blob: edead091ed4f37c35d117fb0038ede7f13e996ee [file] [log] [blame]
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an analysis that determines, for a given memory
// operation, what preceding memory operations it depends on. It builds on
// alias analysis information, and tries to provide a lazy, caching interface to
// a common kind of alias information query.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "memdep"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Function.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/PredIteratorCache.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
STATISTIC(NumCacheNonLocalPtr,
"Number of fully cached non-local ptr responses");
STATISTIC(NumCacheDirtyNonLocalPtr,
"Number of cached, but dirty, non-local ptr responses");
STATISTIC(NumUncacheNonLocalPtr,
"Number of uncached non-local ptr responses");
STATISTIC(NumCacheCompleteNonLocalPtr,
"Number of block queries that were completely cached");
char MemoryDependenceAnalysis::ID = 0;
// Register this pass...
static RegisterPass<MemoryDependenceAnalysis> X("memdep",
"Memory Dependence Analysis", false, true);
MemoryDependenceAnalysis::MemoryDependenceAnalysis()
: FunctionPass(&ID), PredCache(0) {
}
MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
}
/// Clean up memory in between runs
void MemoryDependenceAnalysis::releaseMemory() {
LocalDeps.clear();
NonLocalDeps.clear();
NonLocalPointerDeps.clear();
ReverseLocalDeps.clear();
ReverseNonLocalDeps.clear();
ReverseNonLocalPtrDeps.clear();
PredCache->clear();
}
/// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
///
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<AliasAnalysis>();
}
bool MemoryDependenceAnalysis::runOnFunction(Function &) {
AA = &getAnalysis<AliasAnalysis>();
if (PredCache == 0)
PredCache.reset(new PredIteratorCache());
return false;
}
/// RemoveFromReverseMap - This is a helper function that removes Val from
/// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
template <typename KeyTy>
static void RemoveFromReverseMap(DenseMap<Instruction*,
SmallPtrSet<KeyTy, 4> > &ReverseMap,
Instruction *Inst, KeyTy Val) {
typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
InstIt = ReverseMap.find(Inst);
assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
bool Found = InstIt->second.erase(Val);
assert(Found && "Invalid reverse map!"); Found=Found;
if (InstIt->second.empty())
ReverseMap.erase(InstIt);
}
/// getCallSiteDependencyFrom - Private helper for finding the local
/// dependencies of a call site.
MemDepResult MemoryDependenceAnalysis::
getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
BasicBlock::iterator ScanIt, BasicBlock *BB) {
// Walk backwards through the block, looking for dependencies
while (ScanIt != BB->begin()) {
Instruction *Inst = --ScanIt;
// If this inst is a memory op, get the pointer it accessed
Value *Pointer = 0;
uint64_t PointerSize = 0;
if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
Pointer = S->getPointerOperand();
PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
} else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
Pointer = V->getOperand(0);
PointerSize = AA->getTypeStoreSize(V->getType());
} else if (isFreeCall(Inst)) {
Pointer = Inst->getOperand(1);
// calls to free() erase the entire structure
PointerSize = ~0ULL;
} else if (isFreeCall(Inst)) {
Pointer = Inst->getOperand(0);
// calls to free() erase the entire structure
PointerSize = ~0ULL;
} else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
// Debug intrinsics don't cause dependences.
if (isa<DbgInfoIntrinsic>(Inst)) continue;
CallSite InstCS = CallSite::get(Inst);
// If these two calls do not interfere, look past it.
switch (AA->getModRefInfo(CS, InstCS)) {
case AliasAnalysis::NoModRef:
// If the two calls don't interact (e.g. InstCS is readnone) keep
// scanning.
continue;
case AliasAnalysis::Ref:
// If the two calls read the same memory locations and CS is a readonly
// function, then we have two cases: 1) the calls may not interfere with
// each other at all. 2) the calls may produce the same value. In case
// #1 we want to ignore the values, in case #2, we want to return Inst
// as a Def dependence. This allows us to CSE in cases like:
// X = strlen(P);
// memchr(...);
// Y = strlen(P); // Y = X
if (isReadOnlyCall) {
if (CS.getCalledFunction() != 0 &&
CS.getCalledFunction() == InstCS.getCalledFunction())
return MemDepResult::getDef(Inst);
// Ignore unrelated read/read call dependences.
continue;
}
// FALL THROUGH
default:
return MemDepResult::getClobber(Inst);
}
} else {
// Non-memory instruction.
continue;
}
if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
return MemDepResult::getClobber(Inst);
}
// No dependence found. If this is the entry block of the function, it is a
// clobber, otherwise it is non-local.
if (BB != &BB->getParent()->getEntryBlock())
return MemDepResult::getNonLocal();
return MemDepResult::getClobber(ScanIt);
}
/// getPointerDependencyFrom - Return the instruction on which a memory
/// location depends. If isLoad is true, this routine ignore may-aliases with
/// read-only operations.
