blob: 53daf9d94463bb0bae3b9cae756c31fe3a5c5bca [file] [log] [blame]
//===- CodeGenInstruction.cpp - CodeGen Instruction Class Wrapper ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeGenInstruction class.
//
//===----------------------------------------------------------------------===//
#include "CodeGenInstruction.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include <set>
using namespace llvm;
static void ParseConstraint(const std::string &CStr, CodeGenInstruction *I) {
// FIXME: Only supports TIED_TO for now.
std::string::size_type pos = CStr.find_first_of('=');
assert(pos != std::string::npos && "Unrecognized constraint");
std::string Name = CStr.substr(0, pos);
// TIED_TO: $src1 = $dst
std::string::size_type wpos = Name.find_first_of(" \t");
if (wpos == std::string::npos)
throw "Illegal format for tied-to constraint: '" + CStr + "'";
std::string DestOpName = Name.substr(0, wpos);
std::pair<unsigned,unsigned> DestOp = I->ParseOperandName(DestOpName, false);
Name = CStr.substr(pos+1);
wpos = Name.find_first_not_of(" \t");
if (wpos == std::string::npos)
throw "Illegal format for tied-to constraint: '" + CStr + "'";
std::pair<unsigned,unsigned> SrcOp =
I->ParseOperandName(Name.substr(wpos), false);
if (SrcOp > DestOp)
throw "Illegal tied-to operand constraint '" + CStr + "'";
unsigned FlatOpNo = I->getFlattenedOperandNumber(SrcOp);
// Build the string for the operand.
std::string OpConstraint =
"((" + utostr(FlatOpNo) + " << 16) | (1 << TOI::TIED_TO))";
if (!I->OperandList[DestOp.first].Constraints[DestOp.second].empty())
throw "Operand '" + DestOpName + "' cannot have multiple constraints!";
I->OperandList[DestOp.first].Constraints[DestOp.second] = OpConstraint;
}
static void ParseConstraints(const std::string &CStr, CodeGenInstruction *I) {
// Make sure the constraints list for each operand is large enough to hold
// constraint info, even if none is present.
for (unsigned i = 0, e = I->OperandList.size(); i != e; ++i)
I->OperandList[i].Constraints.resize(I->OperandList[i].MINumOperands);
if (CStr.empty()) return;
const std::string delims(",");
std::string::size_type bidx, eidx;
bidx = CStr.find_first_not_of(delims);
while (bidx != std::string::npos) {
eidx = CStr.find_first_of(delims, bidx);
if (eidx == std::string::npos)
eidx = CStr.length();
ParseConstraint(CStr.substr(bidx, eidx), I);
bidx = CStr.find_first_not_of(delims, eidx);
}
}
CodeGenInstruction::CodeGenInstruction(Record *R, const std::string &AsmStr)
: TheDef(R), AsmString(AsmStr) {
Namespace = R->getValueAsString("Namespace");
isReturn = R->getValueAsBit("isReturn");
isBranch = R->getValueAsBit("isBranch");
isIndirectBranch = R->getValueAsBit("isIndirectBranch");
isBarrier = R->getValueAsBit("isBarrier");
isCall = R->getValueAsBit("isCall");
isSimpleLoad = R->getValueAsBit("isSimpleLoad");
mayLoad = R->getValueAsBit("mayLoad");
mayStore = R->getValueAsBit("mayStore");
bool isTwoAddress = R->getValueAsBit("isTwoAddress");
isPredicable = R->getValueAsBit("isPredicable");
isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress");
isCommutable = R->getValueAsBit("isCommutable");
isTerminator = R->getValueAsBit("isTerminator");
isReMaterializable = R->getValueAsBit("isReMaterializable");
hasDelaySlot = R->getValueAsBit("hasDelaySlot");
usesCustomDAGSchedInserter = R->getValueAsBit("usesCustomDAGSchedInserter");
hasCtrlDep = R->getValueAsBit("hasCtrlDep");
isNotDuplicable = R->getValueAsBit("isNotDuplicable");
hasSideEffects = R->getValueAsBit("hasSideEffects");
mayHaveSideEffects = R->getValueAsBit("mayHaveSideEffects");
neverHasSideEffects = R->getValueAsBit("neverHasSideEffects");
hasOptionalDef = false;
isVariadic = false;
if (mayHaveSideEffects + neverHasSideEffects + hasSideEffects > 1)
throw R->getName() + ": multiple conflicting side-effect flags set!";
DagInit *DI;
try {
DI = R->getValueAsDag("OutOperandList");
} catch (...) {
// Error getting operand list, just ignore it (sparcv9).
AsmString.clear();
OperandList.clear();
return;
}
NumDefs = DI->getNumArgs();
DagInit *IDI;
try {
IDI = R->getValueAsDag("InOperandList");
} catch (...) {
// Error getting operand list, just ignore it (sparcv9).
