| //===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a simple pass that applies a variety of small |
| // optimizations for calls to specific well-known function calls (e.g. runtime |
| // library functions). For example, a call to the function "exit(3)" that |
| // occurs within the main() function can be transformed into a simple "return 3" |
| // instruction. Any optimization that takes this form (replace call to library |
| // function with simpler code that provides the same result) belongs in this |
| // file. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "simplify-libcalls" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/IRBuilder.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Config/config.h" |
| using namespace llvm; |
| |
| STATISTIC(NumSimplified, "Number of library calls simplified"); |
| STATISTIC(NumAnnotated, "Number of attributes added to library functions"); |
| |
| //===----------------------------------------------------------------------===// |
| // Optimizer Base Class |
| //===----------------------------------------------------------------------===// |
| |
| /// This class is the abstract base class for the set of optimizations that |
| /// corresponds to one library call. |
| namespace { |
| class VISIBILITY_HIDDEN LibCallOptimization { |
| protected: |
| Function *Caller; |
| const TargetData *TD; |
| public: |
| LibCallOptimization() { } |
| virtual ~LibCallOptimization() {} |
| |
| /// CallOptimizer - This pure virtual method is implemented by base classes to |
| /// do various optimizations. If this returns null then no transformation was |
| /// performed. If it returns CI, then it transformed the call and CI is to be |
| /// deleted. If it returns something else, replace CI with the new value and |
| /// delete CI. |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) |
| =0; |
| |
| Value *OptimizeCall(CallInst *CI, const TargetData &TD, IRBuilder<> &B) { |
| Caller = CI->getParent()->getParent(); |
| this->TD = &TD; |
| return CallOptimizer(CI->getCalledFunction(), CI, B); |
| } |
| |
| /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*. |
| Value *CastToCStr(Value *V, IRBuilder<> &B); |
| |
| /// EmitStrLen - Emit a call to the strlen function to the builder, for the |
| /// specified pointer. Ptr is required to be some pointer type, and the |
| /// return value has 'intptr_t' type. |
| Value *EmitStrLen(Value *Ptr, IRBuilder<> &B); |
| |
| /// EmitMemCpy - Emit a call to the memcpy function to the builder. This |
| /// always expects that the size has type 'intptr_t' and Dst/Src are pointers. |
| Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len, |
| unsigned Align, IRBuilder<> &B); |
| |
| /// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is |
| /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value. |
| Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B); |
| |
| /// EmitMemCmp - Emit a call to the memcmp function. |
| Value *EmitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B); |
| |
| /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g. |
| /// 'floor'). This function is known to take a single of type matching 'Op' |
| /// and returns one value with the same type. If 'Op' is a long double, 'l' |
| /// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix. |
| Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder<> &B); |
| |
| /// EmitPutChar - Emit a call to the putchar function. This assumes that Char |
| /// is an integer. |
| void EmitPutChar(Value *Char, IRBuilder<> &B); |
| |
| /// EmitPutS - Emit a call to the puts function. This assumes that Str is |
| /// some pointer. |
| void EmitPutS(Value *Str, IRBuilder<> &B); |
| |
| /// EmitFPutC - Emit a call to the fputc function. This assumes that Char is |
| /// an i32, and File is a pointer to FILE. |
| void EmitFPutC(Value *Char, Value *File, IRBuilder<> &B); |
| |
| /// EmitFPutS - Emit a call to the puts function. Str is required to be a |
| /// pointer and File is a pointer to FILE. |
| void EmitFPutS(Value *Str, Value *File, IRBuilder<> &B); |
| |
| /// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is |
| /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE. |