MemDepResult MemoryDependenceAnalysis::
getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
BasicBlock::iterator ScanIt, BasicBlock *BB) {
Value* invariantTag = 0;
// Walk backwards through the basic block, looking for dependencies.
while (ScanIt != BB->begin()) {
Instruction *Inst = --ScanIt;
// If we're in an invariant region, no dependencies can be found before
// we pass an invariant-begin marker.
if (invariantTag == Inst) {
invariantTag = 0;
continue;
// If we pass an invariant-end marker, then we've just entered an invariant
// region and can start ignoring dependencies.
} else if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) {
if (II->getIntrinsicID() == Intrinsic::invariant_end) {
uint64_t invariantSize = ~0ULL;
if (ConstantInt* CI = dyn_cast<ConstantInt>(II->getOperand(2)))
invariantSize = CI->getZExtValue();
AliasAnalysis::AliasResult R =
AA->alias(II->getOperand(3), invariantSize, MemPtr, MemSize);
if (R == AliasAnalysis::MustAlias) {
invariantTag = II->getOperand(1);
continue;
}
}
}
// If we're querying on a load and we're in an invariant region, we're done
// at this point. Nothing a load depends on can live in an invariant region.
if (isLoad && invariantTag) continue;
// Debug intrinsics don't cause dependences.
if (isa<DbgInfoIntrinsic>(Inst)) continue;
// Values depend on loads if the pointers are must aliased. This means that
// a load depends on another must aliased load from the same value.
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
Value *Pointer = LI->getPointerOperand();
uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
// If we found a pointer, check if it could be the same as our pointer.
AliasAnalysis::AliasResult R =
AA->alias(Pointer, PointerSize, MemPtr, MemSize);
if (R == AliasAnalysis::NoAlias)
continue;
// May-alias loads don't depend on each other without a dependence.
if (isLoad && R == AliasAnalysis::MayAlias)
continue;
// Stores depend on may and must aliased loads, loads depend on must-alias
// loads.
return MemDepResult::getDef(Inst);
}
// If we're querying on a store and we're in an invariant region, we're done
// at this point. The only things that stores depend on that could exist in
// an invariant region are loads, which we've already checked.
if (invariantTag) continue;
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// If alias analysis can tell that this store is guaranteed to not modify
// the query pointer, ignore it. Use getModRefInfo to handle cases where
// the query pointer points to constant memory etc.
if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
continue;
// Ok, this store might clobber the query pointer. Check to see if it is
// a must alias: in this case, we want to return this as a def.
Value *Pointer = SI->getPointerOperand();
uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
// If we found a pointer, check if it could be the same as our pointer.
AliasAnalysis::AliasResult R =
AA->alias(Pointer, PointerSize, MemPtr, MemSize);
if (R == AliasAnalysis::NoAlias)
continue;
if (R == AliasAnalysis::MayAlias)
return MemDepResult::getClobber(Inst);
return MemDepResult::getDef(Inst);
}
// If this is an allocation, and if we know that the accessed pointer is to
// the allocation, return Def. This means that there is no dependence and
// the access can be optimized based on that. For example, a load could
// turn into undef.
// Note: Only determine this to be a malloc if Inst is the malloc call, not
// a subsequent bitcast of the malloc call result. There can be stores to
// the malloced memory between the malloc call and its bitcast uses, and we
// need to continue scanning until the malloc call.
if (isa<AllocaInst>(Inst) || extractMallocCall(Inst)) {
Value *AccessPtr = MemPtr->getUnderlyingObject();
if (AccessPtr == Inst ||
AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
return MemDepResult::getDef(Inst);
continue;
}
// See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
case AliasAnalysis::NoModRef:
// If the call has no effect on the queried pointer, just ignore it.
continue;
case AliasAnalysis::Ref:
// If the call is known to never store to the pointer, and if this is a
// load query, we can safely ignore it (scan past it).
if (isLoad)
continue;
// FALL THROUGH.
default:
// Otherwise, there is a potential dependence. Return a clobber.
return MemDepResult::getClobber(Inst);
}
}
// No dependence found. If this is the entry block of the function, it is a
// clobber, otherwise it is non-local.
if (BB != &BB->getParent()->getEntryBlock())
return MemDepResult::getNonLocal();
return MemDepResult::getClobber(ScanIt);
}
/// getDependency - Return the instruction on which a memory operation
/// depends.
MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
Instruction *ScanPos = QueryInst;
// Check for a cached result
MemDepResult &LocalCache = LocalDeps[QueryInst];
// If the cached entry is non-dirty, just return it. Note that this depends
// on MemDepResult's default constructing to 'dirty'.
if (!LocalCache.isDirty())
return LocalCache;
// Otherwise, if we have a dirty entry, we know we can start the scan at that
// instruction, which may save us some work.
if (Instruction *Inst = LocalCache.getInst()) {
ScanPos = Inst;
RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
}
BasicBlock *QueryParent = QueryInst->getParent();
Value *MemPtr = 0;
uint64_t MemSize = 0;
// Do the scan.
if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
// No dependence found. If this is the entry block of the function, it is a
// clobber, otherwise it is non-local.
if (QueryParent != &QueryParent->getParent()->getEntryBlock())
LocalCache = MemDepResult::getNonLocal();
else
LocalCache = MemDepResult::getClobber(QueryInst);
} else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
// If this is a volatile store, don't mess around with it. Just return the
// previous instruction as a clobber.
if (SI->isVolatile())
LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
else {
MemPtr = SI->getPointerOperand();
MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
}
} else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
// If this is a volatile load, don't mess around with it. Just return the
// previous instruction as a clobber.
if (LI->isVolatile())
LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
else {
MemPtr = LI->getPointerOperand();
MemSize = AA->getTypeStoreSize(LI->getType());
}
} else if (isFreeCall(QueryInst)) {
MemPtr = QueryInst->getOperand(1);
// calls to free() erase the entire structure, not just a field.
MemSize = ~0UL;
} else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
CallSite QueryCS = CallSite::get(QueryInst);
bool isReadOnly = AA->onlyReadsMemory(QueryCS);
LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
QueryParent);
} else {
// Non-memory instruction.
LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
}
// If we need to do a pointer scan, make it happen.
if (MemPtr)
LocalCache = getPointerDependencyFrom(MemPtr, MemSize,
isa<LoadInst>(QueryInst),
ScanPos, QueryParent);
// Remember the result!
if (Instruction *I = LocalCache.getInst())
ReverseLocalDeps[I].insert(QueryInst);
return LocalCache;
}
#ifndef NDEBUG
/// AssertSorted - This method is used when -debug is specified to verify that
/// cache arrays are properly kept sorted.
static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
int Count = -1) {
if (Count == -1) Count = Cache.size();
if (Count == 0) return;
for (unsigned i = 1; i != unsigned(Count); ++i)
assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!");
}
#endif
/// getNonLocalCallDependency - Perform a full dependency query for the
/// specified call, returning the set of blocks that the value is
/// potentially live across. The returned set of results will include a
/// "NonLocal" result for all blocks where the value is live across.
///
/// This method assumes the instruction returns a "NonLocal" dependency
/// within its own block.
///
/// This returns a reference to an internal data structure that may be
/// invalidated on the next non-local query or when an instruction is
/// removed. Clients must copy this data if they want it around longer than
/// that.
const MemoryDependenceAnalysis::NonLocalDepInfo &
MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
"getNonLocalCallDependency should only be used on calls with non-local deps!");
PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
NonLocalDepInfo &Cache = CacheP.first;
/// DirtyBlocks - This is the set of blocks that need to be recomputed. In
/// the cached case, this can happen due to instructions being deleted etc. In
/// the uncached case, this starts out as the set of predecessors we care
/// about.
SmallVector<BasicBlock*, 32> DirtyBlocks;
if (!Cache.empty()) {
// Okay, we have a cache entry. If we know it is not dirty, just return it
// with no computation.
if (!CacheP.second) {
NumCacheNonLocal++;
return Cache;
}
// If we already have a partially computed set of results, scan them to
// determine what is dirty, seeding our initial DirtyBlocks worklist.
for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
I != E; ++I)
if (I->second.isDirty())
DirtyBlocks.push_back(I->first);
// Sort the cache so that we can do fast binary search lookups below.
std::sort(Cache.begin(), Cache.end());
++NumCacheDirtyNonLocal;
//cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
// << Cache.size() << " cached: " << *QueryInst;
} else {
// Seed DirtyBlocks with each of the preds of QueryInst's block.
BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
DirtyBlocks.push_back(*PI);
NumUncacheNonLocal++;
}
// isReadonlyCall - If this is a read-only call, we can be more aggressive.
bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
SmallPtrSet<BasicBlock*, 64> Visited;
unsigned NumSortedEntries = Cache.size();
DEBUG(AssertSorted(Cache));
// Iterate while we still have blocks to update.
while (!DirtyBlocks.empty()) {
BasicBlock *DirtyBB = DirtyBlocks.back();
DirtyBlocks.pop_back();
// Already processed this block?
if (!Visited.insert(DirtyBB))
continue;
// Do a binary search to see if we already have an entry for this block in
// the cache set. If so, find it.
DEBUG(AssertSorted(Cache, NumSortedEntries));
NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
std::make_pair(DirtyBB, MemDepResult()));
if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB)
--Entry;
MemDepResult *ExistingResult = 0;
if (Entry != Cache.begin()+NumSortedEntries &&
Entry->first == DirtyBB) {
// If we already have an entry, and if it isn't already dirty, the block
// is done.
if (!Entry->second.isDirty())
continue;
// Otherwise, remember this slot so we can update the value.
ExistingResult = &Entry->second;
}
// If the dirty entry has a pointer, start scanning from it so we don't have
// to rescan the entire block.
BasicBlock::iterator ScanPos = DirtyBB->end();
if (ExistingResult) {
if (Instruction *Inst = ExistingResult->getInst()) {
ScanPos = Inst;
// We're removing QueryInst's use of Inst.
RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
QueryCS.getInstruction());
}
}
// Find out if this block has a local dependency for QueryInst.
MemDepResult Dep;
if (ScanPos != DirtyBB->begin()) {
Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
} else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
// No dependence found. If this is the entry block of the function, it is
// a clobber, otherwise it is non-local.
Dep = MemDepResult::getNonLocal();
} else {
Dep = MemDepResult::getClobber(ScanPos);
}
// If we had a dirty entry for the block, update it. Otherwise, just add
// a new entry.
if (ExistingResult)
*ExistingResult = Dep;
else
Cache.push_back(std::make_pair(DirtyBB, Dep));
// If the block has a dependency (i.e. it isn't completely transparent to
// the value), remember the association!
if (!Dep.isNonLocal()) {
// Keep the ReverseNonLocalDeps map up to date so we can efficiently
// update this when we remove instructions.
if (Instruction *Inst = Dep.getInst())
ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
} else {
// If the block *is* completely transparent to the load, we need to check
// the predecessors of this block. Add them to our worklist.
for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
DirtyBlocks.push_back(*PI);
}
}
return Cache;
}
/// getNonLocalPointerDependency - Perform a full dependency query for an
/// access to the specified (non-volatile) memory location, returning the
/// set of instructions that either define or clobber the value.
///
/// This method assumes the pointer has a "NonLocal" dependency within its
/// own block.
///
void MemoryDependenceAnalysis::
getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
SmallVectorImpl<NonLocalDepEntry> &Result) {
assert(isa<PointerType>(Pointer->getType()) &&
"Can't get pointer deps of a non-pointer!");
Result.clear();
// We know that the pointer value is live into FromBB find the def/clobbers
// from presecessors.
const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
// This is the set of blocks we've inspected, and the pointer we consider in
// each block. Because of critical edges, we currently bail out if querying
// a block with multiple different pointers. This can happen during PHI
// translation.
DenseMap<BasicBlock*, Value*> Visited;
if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
Result, Visited, true))
return;
Result.clear();
Result.push_back(std::make_pair(FromBB,
MemDepResult::getClobber(FromBB->begin())));
}
/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
/// Pointer/PointeeSize using either cached information in Cache or by doing a
/// lookup (which may use dirty cache info if available). If we do a lookup,
/// add the result to the cache.
MemDepResult MemoryDependenceAnalysis::
GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
bool isLoad, BasicBlock *BB,
NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
// Do a binary search to see if we already have an entry for this block in
// the cache set. If so, find it.
NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
std::make_pair(BB, MemDepResult()));
if (Entry != Cache->begin() && prior(Entry)->first == BB)
--Entry;
MemDepResult *ExistingResult = 0;
if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
ExistingResult = &Entry->second;
// If we have a cached entry, and it is non-dirty, use it as the value for
// this dependency.
if (ExistingResult && !ExistingResult->isDirty()) {
++NumCacheNonLocalPtr;
return *ExistingResult;
}
// Otherwise, we have to scan for the value. If we have a dirty cache
// entry, start scanning from its position, otherwise we scan from the end
// of the block.
BasicBlock::iterator ScanPos = BB->end();
if (ExistingResult && ExistingResult->getInst()) {
assert(ExistingResult->getInst()->getParent() == BB &&
"Instruction invalidated?");
++NumCacheDirtyNonLocalPtr;
ScanPos = ExistingResult->getInst();
// Eliminating the dirty entry from 'Cache', so update the reverse info.
ValueIsLoadPair CacheKey(Pointer, isLoad);
RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
} else {
++NumUncacheNonLocalPtr;
}
// Scan the block for the dependency.
MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
ScanPos, BB);
// If we had a dirty entry for the block, update it. Otherwise, just add
// a new entry.
if (ExistingResult)
*ExistingResult = Dep;
else
Cache->push_back(std::make_pair(BB, Dep));
// If the block has a dependency (i.e. it isn't completely transparent to
// the value), remember the reverse association because we just added it
// to Cache!
if (Dep.isNonLocal())
return Dep;
// Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
// update MemDep when we remove instructions.
Instruction *Inst = Dep.getInst();
assert(Inst && "Didn't depend on anything?");
ValueIsLoadPair CacheKey(Pointer, isLoad);
ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
return Dep;
}
/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
/// number of elements in the array that are already properly ordered. This is
/// optimized for the case when only a few entries are added.
static void
SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
unsigned NumSortedEntries) {
switch (Cache.size() - NumSortedEntries) {
case 0:
// done, no new entries.
break;
case 2: {
// Two new entries, insert the last one into place.
MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
Cache.pop_back();
MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache.begin(), Cache.end()-1, Val);
Cache.insert(Entry, Val);
// FALL THROUGH.
}
case 1:
// One new entry, Just insert the new value at the appropriate position.
if (Cache.size() != 1) {
MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
Cache.pop_back();
MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache.begin(), Cache.end(), Val);
Cache.insert(Entry, Val);
}
break;
default:
// Added many values, do a full scale sort.
std::sort(Cache.begin(), Cache.end());
break;
}
}
/// getNonLocalPointerDepFromBB - Perform a dependency query based on
/// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
/// results to the results vector and keep track of which blocks are visited in
/// 'Visited'.
///
/// This has special behavior for the first block queries (when SkipFirstBlock
/// is true). In this special case, it ignores the contents of the specified
/// block and starts returning dependence info for its predecessors.
///
/// This function returns false on success, or true to indicate that it could
/// not compute dependence information for some reason. This should be treated
/// as a clobber dependence on the first instruction in the predecessor block.
bool MemoryDependenceAnalysis::
getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
bool isLoad, BasicBlock *StartBB,
SmallVectorImpl<NonLocalDepEntry> &Result,
DenseMap<BasicBlock*, Value*> &Visited,
bool SkipFirstBlock) {
// Look up the cached info for Pointer.
ValueIsLoadPair CacheKey(Pointer, isLoad);
std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
&NonLocalPointerDeps[CacheKey];
NonLocalDepInfo *Cache = &CacheInfo->second;
// If we have valid cached information for exactly the block we are
// investigating, just return it with no recomputation.
if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
// We have a fully cached result for this query then we can just return the
// cached results and populate the visited set. However, we have to verify
// that we don't already have conflicting results for these blocks. Check
// to ensure that if a block in the results set is in the visited set that
// it was for the same pointer query.
if (!Visited.empty()) {
for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
I != E; ++I) {
DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first);
if (VI == Visited.end() || VI->second == Pointer) continue;
// We have a pointer mismatch in a block. Just return clobber, saying
// that something was clobbered in this result. We could also do a
// non-fully cached query, but there is little point in doing this.
