| //===- FastISelEmitter.cpp - Generate an instruction selector -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tablegen backend emits code for use by the "fast" instruction |
| // selection algorithm. See the comments at the top of |
| // lib/CodeGen/SelectionDAG/FastISel.cpp for background. |
| // |
| // This file scans through the target's tablegen instruction-info files |
| // and extracts instructions with obvious-looking patterns, and it emits |
| // code to look up these instructions by type and operator. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "FastISelEmitter.h" |
| #include "Record.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/VectorExtras.h" |
| using namespace llvm; |
| |
| namespace { |
| |
| /// InstructionMemo - This class holds additional information about an |
| /// instruction needed to emit code for it. |
| /// |
| struct InstructionMemo { |
| std::string Name; |
| const CodeGenRegisterClass *RC; |
| unsigned char SubRegNo; |
| std::vector<std::string>* PhysRegs; |
| }; |
| |
| /// OperandsSignature - This class holds a description of a list of operand |
| /// types. It has utility methods for emitting text based on the operands. |
| /// |
| struct OperandsSignature { |
| std::vector<std::string> Operands; |
| |
| bool operator<(const OperandsSignature &O) const { |
| return Operands < O.Operands; |
| } |
| |
| bool empty() const { return Operands.empty(); } |
| |
| /// initialize - Examine the given pattern and initialize the contents |
| /// of the Operands array accordingly. Return true if all the operands |
| /// are supported, false otherwise. |
| /// |
| bool initialize(TreePatternNode *InstPatNode, |
| const CodeGenTarget &Target, |
| MVT::SimpleValueType VT) { |
| if (!InstPatNode->isLeaf() && |
| InstPatNode->getOperator()->getName() == "imm") { |
| Operands.push_back("i"); |
| return true; |
| } |
| if (!InstPatNode->isLeaf() && |
| InstPatNode->getOperator()->getName() == "fpimm") { |
| Operands.push_back("f"); |
| return true; |
| } |
| |
| const CodeGenRegisterClass *DstRC = 0; |
| |
| for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Op = InstPatNode->getChild(i); |
| // For now, filter out any operand with a predicate. |
| if (!Op->getPredicateFns().empty()) |
| return false; |
| // For now, filter out any operand with multiple values. |
| if (Op->getExtTypes().size() != 1) |
| return false; |
| // For now, all the operands must have the same type. |
| if (Op->getTypeNum(0) != VT) |
| return false; |
| if (!Op->isLeaf()) { |
| if (Op->getOperator()->getName() == "imm") { |
| Operands.push_back("i"); |
| continue; |
| } |
| if (Op->getOperator()->getName() == "fpimm") { |
| Operands.push_back("f"); |
| continue; |
| } |
| // For now, ignore other non-leaf nodes. |
| return false; |
| } |
| DefInit *OpDI = dynamic_cast<DefInit*>(Op->getLeafValue()); |
| if (!OpDI) |
| return false; |
| Record *OpLeafRec = OpDI->getDef(); |
| // For now, the only other thing we accept is register operands. |
| |
| const CodeGenRegisterClass *RC = 0; |
| if (OpLeafRec->isSubClassOf("RegisterClass")) |
| RC = &Target.getRegisterClass(OpLeafRec); |
| else if (OpLeafRec->isSubClassOf("Register")) |
| RC = Target.getRegisterClassForRegister(OpLeafRec); |
| else |
| return false; |
| // For now, require the register operands' register classes to all |
| // be the same. |
| if (!RC) |
| return false; |
| // For now, all the operands must have the same register class. |
| if (DstRC) { |
| if (DstRC != RC) |
| return false; |
| } else |
| DstRC = RC; |
| Operands.push_back("r"); |
| } |
| return true; |
| } |
| |
| void PrintParameters(raw_ostream &OS) const { |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) { |
| if (Operands[i] == "r") { |
| OS << "unsigned Op" << i; |
| } else if (Operands[i] == "i") { |
| OS << "uint64_t imm" << i; |