| void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B); |
| |
| }; |
| } // End anonymous namespace. |
| |
| /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*. |
| Value *LibCallOptimization::CastToCStr(Value *V, IRBuilder<> &B) { |
| return B.CreateBitCast(V, PointerType::getUnqual(Type::Int8Ty), "cstr"); |
| } |
| |
| /// EmitStrLen - Emit a call to the strlen function to the builder, for the |
| /// specified pointer. This always returns an integer value of size intptr_t. |
| Value *LibCallOptimization::EmitStrLen(Value *Ptr, IRBuilder<> &B) { |
| Module *M = Caller->getParent(); |
| AttributeWithIndex AWI[2]; |
| AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture); |
| AWI[1] = AttributeWithIndex::get(~0u, Attribute::ReadOnly | |
| Attribute::NoUnwind); |
| |
| Constant *StrLen =M->getOrInsertFunction("strlen", AttrListPtr::get(AWI, 2), |
| TD->getIntPtrType(), |
| PointerType::getUnqual(Type::Int8Ty), |
| NULL); |
| return B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen"); |
| } |
| |
| /// EmitMemCpy - Emit a call to the memcpy function to the builder. This always |
| /// expects that the size has type 'intptr_t' and Dst/Src are pointers. |
| Value *LibCallOptimization::EmitMemCpy(Value *Dst, Value *Src, Value *Len, |
| unsigned Align, IRBuilder<> &B) { |
| Module *M = Caller->getParent(); |
| Intrinsic::ID IID = Intrinsic::memcpy; |
| const Type *Tys[1]; |
| Tys[0] = Len->getType(); |
| Value *MemCpy = Intrinsic::getDeclaration(M, IID, Tys, 1); |
| return B.CreateCall4(MemCpy, CastToCStr(Dst, B), CastToCStr(Src, B), Len, |
| ConstantInt::get(Type::Int32Ty, Align)); |
| } |
| |
| /// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is |
| /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value. |
| Value *LibCallOptimization::EmitMemChr(Value *Ptr, Value *Val, |
| Value *Len, IRBuilder<> &B) { |
| Module *M = Caller->getParent(); |
| AttributeWithIndex AWI; |
| AWI = AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind); |
| |
| Value *MemChr = M->getOrInsertFunction("memchr", AttrListPtr::get(&AWI, 1), |
| PointerType::getUnqual(Type::Int8Ty), |
| PointerType::getUnqual(Type::Int8Ty), |
| Type::Int32Ty, TD->getIntPtrType(), |
| NULL); |
| return B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr"); |
| } |
| |
| /// EmitMemCmp - Emit a call to the memcmp function. |
| Value *LibCallOptimization::EmitMemCmp(Value *Ptr1, Value *Ptr2, |
| Value *Len, IRBuilder<> &B) { |
| Module *M = Caller->getParent(); |
| AttributeWithIndex AWI[3]; |
| AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture); |
| AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture); |
| AWI[2] = AttributeWithIndex::get(~0u, Attribute::ReadOnly | |
| Attribute::NoUnwind); |
| |
| Value *MemCmp = M->getOrInsertFunction("memcmp", AttrListPtr::get(AWI, 3), |
| Type::Int32Ty, |
| PointerType::getUnqual(Type::Int8Ty), |
| PointerType::getUnqual(Type::Int8Ty), |
| TD->getIntPtrType(), NULL); |
| return B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B), |
| Len, "memcmp"); |
| } |
| |
| /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g. |
| /// 'floor'). This function is known to take a single of type matching 'Op' and |
| /// returns one value with the same type. If 'Op' is a long double, 'l' is |
| /// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix. |
| Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name, |
| IRBuilder<> &B) { |
| char NameBuffer[20]; |
| if (Op->getType() != Type::DoubleTy) { |
| // If we need to add a suffix, copy into NameBuffer. |
| unsigned NameLen = strlen(Name); |
| assert(NameLen < sizeof(NameBuffer)-2); |
| memcpy(NameBuffer, Name, NameLen); |
| if (Op->getType() == Type::FloatTy) |
| NameBuffer[NameLen] = 'f'; // floorf |
| else |
| NameBuffer[NameLen] = 'l'; // floorl |
| NameBuffer[NameLen+1] = 0; |
| Name = NameBuffer; |
| } |
| |
| Module *M = Caller->getParent(); |
| Value *Callee = M->getOrInsertFunction(Name, Op->getType(), |
| Op->getType(), NULL); |
| return B.CreateCall(Callee, Op, Name); |
| } |
| |
| /// EmitPutChar - Emit a call to the putchar function. This assumes that Char |
| /// is an integer. |
