |     read_double(Val); | 
 |     Constant* Result = ConstantFP::get(Ty, Val); | 
 |     if (Handler) Handler->handleConstantValue(Result); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   case Type::ArrayTyID: { | 
 |     const ArrayType *AT = cast<ArrayType>(Ty); | 
 |     unsigned NumElements = AT->getNumElements(); | 
 |     unsigned TypeSlot = getTypeSlot(AT->getElementType()); | 
 |     std::vector<Constant*> Elements; | 
 |     Elements.reserve(NumElements); | 
 |     while (NumElements--)     // Read all of the elements of the constant. | 
 |       Elements.push_back(getConstantValue(TypeSlot, | 
 |                                           read_vbr_uint())); | 
 |     Constant* Result = ConstantArray::get(AT, Elements); | 
 |     if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   case Type::StructTyID: { | 
 |     const StructType *ST = cast<StructType>(Ty); | 
 |  | 
 |     std::vector<Constant *> Elements; | 
 |     Elements.reserve(ST->getNumElements()); | 
 |     for (unsigned i = 0; i != ST->getNumElements(); ++i) | 
 |       Elements.push_back(getConstantValue(ST->getElementType(i), | 
 |                                           read_vbr_uint())); | 
 |  | 
 |     Constant* Result = ConstantStruct::get(ST, Elements); | 
 |     if (Handler) Handler->handleConstantStruct(ST, Elements, Result); | 
 |     return Result; | 
 |   }     | 
 |  | 
 |   case Type::PointerTyID: {  // ConstantPointerRef value... | 
 |     const PointerType *PT = cast<PointerType>(Ty); | 
 |     unsigned Slot = read_vbr_uint(); | 
 |      | 
 |     // Check to see if we have already read this global variable... | 
 |     Value *Val = getValue(TypeID, Slot, false); | 
 |     GlobalValue *GV; | 
 |     if (Val) { | 
 |       if (!(GV = dyn_cast<GlobalValue>(Val)))  | 
 |         error("Value of ConstantPointerRef not in ValueTable!"); | 
 |     } else { | 
 |       error("Forward references are not allowed here."); | 
 |     } | 
 |      | 
 |     Constant* Result = ConstantPointerRef::get(GV); | 
 |     if (Handler) Handler->handleConstantPointer(PT, Slot, GV, Result); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   default: | 
 |     error("Don't know how to deserialize constant value of type '" + | 
 |                       Ty->getDescription()); | 
 |     break; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /// Resolve references for constants. This function resolves the forward  | 
 | /// referenced constants in the ConstantFwdRefs map. It uses the  | 
 | /// replaceAllUsesWith method of Value class to substitute the placeholder | 
 | /// instance with the actual instance. | 
 | void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Slot){ | 
 |   ConstantRefsType::iterator I = | 
 |     ConstantFwdRefs.find(std::make_pair(NewV->getType(), Slot)); | 
 |   if (I == ConstantFwdRefs.end()) return;   // Never forward referenced? | 
 |  | 
 |   Value *PH = I->second;   // Get the placeholder... | 
 |   PH->replaceAllUsesWith(NewV); | 
 |   delete PH;                               // Delete the old placeholder | 
 |   ConstantFwdRefs.erase(I);                // Remove the map entry for it | 
 | } | 
 |  | 
 | /// Parse the constant strings section. | 
 | void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){ | 
 |   for (; NumEntries; --NumEntries) { | 
 |     unsigned Typ = 0; | 
 |     if (read_typeid(Typ)) | 
 |       error("Invalid type (type type) for string constant"); | 
 |     const Type *Ty = getType(Typ); | 