return true;
}
}
for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
I != E; ++I) {
Visited.insert(std::make_pair(I->first, Pointer));
if (!I->second.isNonLocal())
Result.push_back(*I);
}
++NumCacheCompleteNonLocalPtr;
return false;
}
// Otherwise, either this is a new block, a block with an invalid cache
// pointer or one that we're about to invalidate by putting more info into it
// than its valid cache info. If empty, the result will be valid cache info,
// otherwise it isn't.
if (Cache->empty())
CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
else
CacheInfo->first = BBSkipFirstBlockPair();
SmallVector<BasicBlock*, 32> Worklist;
Worklist.push_back(StartBB);
// Keep track of the entries that we know are sorted. Previously cached
// entries will all be sorted. The entries we add we only sort on demand (we
// don't insert every element into its sorted position). We know that we
// won't get any reuse from currently inserted values, because we don't
// revisit blocks after we insert info for them.
unsigned NumSortedEntries = Cache->size();
DEBUG(AssertSorted(*Cache));
while (!Worklist.empty()) {
BasicBlock *BB = Worklist.pop_back_val();
// Skip the first block if we have it.
if (!SkipFirstBlock) {
// Analyze the dependency of *Pointer in FromBB. See if we already have
// been here.
assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
// Get the dependency info for Pointer in BB. If we have cached
// information, we will use it, otherwise we compute it.
DEBUG(AssertSorted(*Cache, NumSortedEntries));
MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
BB, Cache, NumSortedEntries);
// If we got a Def or Clobber, add this to the list of results.
if (!Dep.isNonLocal()) {
Result.push_back(NonLocalDepEntry(BB, Dep));
continue;
}
}
// If 'Pointer' is an instruction defined in this block, then we need to do
// phi translation to change it into a value live in the predecessor block.
// If phi translation fails, then we can't continue dependence analysis.
Instruction *PtrInst = dyn_cast<Instruction>(Pointer);
bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB;
// If no PHI translation is needed, just add all the predecessors of this
// block to scan them as well.
if (!NeedsPHITranslation) {
SkipFirstBlock = false;
for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
// Verify that we haven't looked at this block yet.
std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
InsertRes = Visited.insert(std::make_pair(*PI, Pointer));
if (InsertRes.second) {
// First time we've looked at *PI.
Worklist.push_back(*PI);
continue;
}
// If we have seen this block before, but it was with a different
// pointer then we have a phi translation failure and we have to treat
// this as a clobber.
if (InsertRes.first->second != Pointer)
goto PredTranslationFailure;
}
continue;
}
// If we do need to do phi translation, then there are a bunch of different
// cases, because we have to find a Value* live in the predecessor block. We
// know that PtrInst is defined in this block at least.
// We may have added values to the cache list before this PHI translation.
// If so, we haven't done anything to ensure that the cache remains sorted.
// Sort it now (if needed) so that recursive invocations of
// getNonLocalPointerDepFromBB and other routines that could reuse the cache
// value will only see properly sorted cache arrays.
if (Cache && NumSortedEntries != Cache->size()) {
SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
NumSortedEntries = Cache->size();
}
// If this is directly a PHI node, just use the incoming values for each
// pred as the phi translated version.
if (PHINode *PtrPHI = dyn_cast<PHINode>(PtrInst)) {
Cache = 0;
for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
BasicBlock *Pred = *PI;
Value *PredPtr = PtrPHI->getIncomingValueForBlock(Pred);
// Check to see if we have already visited this pred block with another
// pointer. If so, we can't do this lookup. This failure can occur
// with PHI translation when a critical edge exists and the PHI node in
// the successor translates to a pointer value different than the
// pointer the block was first analyzed with.
std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
InsertRes = Visited.insert(std::make_pair(Pred, PredPtr));
if (!InsertRes.second) {
// If the predecessor was visited with PredPtr, then we already did
// the analysis and can ignore it.
if (InsertRes.first->second == PredPtr)
continue;
// Otherwise, the block was previously analyzed with a different
// pointer. We can't represent the result of this case, so we just
// treat this as a phi translation failure.
goto PredTranslationFailure;
}
// FIXME: it is entirely possible that PHI translating will end up with
// the same value. Consider PHI translating something like:
// X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
// to recurse here, pedantically speaking.
// If we have a problem phi translating, fall through to the code below
// to handle the failure condition.
if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred,
Result, Visited))
goto PredTranslationFailure;
}
// Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
CacheInfo = &NonLocalPointerDeps[CacheKey];
Cache = &CacheInfo->second;
NumSortedEntries = Cache->size();
// Since we did phi translation, the "Cache" set won't contain all of the
// results for the query. This is ok (we can still use it to accelerate
// specific block queries) but we can't do the fastpath "return all
// results from the set" Clear out the indicator for this.