| void LibCallOptimization::EmitPutChar(Value *Char, IRBuilder<> &B) { |
| Module *M = Caller->getParent(); |
| Value *F = M->getOrInsertFunction("putchar", Type::Int32Ty, |
| Type::Int32Ty, NULL); |
| B.CreateCall(F, B.CreateIntCast(Char, Type::Int32Ty, "chari"), "putchar"); |
| } |
| |
| /// EmitPutS - Emit a call to the puts function. This assumes that Str is |
| /// some pointer. |
| void LibCallOptimization::EmitPutS(Value *Str, IRBuilder<> &B) { |
| Module *M = Caller->getParent(); |
| AttributeWithIndex AWI[2]; |
| AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture); |
| AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind); |
| |
| Value *F = M->getOrInsertFunction("puts", AttrListPtr::get(AWI, 2), |
| Type::Int32Ty, |
| PointerType::getUnqual(Type::Int8Ty), NULL); |
| B.CreateCall(F, CastToCStr(Str, B), "puts"); |
| } |
| |
| /// EmitFPutC - Emit a call to the fputc function. This assumes that Char is |
| /// an integer and File is a pointer to FILE. |
| void LibCallOptimization::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B) { |
| Module *M = Caller->getParent(); |
| AttributeWithIndex AWI[2]; |
| AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture); |
| AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind); |
| Constant *F; |
| if (isa<PointerType>(File->getType())) |
| F = M->getOrInsertFunction("fputc", AttrListPtr::get(AWI, 2), Type::Int32Ty, |
| Type::Int32Ty, File->getType(), NULL); |
| |
| else |
| F = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty, |
| File->getType(), NULL); |
| Char = B.CreateIntCast(Char, Type::Int32Ty, "chari"); |
| B.CreateCall2(F, Char, File, "fputc"); |
| } |
| |
| /// EmitFPutS - Emit a call to the puts function. Str is required to be a |
| /// pointer and File is a pointer to FILE. |
| void LibCallOptimization::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B) { |
| Module *M = Caller->getParent(); |
| AttributeWithIndex AWI[2]; |
| AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture); |
| AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind); |
| Constant *F; |
| if (isa<PointerType>(File->getType())) |
| F = M->getOrInsertFunction("fputs", AttrListPtr::get(AWI, 2), Type::Int32Ty, |
| PointerType::getUnqual(Type::Int8Ty), |
| File->getType(), NULL); |
| else |
| F = M->getOrInsertFunction("fputs", Type::Int32Ty, |
| PointerType::getUnqual(Type::Int8Ty), |
| File->getType(), NULL); |
| B.CreateCall2(F, CastToCStr(Str, B), File, "fputs"); |
| } |
| |
| /// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is |
| /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE. |
| void LibCallOptimization::EmitFWrite(Value *Ptr, Value *Size, Value *File, |
| IRBuilder<> &B) { |
| Module *M = Caller->getParent(); |
| AttributeWithIndex AWI[3]; |
| AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture); |
| AWI[1] = AttributeWithIndex::get(4, Attribute::NoCapture); |
| AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind); |
| Constant *F; |
| if (isa<PointerType>(File->getType())) |
| F = M->getOrInsertFunction("fwrite", AttrListPtr::get(AWI, 3), |
| TD->getIntPtrType(), |
| PointerType::getUnqual(Type::Int8Ty), |
| TD->getIntPtrType(), TD->getIntPtrType(), |
| File->getType(), NULL); |
| else |
| F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(), |
| PointerType::getUnqual(Type::Int8Ty), |
| TD->getIntPtrType(), TD->getIntPtrType(), |
| File->getType(), NULL); |
| B.CreateCall4(F, CastToCStr(Ptr, B), Size, |
| ConstantInt::get(TD->getIntPtrType(), 1), File); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Functions |
| //===----------------------------------------------------------------------===// |
| |
| /// GetStringLengthH - If we can compute the length of the string pointed to by |
| /// the specified pointer, return 'len+1'. If we can't, return 0. |
| static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { |
| // Look through noop bitcast instructions. |
| if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) |
| return GetStringLengthH(BCI->getOperand(0), PHIs); |
| |
| // If this is a PHI node, there are two cases: either we have already seen it |
| // or we haven't. |