 |     if (!isa<ArrayType>(Ty)) | 
 |       error("String constant data invalid!"); | 
 |      | 
 |     const ArrayType *ATy = cast<ArrayType>(Ty); | 
 |     if (ATy->getElementType() != Type::SByteTy && | 
 |         ATy->getElementType() != Type::UByteTy) | 
 |       error("String constant data invalid!"); | 
 |      | 
 |     // Read character data.  The type tells us how long the string is. | 
 |     char Data[ATy->getNumElements()];  | 
 |     read_data(Data, Data+ATy->getNumElements()); | 
 |  | 
 |     std::vector<Constant*> Elements(ATy->getNumElements()); | 
 |     if (ATy->getElementType() == Type::SByteTy) | 
 |       for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) | 
 |         Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]); | 
 |     else | 
 |       for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) | 
 |         Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]); | 
 |  | 
 |     // Create the constant, inserting it as needed. | 
 |     Constant *C = ConstantArray::get(ATy, Elements); | 
 |     unsigned Slot = insertValue(C, Typ, Tab); | 
 |     ResolveReferencesToConstant(C, Slot); | 
 |     if (Handler) Handler->handleConstantString(cast<ConstantArray>(C)); | 
 |   } | 
 | } | 
 |  | 
 | /// Parse the constant pool. | 
 | void BytecodeReader::ParseConstantPool(ValueTable &Tab,  | 
 |                                        TypeListTy &TypeTab, | 
 |                                        bool isFunction) { | 
 |   if (Handler) Handler->handleGlobalConstantsBegin(); | 
 |  | 
 |   /// In LLVM 1.3 Type does not derive from Value so the types | 
 |   /// do not occupy a plane. Consequently, we read the types | 
 |   /// first in the constant pool. | 
 |   if (isFunction && !hasTypeDerivedFromValue) { | 
 |     unsigned NumEntries = read_vbr_uint(); | 
 |     ParseTypes(TypeTab, NumEntries); | 
 |   } | 
 |  | 
 |   while (moreInBlock()) { | 
 |     unsigned NumEntries = read_vbr_uint(); | 
 |     unsigned Typ = 0; | 
 |     bool isTypeType = read_typeid(Typ); | 
 |  | 
 |     /// In LLVM 1.2 and before, Types were written to the | 
 |     /// bytecode file in the "Type Type" plane (#12). | 
 |     /// In 1.3 plane 12 is now the label plane.  Handle this here. | 
 |     if (isTypeType) { | 
 |       ParseTypes(TypeTab, NumEntries); | 
 |     } else if (Typ == Type::VoidTyID) { | 
 |       /// Use of Type::VoidTyID is a misnomer. It actually means | 
 |       /// that the following plane is constant strings | 
 |       assert(&Tab == &ModuleValues && "Cannot read strings in functions!"); | 
 |       ParseStringConstants(NumEntries, Tab); | 
 |     } else { | 
 |       for (unsigned i = 0; i < NumEntries; ++i) { | 
 |         Constant *C = ParseConstantValue(Typ); | 
 |         assert(C && "ParseConstantValue returned NULL!"); | 
 |         unsigned Slot = insertValue(C, Typ, Tab); | 
 |  | 
 |         // If we are reading a function constant table, make sure that we adjust | 
 |         // the slot number to be the real global constant number. | 
 |         // | 
 |         if (&Tab != &ModuleValues && Typ < ModuleValues.size() && | 
 |             ModuleValues[Typ]) | 
 |           Slot += ModuleValues[Typ]->size(); | 
 |         ResolveReferencesToConstant(C, Slot); | 
 |       } | 
 |     } | 
 |   } | 
 |   checkPastBlockEnd("Constant Pool"); | 
 |   if (Handler) Handler->handleGlobalConstantsEnd(); | 
 | } | 
 |  | 
 | /// Parse the contents of a function. Note that this function can be | 
 | /// called lazily by materializeFunction | 