| } else if (Operands[i] == "f") { |
| OS << "ConstantFP *f" << i; |
| } else { |
| assert("Unknown operand kind!"); |
| abort(); |
| } |
| if (i + 1 != e) |
| OS << ", "; |
| } |
| } |
| |
| void PrintArguments(raw_ostream &OS, |
| const std::vector<std::string>& PR) const { |
| assert(PR.size() == Operands.size()); |
| bool PrintedArg = false; |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) { |
| if (PR[i] != "") |
| // Implicit physical register operand. |
| continue; |
| |
| if (PrintedArg) |
| OS << ", "; |
| if (Operands[i] == "r") { |
| OS << "Op" << i; |
| PrintedArg = true; |
| } else if (Operands[i] == "i") { |
| OS << "imm" << i; |
| PrintedArg = true; |
| } else if (Operands[i] == "f") { |
| OS << "f" << i; |
| PrintedArg = true; |
| } else { |
| assert("Unknown operand kind!"); |
| abort(); |
| } |
| } |
| } |
| |
| void PrintArguments(raw_ostream &OS) const { |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) { |
| if (Operands[i] == "r") { |
| OS << "Op" << i; |
| } else if (Operands[i] == "i") { |
| OS << "imm" << i; |
| } else if (Operands[i] == "f") { |
| OS << "f" << i; |
| } else { |
| assert("Unknown operand kind!"); |
| abort(); |
| } |
| if (i + 1 != e) |
| OS << ", "; |
| } |
| } |
| |
| |
| void PrintManglingSuffix(raw_ostream &OS, |
| const std::vector<std::string>& PR) const { |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) { |
| if (PR[i] != "") |
| // Implicit physical register operand. e.g. Instruction::Mul expect to |
| // select to a binary op. On x86, mul may take a single operand with |
| // the other operand being implicit. We must emit something that looks |
| // like a binary instruction except for the very inner FastEmitInst_* |
| // call. |
| continue; |
| OS << Operands[i]; |
| } |
| } |
| |
| void PrintManglingSuffix(raw_ostream &OS) const { |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) { |
| OS << Operands[i]; |
| } |
| } |
| }; |
| |
| class FastISelMap { |
| typedef std::map<std::string, InstructionMemo> PredMap; |
| typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; |
| typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; |
| typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; |
| typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> OperandsOpcodeTypeRetPredMap; |
| |
| OperandsOpcodeTypeRetPredMap SimplePatterns; |
| |
| std::string InstNS; |
| |
| public: |
| explicit FastISelMap(std::string InstNS); |
| |
| void CollectPatterns(CodeGenDAGPatterns &CGP); |
| void PrintFunctionDefinitions(raw_ostream &OS); |
| }; |
| |
| } |
| |
| static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { |
| return CGP.getSDNodeInfo(Op).getEnumName(); |
| } |
| |
| static std::string getLegalCName(std::string OpName) { |
| std::string::size_type pos = OpName.find("::"); |
| if (pos != std::string::npos) |
| OpName.replace(pos, 2, "_"); |
| return OpName; |
| } |
| |
| FastISelMap::FastISelMap(std::string instns) |
| : InstNS(instns) { |
| } |
| |
| void FastISelMap::CollectPatterns(CodeGenDAGPatterns &CGP) { |
| const CodeGenTarget &Target = CGP.getTargetInfo(); |
| |
| // Determine the target's namespace name. |
| InstNS = Target.getInstNamespace() + "::"; |
| assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); |
| |
| // Scan through all the patterns and record the simple ones. |
| for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), |
| E = CGP.ptm_end(); I != E; ++I) { |
| const PatternToMatch &Pattern = *I; |
| |
| // For now, just look at Instructions, so that we don't have to worry |
| // about emitting multiple instructions for a pattern. |
| TreePatternNode *Dst = Pattern.getDstPattern(); |
| if (Dst->isLeaf()) continue; |
| Record *Op = Dst->getOperator(); |
| if (!Op->isSubClassOf("Instruction")) |
| continue; |
| CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName()); |