| if (PHINode *PN = dyn_cast<PHINode>(V)) { |
| if (!PHIs.insert(PN)) |
| return ~0ULL; // already in the set. |
| |
| // If it was new, see if all the input strings are the same length. |
| uint64_t LenSoFar = ~0ULL; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); |
| if (Len == 0) return 0; // Unknown length -> unknown. |
| |
| if (Len == ~0ULL) continue; |
| |
| if (Len != LenSoFar && LenSoFar != ~0ULL) |
| return 0; // Disagree -> unknown. |
| LenSoFar = Len; |
| } |
| |
| // Success, all agree. |
| return LenSoFar; |
| } |
| |
| // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) |
| if (SelectInst *SI = dyn_cast<SelectInst>(V)) { |
| uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); |
| if (Len1 == 0) return 0; |
| uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); |
| if (Len2 == 0) return 0; |
| if (Len1 == ~0ULL) return Len2; |
| if (Len2 == ~0ULL) return Len1; |
| if (Len1 != Len2) return 0; |
| return Len1; |
| } |
| |
| // If the value is not a GEP instruction nor a constant expression with a |
| // GEP instruction, then return unknown. |
| User *GEP = 0; |
| if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { |
| GEP = GEPI; |
| } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { |
| if (CE->getOpcode() != Instruction::GetElementPtr) |
| return 0; |
| GEP = CE; |
| } else { |
| return 0; |
| } |
| |
| // Make sure the GEP has exactly three arguments. |
| if (GEP->getNumOperands() != 3) |
| return 0; |
| |
| // Check to make sure that the first operand of the GEP is an integer and |
| // has value 0 so that we are sure we're indexing into the initializer. |
| if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) { |
| if (!Idx->isZero()) |
| return 0; |
| } else |
| return 0; |
| |
| // If the second index isn't a ConstantInt, then this is a variable index |
| // into the array. If this occurs, we can't say anything meaningful about |
| // the string. |
| uint64_t StartIdx = 0; |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) |
| StartIdx = CI->getZExtValue(); |
| else |
| return 0; |
| |
| // The GEP instruction, constant or instruction, must reference a global |
| // variable that is a constant and is initialized. The referenced constant |
| // initializer is the array that we'll use for optimization. |
| GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); |
| if (!GV || !GV->isConstant() || !GV->hasInitializer()) |
| return 0; |
| Constant *GlobalInit = GV->getInitializer(); |
| |
| // Handle the ConstantAggregateZero case, which is a degenerate case. The |
| // initializer is constant zero so the length of the string must be zero. |
| if (isa<ConstantAggregateZero>(GlobalInit)) |
| return 1; // Len = 0 offset by 1. |
| |
| // Must be a Constant Array |
| ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); |
| if (!Array || Array->getType()->getElementType() != Type::Int8Ty) |
| return false; |
| |
| // Get the number of elements in the array |
| uint64_t NumElts = Array->getType()->getNumElements(); |
| |
| // Traverse the constant array from StartIdx (derived above) which is |
| // the place the GEP refers to in the array. |
| for (unsigned i = StartIdx; i != NumElts; ++i) { |
| Constant *Elt = Array->getOperand(i); |
| ConstantInt *CI = dyn_cast<ConstantInt>(Elt); |
| if (!CI) // This array isn't suitable, non-int initializer. |
| return 0; |
| if (CI->isZero()) |
| return i-StartIdx+1; // We found end of string, success! |
| } |
| |
| return 0; // The array isn't null terminated, conservatively return 'unknown'. |
| } |
| |
| /// GetStringLength - If we can compute the length of the string pointed to by |
| /// the specified pointer, return 'len+1'. If we can't, return 0. |
| static uint64_t GetStringLength(Value *V) { |
| if (!isa<PointerType>(V->getType())) return 0; |
| |
| SmallPtrSet<PHINode*, 32> PHIs; |
| uint64_t Len = GetStringLengthH(V, PHIs); |
| // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return |
| // an empty string as a length. |
| return Len == ~0ULL ? 1 : Len; |
| } |
| |
| /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the |
| /// value is equal or not-equal to zero. |
| static bool IsOnlyUsedInZeroEqualityComparison(Value *V) { |