 | /// @see materializeFunction | 
 | void BytecodeReader::ParseFunctionBody(Function* F) { | 
 |  | 
 |   unsigned FuncSize = BlockEnd - At; | 
 |   GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage; | 
 |  | 
 |   unsigned LinkageType = read_vbr_uint(); | 
 |   switch (LinkageType) { | 
 |   case 0: Linkage = GlobalValue::ExternalLinkage; break; | 
 |   case 1: Linkage = GlobalValue::WeakLinkage; break; | 
 |   case 2: Linkage = GlobalValue::AppendingLinkage; break; | 
 |   case 3: Linkage = GlobalValue::InternalLinkage; break; | 
 |   case 4: Linkage = GlobalValue::LinkOnceLinkage; break; | 
 |   default: | 
 |     error("Invalid linkage type for Function."); | 
 |     Linkage = GlobalValue::InternalLinkage; | 
 |     break; | 
 |   } | 
 |  | 
 |   F->setLinkage(Linkage); | 
 |   if (Handler) Handler->handleFunctionBegin(F,FuncSize); | 
 |  | 
 |   // Keep track of how many basic blocks we have read in... | 
 |   unsigned BlockNum = 0; | 
 |   bool InsertedArguments = false; | 
 |  | 
 |   BufPtr MyEnd = BlockEnd; | 
 |   while (At < MyEnd) { | 
 |     unsigned Type, Size; | 
 |     BufPtr OldAt = At; | 
 |     read_block(Type, Size); | 
 |  | 
 |     switch (Type) { | 
 |     case BytecodeFormat::ConstantPool: | 
 |       if (!InsertedArguments) { | 
 |         // Insert arguments into the value table before we parse the first basic | 
 |         // block in the function, but after we potentially read in the | 
 |         // compaction table. | 
 |         insertArguments(F); | 
 |         InsertedArguments = true; | 
 |       } | 
 |  | 
 |       ParseConstantPool(FunctionValues, FunctionTypes, true); | 
 |       break; | 
 |  | 
 |     case BytecodeFormat::CompactionTable: | 
 |       ParseCompactionTable(); | 
 |       break; | 
 |  | 
 |     case BytecodeFormat::BasicBlock: { | 
 |       if (!InsertedArguments) { | 
 |         // Insert arguments into the value table before we parse the first basic | 
 |         // block in the function, but after we potentially read in the | 
 |         // compaction table. | 
 |         insertArguments(F); | 
 |         InsertedArguments = true; | 
 |       } | 
 |  | 
 |       BasicBlock *BB = ParseBasicBlock(BlockNum++); | 
 |       F->getBasicBlockList().push_back(BB); | 
 |       break; | 
 |     } | 
 |  | 
 |     case BytecodeFormat::InstructionList: { | 
 |       // Insert arguments into the value table before we parse the instruction | 
 |       // list for the function, but after we potentially read in the compaction | 
 |       // table. | 
 |       if (!InsertedArguments) { | 
 |         insertArguments(F); | 
 |         InsertedArguments = true; | 
 |       } | 
 |  | 
 |       if (BlockNum)  | 
 |         error("Already parsed basic blocks!"); | 
 |       BlockNum = ParseInstructionList(F); | 
 |       break; | 
 |     } | 
 |  | 
 |     case BytecodeFormat::SymbolTable: | 
 |       ParseSymbolTable(F, &F->getSymbolTable()); | 
 |       break; | 
 |  | 
 |     default: | 
 |       At += Size; | 
 |       if (OldAt > At)  | 
 |         error("Wrapped around reading bytecode."); | 
 |       break; | 
 |     } | 
 |     BlockEnd = MyEnd; | 
 |  | 
 |     // Malformed bc file if read past end of block. | 
 |     align32(); | 
 |   } | 
 |  | 
 |   // Make sure there were no references to non-existant basic blocks. | 
 |   if (BlockNum != ParsedBasicBlocks.size()) | 
 |     error("Illegal basic block operand reference"); | 
 |  | 
 |   ParsedBasicBlocks.clear(); | 
 |  | 
