| //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SSAUpdater class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ValueHandle.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| typedef DenseMap<BasicBlock*, TrackingVH<Value> > AvailableValsTy; |
| typedef std::vector<std::pair<BasicBlock*, TrackingVH<Value> > > |
| IncomingPredInfoTy; |
| |
| static AvailableValsTy &getAvailableVals(void *AV) { |
| return *static_cast<AvailableValsTy*>(AV); |
| } |
| |
| static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) { |
| return *static_cast<IncomingPredInfoTy*>(IPI); |
| } |
| |
| |
| SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI) |
| : AV(0), PrototypeValue(0), IPI(0), InsertedPHIs(NewPHI) {} |
| |
| SSAUpdater::~SSAUpdater() { |
| delete &getAvailableVals(AV); |
| delete &getIncomingPredInfo(IPI); |
| } |
| |
| /// Initialize - Reset this object to get ready for a new set of SSA |
| /// updates. ProtoValue is the value used to name PHI nodes. |
| void SSAUpdater::Initialize(Value *ProtoValue) { |
| if (AV == 0) |
| AV = new AvailableValsTy(); |
| else |
| getAvailableVals(AV).clear(); |
| |
| if (IPI == 0) |
| IPI = new IncomingPredInfoTy(); |
| else |
| getIncomingPredInfo(IPI).clear(); |
| PrototypeValue = ProtoValue; |
| } |
| |
| /// HasValueForBlock - Return true if the SSAUpdater already has a value for |
| /// the specified block. |
| bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { |
| return getAvailableVals(AV).count(BB); |
| } |
| |
| /// AddAvailableValue - Indicate that a rewritten value is available in the |
| /// specified block with the specified value. |
| void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { |
| assert(PrototypeValue != 0 && "Need to initialize SSAUpdater"); |
| assert(PrototypeValue->getType() == V->getType() && |
| "All rewritten values must have the same type"); |
| getAvailableVals(AV)[BB] = V; |
| } |
| |
| /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is |
| /// live at the end of the specified block. |
| Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { |
| assert(getIncomingPredInfo(IPI).empty() && "Unexpected Internal State"); |
| Value *Res = GetValueAtEndOfBlockInternal(BB); |
| assert(getIncomingPredInfo(IPI).empty() && "Unexpected Internal State"); |
| return Res; |
| } |
| |
| /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that |
| /// is live in the middle of the specified block. |
| /// |
| /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one |
| /// important case: if there is a definition of the rewritten value after the |
| /// 'use' in BB. Consider code like this: |
| /// |
| /// X1 = ... |
| /// SomeBB: |
| /// use(X) |
| /// X2 = ... |
| /// br Cond, SomeBB, OutBB |
| /// |
| /// In this case, there are two values (X1 and X2) added to the AvailableVals |
| /// set by the client of the rewriter, and those values are both live out of |
| /// their respective blocks. However, the use of X happens in the *middle* of |
| /// a block. Because of this, we need to insert a new PHI node in SomeBB to |
| /// merge the appropriate values, and this value isn't live out of the block. |
| /// |
| Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { |
| // If there is no definition of the renamed variable in this block, just use |
| // GetValueAtEndOfBlock to do our work. |
| if (!getAvailableVals(AV).count(BB)) |
| return GetValueAtEndOfBlock(BB); |
| |
| // Otherwise, we have the hard case. Get the live-in values for each |
| // predecessor. |
| SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues; |
| Value *SingularValue = 0; |
| |
| // We can get our predecessor info by walking the pred_iterator list, but it |
| // is relatively slow. If we already have PHI nodes in this block, walk one |
| // of them to get the predecessor list instead. |
| if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { |
| for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *PredBB = SomePhi->getIncomingBlock(i); |
| Value *PredVal = GetValueAtEndOfBlock(PredBB); |
| PredValues.push_back(std::make_pair(PredBB, PredVal)); |
| |
| // Compute SingularValue. |
| if (i == 0) |
| SingularValue = PredVal; |
| else if (PredVal != SingularValue) |
| SingularValue = 0; |
| } |
| } else { |
| bool isFirstPred = true; |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| BasicBlock *PredBB = *PI; |
| Value *PredVal = GetValueAtEndOfBlock(PredBB); |
| PredValues.push_back(std::make_pair(PredBB, PredVal)); |
| |