| for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); |
| UI != E; ++UI) { |
| if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) |
| if (IC->isEquality()) |
| if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) |
| if (C->isNullValue()) |
| continue; |
| // Unknown instruction. |
| return false; |
| } |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Miscellaneous LibCall Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| //===---------------------------------------===// |
| // 'exit' Optimizations |
| |
| /// ExitOpt - int main() { exit(4); } --> int main() { return 4; } |
| struct VISIBILITY_HIDDEN ExitOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify we have a reasonable prototype for exit. |
| if (Callee->arg_size() == 0 || !CI->use_empty()) |
| return 0; |
| |
| // Verify the caller is main, and that the result type of main matches the |
| // argument type of exit. |
| if (!Caller->isName("main") || !Caller->hasExternalLinkage() || |
| Caller->getReturnType() != CI->getOperand(1)->getType()) |
| return 0; |
| |
| TerminatorInst *OldTI = CI->getParent()->getTerminator(); |
| |
| // Create the return after the call. |
| ReturnInst *RI = B.CreateRet(CI->getOperand(1)); |
| |
| // Drop all successor phi node entries. |
| for (unsigned i = 0, e = OldTI->getNumSuccessors(); i != e; ++i) |
| OldTI->getSuccessor(i)->removePredecessor(CI->getParent()); |
| |
| // Erase all instructions from after our return instruction until the end of |
| // the block. |
| BasicBlock::iterator FirstDead = RI; ++FirstDead; |
| CI->getParent()->getInstList().erase(FirstDead, CI->getParent()->end()); |
| return CI; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // String and Memory LibCall Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| //===---------------------------------------===// |
| // 'strcat' Optimizations |
| |
| struct VISIBILITY_HIDDEN StrCatOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strcat" function prototype. |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) || |
| FT->getParamType(0) != FT->getReturnType() || |
| FT->getParamType(1) != FT->getReturnType()) |
| return 0; |
| |
| // Extract some information from the instruction |
| Value *Dst = CI->getOperand(1); |
| Value *Src = CI->getOperand(2); |
| |
| // See if we can get the length of the input string. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) return 0; |
| --Len; // Unbias length. |
| |
| // Handle the simple, do-nothing case: strcat(x, "") -> x |
| if (Len == 0) |
| return Dst; |
| |
| // We need to find the end of the destination string. That's where the |
| // memory is to be moved to. We just generate a call to strlen. |
| Value *DstLen = EmitStrLen(Dst, B); |
| |
| // Now that we have the destination's length, we must index into the |
| // destination's pointer to get the actual memcpy destination (end of |
| // the string .. we're concatenating). |
| Dst = B.CreateGEP(Dst, DstLen, "endptr"); |
| |
| // We have enough information to now generate the memcpy call to do the |
| // concatenation for us. Make a memcpy to copy the nul byte with align = 1. |
| EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len+1), 1, B); |
| return Dst; |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'strchr' Optimizations |
| |
| struct VISIBILITY_HIDDEN StrChrOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strchr" function prototype. |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) || |
| FT->getParamType(0) != FT->getReturnType()) |
| return 0; |
| |
| Value *SrcStr = CI->getOperand(1); |
| |
| // If the second operand is non-constant, see if we can compute the length |
| // of the input string and turn this into memchr. |
| ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getOperand(2)); |
| if (CharC == 0) { |
| uint64_t Len = GetStringLength(SrcStr); |
| if (Len == 0 || FT->getParamType(1) != Type::Int32Ty) // memchr needs i32. |
| return 0; |
| |
| return EmitMemChr(SrcStr, CI->getOperand(2), // include nul. |
| ConstantInt::get(TD->getIntPtrType(), Len), B); |
| } |
| |
| // Otherwise, the character is a constant, see if the first argument is |