 |   // Resolve forward references.  Replace any uses of a forward reference value | 
 |   // with the real value. | 
 |  | 
 |   // replaceAllUsesWith is very inefficient for instructions which have a LARGE | 
 |   // number of operands.  PHI nodes often have forward references, and can also | 
 |   // often have a very large number of operands. | 
 |   // | 
 |   // FIXME: REEVALUATE.  replaceAllUsesWith is _much_ faster now, and this code | 
 |   // should be simplified back to using it! | 
 |   // | 
 |   std::map<Value*, Value*> ForwardRefMapping; | 
 |   for (std::map<std::pair<unsigned,unsigned>, Value*>::iterator  | 
 |          I = ForwardReferences.begin(), E = ForwardReferences.end(); | 
 |        I != E; ++I) | 
 |     ForwardRefMapping[I->second] = getValue(I->first.first, I->first.second, | 
 |                                             false); | 
 |  | 
 |   for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) | 
 |     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
 |       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
 |         if (Argument *A = dyn_cast<Argument>(I->getOperand(i))) { | 
 |           std::map<Value*, Value*>::iterator It = ForwardRefMapping.find(A); | 
 |           if (It != ForwardRefMapping.end()) I->setOperand(i, It->second); | 
 |         } | 
 |  | 
 |   while (!ForwardReferences.empty()) { | 
 |     std::map<std::pair<unsigned,unsigned>, Value*>::iterator I = | 
 |       ForwardReferences.begin(); | 
 |     Value *PlaceHolder = I->second; | 
 |     ForwardReferences.erase(I); | 
 |  | 
 |     // Now that all the uses are gone, delete the placeholder... | 
 |     // If we couldn't find a def (error case), then leak a little | 
 |     // memory, because otherwise we can't remove all uses! | 
 |     delete PlaceHolder; | 
 |   } | 
 |  | 
 |   // Clear out function-level types... | 
 |   FunctionTypes.clear(); | 
 |   CompactionTypes.clear(); | 
 |   CompactionValues.clear(); | 
 |   freeTable(FunctionValues); | 
 |  | 
 |   if (Handler) Handler->handleFunctionEnd(F); | 
 | } | 
 |  | 
 | /// This function parses LLVM functions lazily. It obtains the type of the | 
 | /// function and records where the body of the function is in the bytecode | 
 | /// buffer. The caller can then use the ParseNextFunction and  | 
 | /// ParseAllFunctionBodies to get handler events for the functions. | 
 | void BytecodeReader::ParseFunctionLazily() { | 
 |   if (FunctionSignatureList.empty()) | 
 |     error("FunctionSignatureList empty!"); | 
 |  | 
 |   Function *Func = FunctionSignatureList.back(); | 
 |   FunctionSignatureList.pop_back(); | 
 |  | 
 |   // Save the information for future reading of the function | 
 |   LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd); | 
 |  | 
 |   // Pretend we've `parsed' this function | 
 |   At = BlockEnd; | 
 | } | 
 |  | 
 | /// The ParserFunction method lazily parses one function. Use this method to  | 
 | /// casue the parser to parse a specific function in the module. Note that  | 
 | /// this will remove the function from what is to be included by  | 
 | /// ParseAllFunctionBodies. | 
 | /// @see ParseAllFunctionBodies | 
 | /// @see ParseBytecode | 
 | void BytecodeReader::ParseFunction(Function* Func) { | 
 |   // Find {start, end} pointers and slot in the map. If not there, we're done. | 
 |   LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func); | 
 |  | 
 |   // Make sure we found it | 
 |   if (Fi == LazyFunctionLoadMap.end()) { | 