| // Compute SingularValue. |
| if (isFirstPred) { |
| SingularValue = PredVal; |
| isFirstPred = false; |
| } else if (PredVal != SingularValue) |
| SingularValue = 0; |
| } |
| } |
| |
| // If there are no predecessors, just return undef. |
| if (PredValues.empty()) |
| return UndefValue::get(PrototypeValue->getType()); |
| |
| // Otherwise, if all the merged values are the same, just use it. |
| if (SingularValue != 0) |
| return SingularValue; |
| |
| // Otherwise, we do need a PHI: check to see if we already have one available |
| // in this block that produces the right value. |
| if (isa<PHINode>(BB->begin())) { |
| DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(), |
| PredValues.end()); |
| PHINode *SomePHI; |
| for (BasicBlock::iterator It = BB->begin(); |
| (SomePHI = dyn_cast<PHINode>(It)); ++It) { |
| // Scan this phi to see if it is what we need. |
| bool Equal = true; |
| for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) |
| if (ValueMapping[SomePHI->getIncomingBlock(i)] != |
| SomePHI->getIncomingValue(i)) { |
| Equal = false; |
| break; |
| } |
| |
| if (Equal) |
| return SomePHI; |
| } |
| } |
| |
| // Ok, we have no way out, insert a new one now. |
| PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(), |
| PrototypeValue->getName(), |
| &BB->front()); |
| InsertedPHI->reserveOperandSpace(PredValues.size()); |
| |
| // Fill in all the predecessors of the PHI. |
| for (unsigned i = 0, e = PredValues.size(); i != e; ++i) |
| InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first); |
| |
| // See if the PHI node can be merged to a single value. This can happen in |
| // loop cases when we get a PHI of itself and one other value. |
| if (Value *ConstVal = InsertedPHI->hasConstantValue()) { |
| InsertedPHI->eraseFromParent(); |
| return ConstVal; |
| } |
| |
| // If the client wants to know about all new instructions, tell it. |
| if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); |
| |
| DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); |
| return InsertedPHI; |
| } |
| |
| /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes, |
| /// which use their value in the corresponding predecessor. |
| void SSAUpdater::RewriteUse(Use &U) { |
| Instruction *User = cast<Instruction>(U.getUser()); |
| |
| Value *V; |
| if (PHINode *UserPN = dyn_cast<PHINode>(User)) |
| V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); |
| else |
| V = GetValueInMiddleOfBlock(User->getParent()); |
| |
| U.set(V); |
| } |
| |
| |
| /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry |
| /// for the specified BB and if so, return it. If not, construct SSA form by |
| /// walking predecessors inserting PHI nodes as needed until we get to a block |
| /// where the value is available. |
| /// |
| Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| |
| // Query AvailableVals by doing an insertion of null. |
| std::pair<AvailableValsTy::iterator, bool> InsertRes = |
| AvailableVals.insert(std::make_pair(BB, TrackingVH<Value>())); |
| |
| // Handle the case when the insertion fails because we have already seen BB. |
| if (!InsertRes.second) { |
| // If the insertion failed, there are two cases. The first case is that the |
| // value is already available for the specified block. If we get this, just |
| // return the value. |
| if (InsertRes.first->second != 0) |
| return InsertRes.first->second; |
| |
| // Otherwise, if the value we find is null, then this is the value is not |
| // known but it is being computed elsewhere in our recursion. This means |
| // that we have a cycle. Handle this by inserting a PHI node and returning |
| // it. When we get back to the first instance of the recursion we will fill |
| // in the PHI node. |
| return InsertRes.first->second = |
| PHINode::Create(PrototypeValue->getType(), PrototypeValue->getName(), |
| &BB->front()); |
| } |
| |
| // Okay, the value isn't in the map and we just inserted a null in the entry |
| // to indicate that we're processing the block. Since we have no idea what |
| // value is in this block, we have to recurse through our predecessors. |
| // |
| // While we're walking our predecessors, we keep track of them in a vector, |
| // then insert a PHI node in the end if we actually need one. We could use a |
| // smallvector here, but that would take a lot of stack space for every level |
| // of the recursion, just use IncomingPredInfo as an explicit stack. |
| IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI); |