| // a string literal. If so, we can constant fold. |
| std::string Str; |
| if (!GetConstantStringInfo(SrcStr, Str)) |
| return 0; |
| |
| // strchr can find the nul character. |
| Str += '\0'; |
| char CharValue = CharC->getSExtValue(); |
| |
| // Compute the offset. |
| uint64_t i = 0; |
| while (1) { |
| if (i == Str.size()) // Didn't find the char. strchr returns null. |
| return Constant::getNullValue(CI->getType()); |
| // Did we find our match? |
| if (Str[i] == CharValue) |
| break; |
| ++i; |
| } |
| |
| // strchr(s+n,c) -> gep(s+n+i,c) |
| Value *Idx = ConstantInt::get(Type::Int64Ty, i); |
| return B.CreateGEP(SrcStr, Idx, "strchr"); |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'strcmp' Optimizations |
| |
| struct VISIBILITY_HIDDEN StrCmpOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strcmp" function prototype. |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || FT->getReturnType() != Type::Int32Ty || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty)) |
| return 0; |
| |
| Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2); |
| if (Str1P == Str2P) // strcmp(x,x) -> 0 |
| return ConstantInt::get(CI->getType(), 0); |
| |
| std::string Str1, Str2; |
| bool HasStr1 = GetConstantStringInfo(Str1P, Str1); |
| bool HasStr2 = GetConstantStringInfo(Str2P, Str2); |
| |
| if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x |
| return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()); |
| |
| if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x |
| return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); |
| |
| // strcmp(x, y) -> cnst (if both x and y are constant strings) |
| if (HasStr1 && HasStr2) |
| return ConstantInt::get(CI->getType(), strcmp(Str1.c_str(),Str2.c_str())); |
| |
| // strcmp(P, "x") -> memcmp(P, "x", 2) |
| uint64_t Len1 = GetStringLength(Str1P); |
| uint64_t Len2 = GetStringLength(Str2P); |
| if (Len1 || Len2) { |
| // Choose the smallest Len excluding 0 which means 'unknown'. |
| if (!Len1 || (Len2 && Len2 < Len1)) |
| Len1 = Len2; |
| return EmitMemCmp(Str1P, Str2P, |
| ConstantInt::get(TD->getIntPtrType(), Len1), B); |
| } |
| |
| return 0; |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'strncmp' Optimizations |
| |
| struct VISIBILITY_HIDDEN StrNCmpOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strncmp" function prototype. |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || FT->getReturnType() != Type::Int32Ty || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) || |
| !isa<IntegerType>(FT->getParamType(2))) |
| return 0; |
| |
| Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2); |
| if (Str1P == Str2P) // strncmp(x,x,n) -> 0 |
| return ConstantInt::get(CI->getType(), 0); |
| |
| // Get the length argument if it is constant. |
| uint64_t Length; |
| if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3))) |
| Length = LengthArg->getZExtValue(); |
| else |
| return 0; |
| |
| if (Length == 0) // strncmp(x,y,0) -> 0 |
| return ConstantInt::get(CI->getType(), 0); |
| |
| std::string Str1, Str2; |
| bool HasStr1 = GetConstantStringInfo(Str1P, Str1); |
| bool HasStr2 = GetConstantStringInfo(Str2P, Str2); |
| |
| if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> *x |
| return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()); |
| |
| if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x |
| return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); |
| |
| // strncmp(x, y) -> cnst (if both x and y are constant strings) |
| if (HasStr1 && HasStr2) |
| return ConstantInt::get(CI->getType(), |
| strncmp(Str1.c_str(), Str2.c_str(), Length)); |
| return 0; |
| } |
| }; |
| |
| |
| //===---------------------------------------===// |
| // 'strcpy' Optimizations |
| |
| struct VISIBILITY_HIDDEN StrCpyOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strcpy" function prototype. |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty)) |
| return 0; |
| |
| Value *Dst = CI->getOperand(1), *Src = CI->getOperand(2); |
| if (Dst == Src) // strcpy(x,x) -> x |
| return Src; |
| |
| // See if we can get the length of the input string. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) return 0; |
| |