 |     error("Unrecognized function of type " + Func->getType()->getDescription()); | 
 |     return; | 
 |   } | 
 |  | 
 |   BlockStart = At = Fi->second.Buf; | 
 |   BlockEnd = Fi->second.EndBuf; | 
 |   assert(Fi->first == Func && "Found wrong function?"); | 
 |  | 
 |   LazyFunctionLoadMap.erase(Fi); | 
 |  | 
 |   this->ParseFunctionBody(Func); | 
 | } | 
 |  | 
 | /// The ParseAllFunctionBodies method parses through all the previously | 
 | /// unparsed functions in the bytecode file. If you want to completely parse | 
 | /// a bytecode file, this method should be called after Parsebytecode because | 
 | /// Parsebytecode only records the locations in the bytecode file of where | 
 | /// the function definitions are located. This function uses that information | 
 | /// to materialize the functions. | 
 | /// @see ParseBytecode | 
 | void BytecodeReader::ParseAllFunctionBodies() { | 
 |   LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin(); | 
 |   LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end(); | 
 |  | 
 |   while (Fi != Fe) { | 
 |     Function* Func = Fi->first; | 
 |     BlockStart = At = Fi->second.Buf; | 
 |     BlockEnd = Fi->second.EndBuf; | 
 |     this->ParseFunctionBody(Func); | 
 |     ++Fi; | 
 |   } | 
 | } | 
 |  | 
 | /// Parse the global type list | 
 | void BytecodeReader::ParseGlobalTypes() { | 
 |   // Read the number of types | 
 |   unsigned NumEntries = read_vbr_uint(); | 
 |  | 
 |   // Ignore the type plane identifier for types if the bc file is pre 1.3 | 
 |   if (hasTypeDerivedFromValue) | 
 |     read_vbr_uint(); | 
 |  | 
 |   ParseTypes(ModuleTypes, NumEntries); | 
 | } | 
 |  | 
 | /// Parse the Global info (types, global vars, constants) | 
 | void BytecodeReader::ParseModuleGlobalInfo() { | 
 |  | 
 |   if (Handler) Handler->handleModuleGlobalsBegin(); | 
 |  | 
 |   // Read global variables... | 
 |   unsigned VarType = read_vbr_uint(); | 
 |   while (VarType != Type::VoidTyID) { // List is terminated by Void | 
 |     // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 = | 
 |     // Linkage, bit4+ = slot# | 
 |     unsigned SlotNo = VarType >> 5; | 
 |     if (sanitizeTypeId(SlotNo)) | 
 |       error("Invalid type (type type) for global var!"); | 
 |     unsigned LinkageID = (VarType >> 2) & 7; | 
 |     bool isConstant = VarType & 1; | 
 |     bool hasInitializer = VarType & 2; | 
 |     GlobalValue::LinkageTypes Linkage; | 
 |  | 
 |     switch (LinkageID) { | 
 |     case 0: Linkage = GlobalValue::ExternalLinkage;  break; | 
 |     case 1: Linkage = GlobalValue::WeakLinkage;      break; | 
 |     case 2: Linkage = GlobalValue::AppendingLinkage; break; | 
 |     case 3: Linkage = GlobalValue::InternalLinkage;  break; | 
 |     case 4: Linkage = GlobalValue::LinkOnceLinkage;  break; | 
 |     default:  | 
 |       error("Unknown linkage type: " + utostr(LinkageID)); | 
 |       Linkage = GlobalValue::InternalLinkage; | 
 |       break; | 
 |     } | 
 |  | 
 |     const Type *Ty = getType(SlotNo); | 
 |     if (!Ty) { | 
 |       error("Global has no type! SlotNo=" + utostr(SlotNo)); | 
 |     } | 
 |  | 
 |     if (!isa<PointerType>(Ty)) { | 
 |       error("Global not a pointer type! Ty= " + Ty->getDescription()); | 
 |     } | 
 |  | 
 |     const Type *ElTy = cast<PointerType>(Ty)->getElementType(); | 
 |  | 
 |     // Create the global variable... | 
 |     GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage, | 
 |                                             0, "", TheModule); | 