| if (II.OperandList.empty()) |
| continue; |
| |
| // For now, ignore multi-instruction patterns. |
| bool MultiInsts = false; |
| for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { |
| TreePatternNode *ChildOp = Dst->getChild(i); |
| if (ChildOp->isLeaf()) |
| continue; |
| if (ChildOp->getOperator()->isSubClassOf("Instruction")) { |
| MultiInsts = true; |
| break; |
| } |
| } |
| if (MultiInsts) |
| continue; |
| |
| // For now, ignore instructions where the first operand is not an |
| // output register. |
| const CodeGenRegisterClass *DstRC = 0; |
| unsigned SubRegNo = ~0; |
| if (Op->getName() != "EXTRACT_SUBREG") { |
| Record *Op0Rec = II.OperandList[0].Rec; |
| if (!Op0Rec->isSubClassOf("RegisterClass")) |
| continue; |
| DstRC = &Target.getRegisterClass(Op0Rec); |
| if (!DstRC) |
| continue; |
| } else { |
| SubRegNo = static_cast<IntInit*>( |
| Dst->getChild(1)->getLeafValue())->getValue(); |
| } |
| |
| // Inspect the pattern. |
| TreePatternNode *InstPatNode = Pattern.getSrcPattern(); |
| if (!InstPatNode) continue; |
| if (InstPatNode->isLeaf()) continue; |
| |
| Record *InstPatOp = InstPatNode->getOperator(); |
| std::string OpcodeName = getOpcodeName(InstPatOp, CGP); |
| MVT::SimpleValueType RetVT = InstPatNode->getTypeNum(0); |
| MVT::SimpleValueType VT = RetVT; |
| if (InstPatNode->getNumChildren()) |
| VT = InstPatNode->getChild(0)->getTypeNum(0); |
| |
| // For now, filter out instructions which just set a register to |
| // an Operand or an immediate, like MOV32ri. |
| if (InstPatOp->isSubClassOf("Operand")) |
| continue; |
| |
| // For now, filter out any instructions with predicates. |
| if (!InstPatNode->getPredicateFns().empty()) |
| continue; |
| |
| // Check all the operands. |
| OperandsSignature Operands; |
| if (!Operands.initialize(InstPatNode, Target, VT)) |
| continue; |
| |
| std::vector<std::string>* PhysRegInputs = new std::vector<std::string>(); |
| if (!InstPatNode->isLeaf() && |
| (InstPatNode->getOperator()->getName() == "imm" || |
| InstPatNode->getOperator()->getName() == "fpimmm")) |
| PhysRegInputs->push_back(""); |
| else if (!InstPatNode->isLeaf()) { |
| for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Op = InstPatNode->getChild(i); |
| if (!Op->isLeaf()) { |
| PhysRegInputs->push_back(""); |
| continue; |
| } |
| |
| DefInit *OpDI = dynamic_cast<DefInit*>(Op->getLeafValue()); |
| Record *OpLeafRec = OpDI->getDef(); |
| std::string PhysReg; |
| if (OpLeafRec->isSubClassOf("Register")) { |
| PhysReg += static_cast<StringInit*>(OpLeafRec->getValue( \ |
| "Namespace")->getValue())->getValue(); |
| PhysReg += "::"; |
| |
| std::vector<CodeGenRegister> Regs = Target.getRegisters(); |
| for (unsigned i = 0; i < Regs.size(); ++i) { |
| if (Regs[i].TheDef == OpLeafRec) { |
| PhysReg += Regs[i].getName(); |
| break; |
| } |
| } |
| } |
| |
| PhysRegInputs->push_back(PhysReg); |
| } |
| } else |
| PhysRegInputs->push_back(""); |
| |
| // Get the predicate that guards this pattern. |
| std::string PredicateCheck = Pattern.getPredicateCheck(); |
| |
| // Ok, we found a pattern that we can handle. Remember it. |
| InstructionMemo Memo = { |
| Pattern.getDstPattern()->getOperator()->getName(), |
| DstRC, |
| SubRegNo, |
| PhysRegInputs |
| }; |
| assert(!SimplePatterns[Operands][OpcodeName][VT][RetVT].count(PredicateCheck) && |
| "Duplicate pattern!"); |
| SimplePatterns[Operands][OpcodeName][VT][RetVT][PredicateCheck] = Memo; |
| } |
| } |
| |
| void FastISelMap::PrintFunctionDefinitions(raw_ostream &OS) { |
| // Now emit code for all the patterns that we collected. |
| for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), |
| OE = SimplePatterns.end(); OI != OE; ++OI) { |
| const OperandsSignature &Operands = OI->first; |
| const OpcodeTypeRetPredMap &OTM = OI->second; |
| |
| for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); |