| // We have enough information to now generate the memcpy call to do the |
| // concatenation for us. Make a memcpy to copy the nul byte with align = 1. |
| EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len), 1, B); |
| return Dst; |
| } |
| }; |
| |
| |
| |
| //===---------------------------------------===// |
| // 'strlen' Optimizations |
| |
| struct VISIBILITY_HIDDEN StrLenOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 1 || |
| FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) || |
| !isa<IntegerType>(FT->getReturnType())) |
| return 0; |
| |
| Value *Src = CI->getOperand(1); |
| |
| // Constant folding: strlen("xyz") -> 3 |
| if (uint64_t Len = GetStringLength(Src)) |
| return ConstantInt::get(CI->getType(), Len-1); |
| |
| // Handle strlen(p) != 0. |
| if (!IsOnlyUsedInZeroEqualityComparison(CI)) return 0; |
| |
| // strlen(x) != 0 --> *x != 0 |
| // strlen(x) == 0 --> *x == 0 |
| return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'strto*' Optimizations |
| |
| struct VISIBILITY_HIDDEN StrToOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || |
| !isa<PointerType>(FT->getParamType(0)) || |
| !isa<PointerType>(FT->getParamType(1))) |
| return 0; |
| |
| Value *EndPtr = CI->getOperand(2); |
| if (isa<ConstantPointerNull>(EndPtr)) |
| CI->addAttribute(1, Attribute::NoCapture); |
| |
| return 0; |
| } |
| }; |
| |
| |
| //===---------------------------------------===// |
| // 'memcmp' Optimizations |
| |
| struct VISIBILITY_HIDDEN MemCmpOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || !isa<PointerType>(FT->getParamType(0)) || |
| !isa<PointerType>(FT->getParamType(1)) || |
| FT->getReturnType() != Type::Int32Ty) |
| return 0; |
| |
| Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2); |
| |
| if (LHS == RHS) // memcmp(s,s,x) -> 0 |
| return Constant::getNullValue(CI->getType()); |
| |
| // Make sure we have a constant length. |
| ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3)); |
| if (!LenC) return 0; |
| uint64_t Len = LenC->getZExtValue(); |
| |
| if (Len == 0) // memcmp(s1,s2,0) -> 0 |
| return Constant::getNullValue(CI->getType()); |
| |
| if (Len == 1) { // memcmp(S1,S2,1) -> *LHS - *RHS |
| Value *LHSV = B.CreateLoad(CastToCStr(LHS, B), "lhsv"); |
| Value *RHSV = B.CreateLoad(CastToCStr(RHS, B), "rhsv"); |
| return B.CreateZExt(B.CreateSub(LHSV, RHSV, "chardiff"), CI->getType()); |
| } |
| |
| // memcmp(S1,S2,2) != 0 -> (*(short*)LHS ^ *(short*)RHS) != 0 |
| // memcmp(S1,S2,4) != 0 -> (*(int*)LHS ^ *(int*)RHS) != 0 |
| if ((Len == 2 || Len == 4) && IsOnlyUsedInZeroEqualityComparison(CI)) { |
| const Type *PTy = PointerType::getUnqual(Len == 2 ? |
| Type::Int16Ty : Type::Int32Ty); |
| LHS = B.CreateBitCast(LHS, PTy, "tmp"); |
| RHS = B.CreateBitCast(RHS, PTy, "tmp"); |
| LoadInst *LHSV = B.CreateLoad(LHS, "lhsv"); |
| LoadInst *RHSV = B.CreateLoad(RHS, "rhsv"); |
| LHSV->setAlignment(1); RHSV->setAlignment(1); // Unaligned loads. |
| return B.CreateZExt(B.CreateXor(LHSV, RHSV, "shortdiff"), CI->getType()); |
| } |
| |
| return 0; |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'memcpy' Optimizations |
| |
| struct VISIBILITY_HIDDEN MemCpyOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || |
| !isa<PointerType>(FT->getParamType(0)) || |
| !isa<PointerType>(FT->getParamType(1)) || |
| FT->getParamType(2) != TD->getIntPtrType()) |
| return 0; |
| |
| // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) |
| EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B); |
| return CI->getOperand(1); |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'memmove' Optimizations |
| |
| struct VISIBILITY_HIDDEN MemMoveOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || |
| !isa<PointerType>(FT->getParamType(0)) || |
| !isa<PointerType>(FT->getParamType(1)) || |
| FT->getParamType(2) != TD->getIntPtrType()) |
| return 0; |
| |
| // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) |
| Module *M = Caller->getParent(); |
| Intrinsic::ID IID = Intrinsic::memmove; |
| const Type *Tys[1]; |
| Tys[0] = TD->getIntPtrType(); |
| Value *MemMove = Intrinsic::getDeclaration(M, IID, Tys, 1); |
| Value *Dst = CastToCStr(CI->getOperand(1), B); |
| Value *Src = CastToCStr(CI->getOperand(2), B); |