 |     insertValue(GV, SlotNo, ModuleValues); | 
 |  | 
 |     unsigned initSlot = 0; | 
 |     if (hasInitializer) {    | 
 |       initSlot = read_vbr_uint(); | 
 |       GlobalInits.push_back(std::make_pair(GV, initSlot)); | 
 |     } | 
 |  | 
 |     // Notify handler about the global value. | 
 |     if (Handler) Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo, initSlot); | 
 |  | 
 |     // Get next item | 
 |     VarType = read_vbr_uint(); | 
 |   } | 
 |  | 
 |   // Read the function objects for all of the functions that are coming | 
 |   unsigned FnSignature = 0; | 
 |   if (read_typeid(FnSignature)) | 
 |     error("Invalid function type (type type) found"); | 
 |  | 
 |   while (FnSignature != Type::VoidTyID) { // List is terminated by Void | 
 |     const Type *Ty = getType(FnSignature); | 
 |     if (!isa<PointerType>(Ty) || | 
 |         !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) { | 
 |       error("Function not a pointer to function type! Ty = " +  | 
 |             Ty->getDescription()); | 
 |       // FIXME: what should Ty be if handler continues? | 
 |     } | 
 |  | 
 |     // We create functions by passing the underlying FunctionType to create... | 
 |     const FunctionType* FTy =  | 
 |       cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); | 
 |  | 
 |     // Insert the place hodler | 
 |     Function* Func = new Function(FTy, GlobalValue::InternalLinkage,  | 
 |                                   "", TheModule); | 
 |     insertValue(Func, FnSignature, ModuleValues); | 
 |  | 
 |     // Save this for later so we know type of lazily instantiated functions | 
 |     FunctionSignatureList.push_back(Func); | 
 |  | 
 |     if (Handler) Handler->handleFunctionDeclaration(Func); | 
 |  | 
 |     // Get Next function signature | 
 |     if (read_typeid(FnSignature)) | 
 |       error("Invalid function type (type type) found"); | 
 |   } | 
 |  | 
 |   if (hasInconsistentModuleGlobalInfo) | 
 |     align32(); | 
 |  | 
 |   // Now that the function signature list is set up, reverse it so that we can  | 
 |   // remove elements efficiently from the back of the vector. | 
 |   std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end()); | 
 |  | 
 |   // This is for future proofing... in the future extra fields may be added that | 
 |   // we don't understand, so we transparently ignore them. | 
 |   // | 
 |   At = BlockEnd; | 
 |  | 
 |   if (Handler) Handler->handleModuleGlobalsEnd(); | 
 | } | 
 |  | 
 | /// Parse the version information and decode it by setting flags on the | 
 | /// Reader that enable backward compatibility of the reader. | 
 | void BytecodeReader::ParseVersionInfo() { | 
 |   unsigned Version = read_vbr_uint(); | 
 |  | 
 |   // Unpack version number: low four bits are for flags, top bits = version | 
 |   Module::Endianness  Endianness; | 
 |   Module::PointerSize PointerSize; | 
 |   Endianness  = (Version & 1) ? Module::BigEndian : Module::LittleEndian; | 
 |   PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32; | 
 |  | 
 |   bool hasNoEndianness = Version & 4; | 
 |   bool hasNoPointerSize = Version & 8; | 
 |    | 
 |   RevisionNum = Version >> 4; | 
 |  | 
 |   // Default values for the current bytecode version | 
 |   hasInconsistentModuleGlobalInfo = false; | 
 |   hasExplicitPrimitiveZeros = false; | 
 |   hasRestrictedGEPTypes = false; | 
 |   hasTypeDerivedFromValue = false; | 
 |  | 
 |   switch (RevisionNum) { | 
 |   case 0:               //  LLVM 1.0, 1.1 release version | 