| I != E; ++I) { |
| const std::string &Opcode = I->first; |
| const TypeRetPredMap &TM = I->second; |
| |
| OS << "// FastEmit functions for " << Opcode << ".\n"; |
| OS << "\n"; |
| |
| // Emit one function for each opcode,type pair. |
| for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); |
| TI != TE; ++TI) { |
| MVT::SimpleValueType VT = TI->first; |
| const RetPredMap &RM = TI->second; |
| if (RM.size() != 1) { |
| for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); |
| RI != RE; ++RI) { |
| MVT::SimpleValueType RetVT = RI->first; |
| const PredMap &PM = RI->second; |
| bool HasPred = false; |
| |
| OS << "unsigned FastEmit_" |
| << getLegalCName(Opcode) |
| << "_" << getLegalCName(getName(VT)) |
| << "_" << getLegalCName(getName(RetVT)) << "_"; |
| Operands.PrintManglingSuffix(OS); |
| OS << "("; |
| Operands.PrintParameters(OS); |
| OS << ") {\n"; |
| |
| // Emit code for each possible instruction. There may be |
| // multiple if there are subtarget concerns. |
| for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); |
| PI != PE; ++PI) { |
| std::string PredicateCheck = PI->first; |
| const InstructionMemo &Memo = PI->second; |
| |
| if (PredicateCheck.empty()) { |
| assert(!HasPred && |
| "Multiple instructions match, at least one has " |
| "a predicate and at least one doesn't!"); |
| } else { |
| OS << " if (" + PredicateCheck + ") {\n"; |
| OS << " "; |
| HasPred = true; |
| } |
| |
| for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { |
| if ((*Memo.PhysRegs)[i] != "") |
| OS << " TII.copyRegToReg(*MBB, MBB->end(), " |
| << (*Memo.PhysRegs)[i] << ", Op" << i << ", " |
| << "TM.getRegisterInfo()->getPhysicalRegisterRegClass(" |
| << (*Memo.PhysRegs)[i] << "), " |
| << "MRI.getRegClass(Op" << i << "));\n"; |
| } |
| |
| OS << " return FastEmitInst_"; |
| if (Memo.SubRegNo == (unsigned char)~0) { |
| Operands.PrintManglingSuffix(OS, *Memo.PhysRegs); |
| OS << "(" << InstNS << Memo.Name << ", "; |
| OS << InstNS << Memo.RC->getName() << "RegisterClass"; |
| if (!Operands.empty()) |
| OS << ", "; |
| Operands.PrintArguments(OS, *Memo.PhysRegs); |
| OS << ");\n"; |
| } else { |
| OS << "extractsubreg(" << getName(RetVT); |
| OS << ", Op0, "; |
| OS << (unsigned)Memo.SubRegNo; |
| OS << ");\n"; |
| } |
| |
| if (HasPred) |
| OS << " }\n"; |
| |
| } |
| // Return 0 if none of the predicates were satisfied. |
| if (HasPred) |
| OS << " return 0;\n"; |
| OS << "}\n"; |
| OS << "\n"; |
| } |
| |
| // Emit one function for the type that demultiplexes on return type. |
| OS << "unsigned FastEmit_" |
| << getLegalCName(Opcode) << "_" |
| << getLegalCName(getName(VT)) << "_"; |
| Operands.PrintManglingSuffix(OS); |
| OS << "(MVT RetVT"; |
| if (!Operands.empty()) |
| OS << ", "; |
| Operands.PrintParameters(OS); |
| OS << ") {\nswitch (RetVT.SimpleTy) {\n"; |
| for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); |
| RI != RE; ++RI) { |
| MVT::SimpleValueType RetVT = RI->first; |
| OS << " case " << getName(RetVT) << ": return FastEmit_" |
| << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) |
| << "_" << getLegalCName(getName(RetVT)) << "_"; |
| Operands.PrintManglingSuffix(OS); |
| OS << "("; |
| Operands.PrintArguments(OS); |
| OS << ");\n"; |
| } |
| OS << " default: return 0;\n}\n}\n\n"; |
| |
| } else { |
| // Non-variadic return type. |
| OS << "unsigned FastEmit_" |
| << getLegalCName(Opcode) << "_" |
| << getLegalCName(getName(VT)) << "_"; |
| Operands.PrintManglingSuffix(OS); |
| OS << "(MVT RetVT"; |
| if (!Operands.empty()) |
| OS << ", "; |
| Operands.PrintParameters(OS); |
| OS << ") {\n"; |
| |
| OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) |
| << ")\n return 0;\n"; |
| |
| const PredMap &PM = RM.begin()->second; |
| bool HasPred = false; |
| |
| // Emit code for each possible instruction. There may be |