| unsigned FirstPredInfoEntry = IncomingPredInfo.size(); |
| |
| // As we're walking the predecessors, keep track of whether they are all |
| // producing the same value. If so, this value will capture it, if not, it |
| // will get reset to null. We distinguish the no-predecessor case explicitly |
| // below. |
| TrackingVH<Value> SingularValue; |
| |
| // We can get our predecessor info by walking the pred_iterator list, but it |
| // is relatively slow. If we already have PHI nodes in this block, walk one |
| // of them to get the predecessor list instead. |
| if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { |
| for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *PredBB = SomePhi->getIncomingBlock(i); |
| Value *PredVal = GetValueAtEndOfBlockInternal(PredBB); |
| IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal)); |
| |
| // Compute SingularValue. |
| if (i == 0) |
| SingularValue = PredVal; |
| else if (PredVal != SingularValue) |
| SingularValue = 0; |
| } |
| } else { |
| bool isFirstPred = true; |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| BasicBlock *PredBB = *PI; |
| Value *PredVal = GetValueAtEndOfBlockInternal(PredBB); |
| IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal)); |
| |
| // Compute SingularValue. |
| if (isFirstPred) { |
| SingularValue = PredVal; |
| isFirstPred = false; |
| } else if (PredVal != SingularValue) |
| SingularValue = 0; |
| } |
| } |
| |
| // If there are no predecessors, then we must have found an unreachable block |
| // just return 'undef'. Since there are no predecessors, InsertRes must not |
| // be invalidated. |
| if (IncomingPredInfo.size() == FirstPredInfoEntry) |
| return InsertRes.first->second = UndefValue::get(PrototypeValue->getType()); |
| |
| /// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If |
| /// this block is involved in a loop, a no-entry PHI node will have been |
| /// inserted as InsertedVal. Otherwise, we'll still have the null we inserted |
| /// above. |
| TrackingVH<Value> &InsertedVal = AvailableVals[BB]; |
| |
| // If all the predecessor values are the same then we don't need to insert a |
| // PHI. This is the simple and common case. |
| if (SingularValue) { |
| // If a PHI node got inserted, replace it with the singlar value and delete |
| // it. |
| if (InsertedVal) { |
| PHINode *OldVal = cast<PHINode>(InsertedVal); |
| // Be careful about dead loops. These RAUW's also update InsertedVal. |
| if (InsertedVal != SingularValue) |
| OldVal->replaceAllUsesWith(SingularValue); |
| else |
| OldVal->replaceAllUsesWith(UndefValue::get(InsertedVal->getType())); |
| OldVal->eraseFromParent(); |
| } else { |
| InsertedVal = SingularValue; |
| } |
| |
| // Either path through the 'if' should have set insertedVal -> SingularVal. |
| assert((InsertedVal == SingularValue || isa<UndefValue>(InsertedVal)) && |
| "RAUW didn't change InsertedVal to be SingularVal"); |
| |
| // Drop the entries we added in IncomingPredInfo to restore the stack. |
| IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry, |
| IncomingPredInfo.end()); |
| return SingularValue; |
| } |
| |
| // Otherwise, we do need a PHI: insert one now if we don't already have one. |
| if (InsertedVal == 0) |
| InsertedVal = PHINode::Create(PrototypeValue->getType(), |
| PrototypeValue->getName(), &BB->front()); |
| |
| PHINode *InsertedPHI = cast<PHINode>(InsertedVal); |
| InsertedPHI->reserveOperandSpace(IncomingPredInfo.size()-FirstPredInfoEntry); |
| |
| // Fill in all the predecessors of the PHI. |
| for (IncomingPredInfoTy::iterator I = |
| IncomingPredInfo.begin()+FirstPredInfoEntry, |
| E = IncomingPredInfo.end(); I != E; ++I) |
| InsertedPHI->addIncoming(I->second, I->first); |
| |
| // Drop the entries we added in IncomingPredInfo to restore the stack. |
| IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry, |
| IncomingPredInfo.end()); |
| |
| // See if the PHI node can be merged to a single value. This can happen in |
| // loop cases when we get a PHI of itself and one other value. |
| if (Value *ConstVal = InsertedPHI->hasConstantValue()) { |
| InsertedPHI->replaceAllUsesWith(ConstVal); |
| InsertedPHI->eraseFromParent(); |
| InsertedVal = ConstVal; |
| } else { |
| DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); |
| |
| // If the client wants to know about all new instructions, tell it. |
| if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); |
| } |
| |
| return InsertedVal; |
| } |