 |     // Base LLVM 1.0 bytecode format. | 
 |     hasInconsistentModuleGlobalInfo = true; | 
 |     hasExplicitPrimitiveZeros = true; | 
 |  | 
 |     // FALL THROUGH | 
 |   case 1:               // LLVM 1.2 release version | 
 |     // LLVM 1.2 added explicit support for emitting strings efficiently. | 
 |  | 
 |     // Also, it fixed the problem where the size of the ModuleGlobalInfo block | 
 |     // included the size for the alignment at the end, where the rest of the | 
 |     // blocks did not. | 
 |  | 
 |     // LLVM 1.2 and before required that GEP indices be ubyte constants for | 
 |     // structures and longs for sequential types. | 
 |     hasRestrictedGEPTypes = true; | 
 |  | 
 |     // LLVM 1.2 and before had the Type class derive from Value class. This | 
 |     // changed in release 1.3 and consequently LLVM 1.3 bytecode files are | 
 |     // written differently because Types can no longer be part of the  | 
 |     // type planes for Values. | 
 |     hasTypeDerivedFromValue = true; | 
 |  | 
 |     // FALL THROUGH | 
 |   case 2:               // LLVM 1.3 release version | 
 |     break; | 
 |  | 
 |   default: | 
 |     error("Unknown bytecode version number: " + itostr(RevisionNum)); | 
 |   } | 
 |  | 
 |   if (hasNoEndianness) Endianness  = Module::AnyEndianness; | 
 |   if (hasNoPointerSize) PointerSize = Module::AnyPointerSize; | 
 |  | 
 |   if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize); | 
 | } | 
 |  | 
 | /// Parse a whole module. | 
 | void BytecodeReader::ParseModule() { | 
 |   unsigned Type, Size; | 
 |  | 
 |   FunctionSignatureList.clear(); // Just in case... | 
 |  | 
 |   // Read into instance variables... | 
 |   ParseVersionInfo(); | 
 |   align32(); /// FIXME: Is this redundant? VI is first and 4 bytes! | 
 |  | 
 |   bool SeenModuleGlobalInfo = false; | 
 |   bool SeenGlobalTypePlane = false; | 
 |   BufPtr MyEnd = BlockEnd; | 
 |   while (At < MyEnd) { | 
 |     BufPtr OldAt = At; | 
 |     read_block(Type, Size); | 
 |  | 
 |     switch (Type) { | 
 |  | 
 |     case BytecodeFormat::GlobalTypePlane: | 
 |       if (SeenGlobalTypePlane) | 
 |         error("Two GlobalTypePlane Blocks Encountered!"); | 
 |  | 
 |       ParseGlobalTypes(); | 
 |       SeenGlobalTypePlane = true; | 
 |       break; | 
 |  | 
 |     case BytecodeFormat::ModuleGlobalInfo:  | 
 |       if (SeenModuleGlobalInfo) | 
 |         error("Two ModuleGlobalInfo Blocks Encountered!"); | 
 |       ParseModuleGlobalInfo(); | 
 |       SeenModuleGlobalInfo = true; | 
 |       break; | 
 |  | 
 |     case BytecodeFormat::ConstantPool: | 
 |       ParseConstantPool(ModuleValues, ModuleTypes,false); | 
 |       break; | 
 |  | 
 |     case BytecodeFormat::Function: | 
 |       ParseFunctionLazily(); | 
 |       break; | 
 |  | 
 |     case BytecodeFormat::SymbolTable: | 
 |       ParseSymbolTable(0, &TheModule->getSymbolTable()); | 
 |       break; | 
 |  | 
 |     default: | 
 |       At += Size; | 
 |       if (OldAt > At) { | 
 |         error("Unexpected Block of Type #" + utostr(Type) + " encountered!"); | 
 |       } | 
 |       break; | 
 |     } | 
 |     BlockEnd = MyEnd; | 
 |     align32(); | 
 |   } | 
 |  | 
 |   // After the module constant pool has been read, we can safely initialize | 
 |   // global variables... | 
 |   while (!GlobalInits.empty()) { | 
 |     GlobalVariable *GV = GlobalInits.back().first; | 
 |     unsigned Slot = GlobalInits.back().second; | 
 |     GlobalInits.pop_back(); | 
 |  | 