CacheInfo->first = BBSkipFirstBlockPair();
SkipFirstBlock = false;
continue;
}
// TODO: BITCAST, GEP.
// cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
// if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
// cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
PredTranslationFailure:
if (Cache == 0) {
// Refresh the CacheInfo/Cache pointer if it got invalidated.
CacheInfo = &NonLocalPointerDeps[CacheKey];
Cache = &CacheInfo->second;
NumSortedEntries = Cache->size();
}
// Since we did phi translation, the "Cache" set won't contain all of the
// results for the query. This is ok (we can still use it to accelerate
// specific block queries) but we can't do the fastpath "return all
// results from the set" Clear out the indicator for this.
CacheInfo->first = BBSkipFirstBlockPair();
// If *nothing* works, mark the pointer as being clobbered by the first
// instruction in this block.
//
// If this is the magic first block, return this as a clobber of the whole
// incoming value. Since we can't phi translate to one of the predecessors,
// we have to bail out.
if (SkipFirstBlock)
return true;
for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
assert(I != Cache->rend() && "Didn't find current block??");
if (I->first != BB)
continue;
assert(I->second.isNonLocal() &&
"Should only be here with transparent block");
I->second = MemDepResult::getClobber(BB->begin());
ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
Result.push_back(*I);
break;
}
}
// Okay, we're done now. If we added new values to the cache, re-sort it.
SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
DEBUG(AssertSorted(*Cache));
return false;
}
/// RemoveCachedNonLocalPointerDependencies - If P exists in
/// CachedNonLocalPointerInfo, remove it.
void MemoryDependenceAnalysis::
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
CachedNonLocalPointerInfo::iterator It =
NonLocalPointerDeps.find(P);
if (It == NonLocalPointerDeps.end()) return;
// Remove all of the entries in the BB->val map. This involves removing
// instructions from the reverse map.
NonLocalDepInfo &PInfo = It->second.second;
for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
Instruction *Target = PInfo[i].second.getInst();
if (Target == 0) continue; // Ignore non-local dep results.
assert(Target->getParent() == PInfo[i].first);
// Eliminating the dirty entry from 'Cache', so update the reverse info.
RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
}
// Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
NonLocalPointerDeps.erase(It);
}
/// invalidateCachedPointerInfo - This method is used to invalidate cached
/// information about the specified pointer, because it may be too
/// conservative in memdep. This is an optional call that can be used when
/// the client detects an equivalence between the pointer and some other
/// value and replaces the other value with ptr. This can make Ptr available
/// in more places that cached info does not necessarily keep.
void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
// If Ptr isn't really a pointer, just ignore it.
if (!isa<PointerType>(Ptr->getType())) return;
// Flush store info for the pointer.
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
// Flush load info for the pointer.
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
}
/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it.
/// This method attempts to keep the cache coherent using the reverse map.
void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
// Walk through the Non-local dependencies, removing this one as the value
// for any cached queries.
NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
if (NLDI != NonLocalDeps.end()) {
NonLocalDepInfo &BlockMap = NLDI->second.first;
for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
DI != DE; ++DI)
if (Instruction *Inst = DI->second.getInst())
RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
NonLocalDeps.erase(NLDI);
}
// If we have a cached local dependence query for this instruction, remove it.
//
LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
if (LocalDepEntry != LocalDeps.end()) {
// Remove us from DepInst's reverse set now that the local dep info is gone.
if (Instruction *Inst = LocalDepEntry->second.getInst())
RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
// Remove this local dependency info.
LocalDeps.erase(LocalDepEntry);
}
// If we have any cached pointer dependencies on this instruction, remove
// them. If the instruction has non-pointer type, then it can't be a pointer
// base.
// Remove it from both the load info and the store info. The instruction
// can't be in either of these maps if it is non-pointer.
if (isa<PointerType>(RemInst->getType())) {
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
}
// Loop over all of the things that depend on the instruction we're removing.
//
SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
// If we find RemInst as a clobber or Def in any of the maps for other values,
// we need to replace its entry with a dirty version of the instruction after
// it. If RemInst is a terminator, we use a null dirty value.
//
// Using a dirty version of the instruction after RemInst saves having to scan
// the entire block to get to this point.