AsmString.clear();
OperandList.clear();
return;
}
DI = (DagInit*)(new BinOpInit(BinOpInit::CONCAT, DI, IDI))->Fold();
unsigned MIOperandNo = 0;
std::set<std::string> OperandNames;
for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
DefInit *Arg = dynamic_cast<DefInit*>(DI->getArg(i));
if (!Arg)
throw "Illegal operand for the '" + R->getName() + "' instruction!";
Record *Rec = Arg->getDef();
std::string PrintMethod = "printOperand";
unsigned NumOps = 1;
DagInit *MIOpInfo = 0;
if (Rec->isSubClassOf("Operand")) {
PrintMethod = Rec->getValueAsString("PrintMethod");
MIOpInfo = Rec->getValueAsDag("MIOperandInfo");
// Verify that MIOpInfo has an 'ops' root value.
if (!dynamic_cast<DefInit*>(MIOpInfo->getOperator()) ||
dynamic_cast<DefInit*>(MIOpInfo->getOperator())
->getDef()->getName() != "ops")
throw "Bad value for MIOperandInfo in operand '" + Rec->getName() +
"'\n";
// If we have MIOpInfo, then we have #operands equal to number of entries
// in MIOperandInfo.
if (unsigned NumArgs = MIOpInfo->getNumArgs())
NumOps = NumArgs;
if (Rec->isSubClassOf("PredicateOperand"))
isPredicable = true;
else if (Rec->isSubClassOf("OptionalDefOperand"))
hasOptionalDef = true;
} else if (Rec->getName() == "variable_ops") {
isVariadic = true;
continue;
} else if (!Rec->isSubClassOf("RegisterClass") &&
Rec->getName() != "ptr_rc" && Rec->getName() != "unknown")
throw "Unknown operand class '" + Rec->getName() +
"' in instruction '" + R->getName() + "' instruction!";
// Check that the operand has a name and that it's unique.
if (DI->getArgName(i).empty())
throw "In instruction '" + R->getName() + "', operand #" + utostr(i) +
" has no name!";
if (!OperandNames.insert(DI->getArgName(i)).second)
throw "In instruction '" + R->getName() + "', operand #" + utostr(i) +
" has the same name as a previous operand!";
OperandList.push_back(OperandInfo(Rec, DI->getArgName(i), PrintMethod,
MIOperandNo, NumOps, MIOpInfo));
MIOperandNo += NumOps;
}
// Parse Constraints.
ParseConstraints(R->getValueAsString("Constraints"), this);
// For backward compatibility: isTwoAddress means operand 1 is tied to
// operand 0.
if (isTwoAddress) {
if (!OperandList[1].Constraints[0].empty())
throw R->getName() + ": cannot use isTwoAddress property: instruction "
"already has constraint set!";
OperandList[1].Constraints[0] = "((0 << 16) | (1 << TOI::TIED_TO))";
}
// Any operands with unset constraints get 0 as their constraint.
for (unsigned op = 0, e = OperandList.size(); op != e; ++op)
for (unsigned j = 0, e = OperandList[op].MINumOperands; j != e; ++j)
if (OperandList[op].Constraints[j].empty())
OperandList[op].Constraints[j] = "0";
// Parse the DisableEncoding field.
std::string DisableEncoding = R->getValueAsString("DisableEncoding");
while (1) {
std::string OpName = getToken(DisableEncoding, " ,\t");
if (OpName.empty()) break;
// Figure out which operand this is.
std::pair<unsigned,unsigned> Op = ParseOperandName(OpName, false);
// Mark the operand as not-to-be encoded.
if (Op.second >= OperandList[Op.first].DoNotEncode.size())
OperandList[Op.first].DoNotEncode.resize(Op.second+1);
OperandList[Op.first].DoNotEncode[Op.second] = true;
}
}
/// getOperandNamed - Return the index of the operand with the specified
/// non-empty name. If the instruction does not have an operand with the
/// specified name, throw an exception.
///
unsigned CodeGenInstruction::getOperandNamed(const std::string &Name) const {
assert(!Name.empty() && "Cannot search for operand with no name!");
for (unsigned i = 0, e = OperandList.size(); i != e; ++i)
if (OperandList[i].Name == Name) return i;
throw "Instruction '" + TheDef->getName() +
"' does not have an operand named '$" + Name + "'!";
}
std::pair<unsigned,unsigned>
CodeGenInstruction::ParseOperandName(const std::string &Op,
bool AllowWholeOp) {
if (Op.empty() || Op[0] != '$')
throw TheDef->getName() + ": Illegal operand name: '" + Op + "'";
std::string OpName = Op.substr(1);
std::string SubOpName;
// Check to see if this is $foo.bar.
std::string::size_type DotIdx = OpName.find_first_of(".");
if (DotIdx != std::string::npos) {
SubOpName = OpName.substr(DotIdx+1);
if (SubOpName.empty())
throw TheDef->getName() + ": illegal empty suboperand name in '" +Op +"'";
OpName = OpName.substr(0, DotIdx);
}
unsigned OpIdx = getOperandNamed(OpName);
if (SubOpName.empty()) { // If no suboperand name was specified:
// If one was needed, throw.
if (OperandList[OpIdx].MINumOperands > 1 && !AllowWholeOp &&
SubOpName.empty())
throw TheDef->getName() + ": Illegal to refer to"
" whole operand part of complex operand '" + Op + "'";
// Otherwise, return the operand.
return std::make_pair(OpIdx, 0U);
}
// Find the suboperand number involved.
DagInit *MIOpInfo = OperandList[OpIdx].MIOperandInfo;
if (MIOpInfo == 0)
throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'";
// Find the operand with the right name.
for (unsigned i = 0, e = MIOpInfo->getNumArgs(); i != e; ++i)
if (MIOpInfo->getArgName(i) == SubOpName)
return std::make_pair(OpIdx, i);
// Otherwise, didn't find it!
throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'";
}