| // multiple if there are subtarget concerns. |
| for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); PI != PE; |
| ++PI) { |
| std::string PredicateCheck = PI->first; |
| const InstructionMemo &Memo = PI->second; |
| |
| if (PredicateCheck.empty()) { |
| assert(!HasPred && |
| "Multiple instructions match, at least one has " |
| "a predicate and at least one doesn't!"); |
| } else { |
| OS << " if (" + PredicateCheck + ") {\n"; |
| OS << " "; |
| HasPred = true; |
| } |
| |
| for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { |
| if ((*Memo.PhysRegs)[i] != "") |
| OS << " TII.copyRegToReg(*MBB, MBB->end(), " |
| << (*Memo.PhysRegs)[i] << ", Op" << i << ", " |
| << "TM.getRegisterInfo()->getPhysicalRegisterRegClass(" |
| << (*Memo.PhysRegs)[i] << "), " |
| << "MRI.getRegClass(Op" << i << "));\n"; |
| } |
| |
| OS << " return FastEmitInst_"; |
| |
| if (Memo.SubRegNo == (unsigned char)~0) { |
| Operands.PrintManglingSuffix(OS, *Memo.PhysRegs); |
| OS << "(" << InstNS << Memo.Name << ", "; |
| OS << InstNS << Memo.RC->getName() << "RegisterClass"; |
| if (!Operands.empty()) |
| OS << ", "; |
| Operands.PrintArguments(OS, *Memo.PhysRegs); |
| OS << ");\n"; |
| } else { |
| OS << "extractsubreg(RetVT, Op0, "; |
| OS << (unsigned)Memo.SubRegNo; |
| OS << ");\n"; |
| } |
| |
| if (HasPred) |
| OS << " }\n"; |
| } |
| |
| // Return 0 if none of the predicates were satisfied. |
| if (HasPred) |
| OS << " return 0;\n"; |
| OS << "}\n"; |
| OS << "\n"; |
| } |
| } |
| |
| // Emit one function for the opcode that demultiplexes based on the type. |
| OS << "unsigned FastEmit_" |
| << getLegalCName(Opcode) << "_"; |
| Operands.PrintManglingSuffix(OS); |
| OS << "(MVT VT, MVT RetVT"; |
| if (!Operands.empty()) |
| OS << ", "; |
| Operands.PrintParameters(OS); |
| OS << ") {\n"; |
| OS << " switch (VT.SimpleTy) {\n"; |
| for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); |
| TI != TE; ++TI) { |
| MVT::SimpleValueType VT = TI->first; |
| std::string TypeName = getName(VT); |
| OS << " case " << TypeName << ": return FastEmit_" |
| << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; |
| Operands.PrintManglingSuffix(OS); |
| OS << "(RetVT"; |
| if (!Operands.empty()) |
| OS << ", "; |
| Operands.PrintArguments(OS); |
| OS << ");\n"; |
| } |
| OS << " default: return 0;\n"; |
| OS << " }\n"; |
| OS << "}\n"; |
| OS << "\n"; |
| } |
| |
| OS << "// Top-level FastEmit function.\n"; |
| OS << "\n"; |
| |
| // Emit one function for the operand signature that demultiplexes based |
| // on opcode and type. |
| OS << "unsigned FastEmit_"; |
| Operands.PrintManglingSuffix(OS); |
| OS << "(MVT VT, MVT RetVT, unsigned Opcode"; |
| if (!Operands.empty()) |
| OS << ", "; |
| Operands.PrintParameters(OS); |
| OS << ") {\n"; |
| OS << " switch (Opcode) {\n"; |
| for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); |
| I != E; ++I) { |
| const std::string &Opcode = I->first; |
| |
| OS << " case " << Opcode << ": return FastEmit_" |
| << getLegalCName(Opcode) << "_"; |
| Operands.PrintManglingSuffix(OS); |
| OS << "(VT, RetVT"; |
| if (!Operands.empty()) |
| OS << ", "; |
| Operands.PrintArguments(OS); |
| OS << ");\n"; |
| } |
| OS << " default: return 0;\n"; |
| OS << " }\n"; |
| OS << "}\n"; |
| OS << "\n"; |
| } |
| } |
| |
| void FastISelEmitter::run(raw_ostream &OS) { |
| const CodeGenTarget &Target = CGP.getTargetInfo(); |
| |
| // Determine the target's namespace name. |
| std::string InstNS = Target.getInstNamespace() + "::"; |
| assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); |
| |
| EmitSourceFileHeader("\"Fast\" Instruction Selector for the " + |
| Target.getName() + " target", OS); |
| |
| FastISelMap F(InstNS); |
| F.CollectPatterns(CGP); |
| F.PrintFunctionDefinitions(OS); |
| } |
| |
| FastISelEmitter::FastISelEmitter(RecordKeeper &R) |
| : Records(R), |
| CGP(R) { |
| } |
| |