MemDepResult NewDirtyVal;
if (!RemInst->isTerminator())
NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
if (ReverseDepIt != ReverseLocalDeps.end()) {
SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
// RemInst can't be the terminator if it has local stuff depending on it.
assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
"Nothing can locally depend on a terminator");
for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
E = ReverseDeps.end(); I != E; ++I) {
Instruction *InstDependingOnRemInst = *I;
assert(InstDependingOnRemInst != RemInst &&
"Already removed our local dep info");
LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
// Make sure to remember that new things depend on NewDepInst.
assert(NewDirtyVal.getInst() && "There is no way something else can have "
"a local dep on this if it is a terminator!");
ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
InstDependingOnRemInst));
}
ReverseLocalDeps.erase(ReverseDepIt);
// Add new reverse deps after scanning the set, to avoid invalidating the
// 'ReverseDeps' reference.
while (!ReverseDepsToAdd.empty()) {
ReverseLocalDeps[ReverseDepsToAdd.back().first]
.insert(ReverseDepsToAdd.back().second);
ReverseDepsToAdd.pop_back();
}
}
ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
if (ReverseDepIt != ReverseNonLocalDeps.end()) {
SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
I != E; ++I) {
assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
PerInstNLInfo &INLD = NonLocalDeps[*I];
// The information is now dirty!
INLD.second = true;
for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
DE = INLD.first.end(); DI != DE; ++DI) {
if (DI->second.getInst() != RemInst) continue;
// Convert to a dirty entry for the subsequent instruction.
DI->second = NewDirtyVal;
if (Instruction *NextI = NewDirtyVal.getInst())
ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
}
}
ReverseNonLocalDeps.erase(ReverseDepIt);
// Add new reverse deps after scanning the set, to avoid invalidating 'Set'
while (!ReverseDepsToAdd.empty()) {
ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
.insert(ReverseDepsToAdd.back().second);
ReverseDepsToAdd.pop_back();
}
}
// If the instruction is in ReverseNonLocalPtrDeps then it appears as a
// value in the NonLocalPointerDeps info.
ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
ReverseNonLocalPtrDeps.find(RemInst);
if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
E = Set.end(); I != E; ++I) {
ValueIsLoadPair P = *I;
assert(P.getPointer() != RemInst &&
"Already removed NonLocalPointerDeps info for RemInst");
NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
// The cache is not valid for any specific block anymore.
NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
// Update any entries for RemInst to use the instruction after it.
for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
DI != DE; ++DI) {
if (DI->second.getInst() != RemInst) continue;
// Convert to a dirty entry for the subsequent instruction.
DI->second = NewDirtyVal;
if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
}
// Re-sort the NonLocalDepInfo. Changing the dirty entry to its
// subsequent value may invalidate the sortedness.
std::sort(NLPDI.begin(), NLPDI.end());
}
ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
while (!ReversePtrDepsToAdd.empty()) {
ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
.insert(ReversePtrDepsToAdd.back().second);
ReversePtrDepsToAdd.pop_back();
}
}
assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
AA->deleteValue(RemInst);
DEBUG(verifyRemoved(RemInst));
}
/// verifyRemoved - Verify that the specified instruction does not occur
/// in our internal data structures.
void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
E = LocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
assert(I->second.getInst() != D &&
"Inst occurs in data structures");
}
for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
E = NonLocalPointerDeps.end(); I != E; ++I) {
assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
const NonLocalDepInfo &Val = I->second.second;
for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
II != E; ++II)
assert(II->second.getInst() != D && "Inst occurs as NLPD value");
}
for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
E = NonLocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
const PerInstNLInfo &INLD = I->second;
for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
EE = INLD.first.end(); II != EE; ++II)
assert(II->second.getInst() != D && "Inst occurs in data structures");
}
for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
E = ReverseLocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
assert(*II != D && "Inst occurs in data structures");
}
for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
E = ReverseNonLocalDeps.end();
I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
assert(*II != D && "Inst occurs in data structures");
}
for (ReverseNonLocalPtrDepTy::const_iterator
I = ReverseNonLocalPtrDeps.begin(),
E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in rev NLPD map");
for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
E = I->second.end(); II != E; ++II)
assert(*II != ValueIsLoadPair(D, false) &&
*II != ValueIsLoadPair(D, true) &&
"Inst occurs in ReverseNonLocalPtrDeps map");
}
}