 |     // Look up the initializer value... | 
 |     // FIXME: Preserve this type ID! | 
 |  | 
 |     const llvm::PointerType* GVType = GV->getType(); | 
 |     unsigned TypeSlot = getTypeSlot(GVType->getElementType()); | 
 |     if (Constant *CV = getConstantValue(TypeSlot, Slot)) { | 
 |       if (GV->hasInitializer())  | 
 |         error("Global *already* has an initializer?!"); | 
 |       if (Handler) Handler->handleGlobalInitializer(GV,CV); | 
 |       GV->setInitializer(CV); | 
 |     } else | 
 |       error("Cannot find initializer value."); | 
 |   } | 
 |  | 
 |   /// Make sure we pulled them all out. If we didn't then there's a declaration | 
 |   /// but a missing body. That's not allowed. | 
 |   if (!FunctionSignatureList.empty()) | 
 |     error("Function declared, but bytecode stream ended before definition"); | 
 | } | 
 |  | 
 | /// This function completely parses a bytecode buffer given by the \p Buf | 
 | /// and \p Length parameters. | 
 | void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,  | 
 |                                    const std::string &ModuleID, | 
 |                                    bool processFunctions) { | 
 |  | 
 |   try { | 
 |     At = MemStart = BlockStart = Buf; | 
 |     MemEnd = BlockEnd = Buf + Length; | 
 |  | 
 |     // Create the module | 
 |     TheModule = new Module(ModuleID); | 
 |  | 
 |     if (Handler) Handler->handleStart(TheModule, Length); | 
 |  | 
 |     // Read and check signature... | 
 |     unsigned Sig = read_uint(); | 
 |     if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) { | 
 |       error("Invalid bytecode signature: " + utostr(Sig)); | 
 |     } | 
 |  | 
 |  | 
 |     // Tell the handler we're starting a module | 
 |     if (Handler) Handler->handleModuleBegin(ModuleID); | 
 |  | 
 |     // Get the module block and size and verify | 
 |     unsigned Type, Size; | 
 |     read_block(Type, Size); | 
 |     if (Type != BytecodeFormat::Module) { | 
 |       error("Expected Module Block! Type:" + utostr(Type) + ", Size:"  | 
 |             + utostr(Size)); | 
 |     } | 
 |     if (At + Size != MemEnd) { | 
 |       error("Invalid Top Level Block Length! Type:" + utostr(Type) | 
 |             + ", Size:" + utostr(Size)); | 
 |     } | 
 |  | 
 |     // Parse the module contents | 
 |     this->ParseModule(); | 
 |  | 
 |     // Check for missing functions | 
 |     if (hasFunctions()) | 
 |       error("Function expected, but bytecode stream ended!"); | 
 |  | 
 |     // Process all the function bodies now, if requested | 
 |     if (processFunctions) | 
 |       ParseAllFunctionBodies(); | 
 |  | 
 |     // Tell the handler we're done with the module | 
 |     if (Handler)  | 
 |       Handler->handleModuleEnd(ModuleID); | 
 |  | 
 |     // Tell the handler we're finished the parse | 
 |     if (Handler) Handler->handleFinish(); | 
 |  | 
 |   } catch (std::string& errstr) { | 
 |     if (Handler) Handler->handleError(errstr); | 
 |     freeState(); | 
 |     delete TheModule; | 
 |     TheModule = 0; | 
 |     throw; | 
 |   } catch (...) { | 
 |     std::string msg("Unknown Exception Occurred"); | 
 |     if (Handler) Handler->handleError(msg); | 
 |     freeState(); | 
 |     delete TheModule; | 
 |     TheModule = 0; | 
 |     throw msg; | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //=== Default Implementations of Handler Methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | BytecodeHandler::~BytecodeHandler() {} | 
 |  | 
 | // vim: sw=2 |