| Value *Size = CI->getOperand(3); |
| Value *Align = ConstantInt::get(Type::Int32Ty, 1); |
| B.CreateCall4(MemMove, Dst, Src, Size, Align); |
| return CI->getOperand(1); |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'memset' Optimizations |
| |
| struct VISIBILITY_HIDDEN MemSetOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || |
| !isa<PointerType>(FT->getParamType(0)) || |
| FT->getParamType(1) != TD->getIntPtrType() || |
| FT->getParamType(2) != TD->getIntPtrType()) |
| return 0; |
| |
| // memset(p, v, n) -> llvm.memset(p, v, n, 1) |
| Module *M = Caller->getParent(); |
| Intrinsic::ID IID = Intrinsic::memset; |
| const Type *Tys[1]; |
| Tys[0] = TD->getIntPtrType(); |
| Value *MemSet = Intrinsic::getDeclaration(M, IID, Tys, 1); |
| Value *Dst = CastToCStr(CI->getOperand(1), B); |
| Value *Val = B.CreateTrunc(CI->getOperand(2), Type::Int8Ty); |
| Value *Size = CI->getOperand(3); |
| Value *Align = ConstantInt::get(Type::Int32Ty, 1); |
| B.CreateCall4(MemSet, Dst, Val, Size, Align); |
| return CI->getOperand(1); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Math Library Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| //===---------------------------------------===// |
| // 'pow*' Optimizations |
| |
| struct VISIBILITY_HIDDEN PowOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| // Just make sure this has 2 arguments of the same FP type, which match the |
| // result type. |
| if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| !FT->getParamType(0)->isFloatingPoint()) |
| return 0; |
| |
| Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2); |
| if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { |
| if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0 |
| return Op1C; |
| if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x) |
| return EmitUnaryFloatFnCall(Op2, "exp2", B); |
| } |
| |
| ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); |
| if (Op2C == 0) return 0; |
| |
| if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 |
| return ConstantFP::get(CI->getType(), 1.0); |
| |
| if (Op2C->isExactlyValue(0.5)) { |
| // FIXME: This is not safe for -0.0 and -inf. This can only be done when |
| // 'unsafe' math optimizations are allowed. |
| // x pow(x, 0.5) sqrt(x) |
| // --------------------------------------------- |
| // -0.0 +0.0 -0.0 |
| // -inf +inf NaN |
| #if 0 |
| // pow(x, 0.5) -> sqrt(x) |
| return B.CreateCall(get_sqrt(), Op1, "sqrt"); |
| #endif |
| } |
| |
| if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x |
| return Op1; |
| if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x |
| return B.CreateMul(Op1, Op1, "pow2"); |
| if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x |
| return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); |
| return 0; |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'exp2' Optimizations |
| |
| struct VISIBILITY_HIDDEN Exp2Opt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| // Just make sure this has 1 argument of FP type, which matches the |
| // result type. |
| if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || |
| !FT->getParamType(0)->isFloatingPoint()) |
| return 0; |
| |
| Value *Op = CI->getOperand(1); |
| // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 |
| // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 |
| Value *LdExpArg = 0; |
| if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { |
| if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) |
| LdExpArg = B.CreateSExt(OpC->getOperand(0), Type::Int32Ty, "tmp"); |
| } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { |
| if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) |
| LdExpArg = B.CreateZExt(OpC->getOperand(0), Type::Int32Ty, "tmp"); |
| } |
| |
| if (LdExpArg) { |
| const char *Name; |
| if (Op->getType() == Type::FloatTy) |
| Name = "ldexpf"; |
| else if (Op->getType() == Type::DoubleTy) |
| Name = "ldexp"; |
| else |
| Name = "ldexpl"; |
| |
| Constant *One = ConstantFP::get(APFloat(1.0f)); |
| if (Op->getType() != Type::FloatTy) |
| One = ConstantExpr::getFPExtend(One, Op->getType()); |
| |
| Module *M = Caller->getParent(); |
| Value *Callee = M->getOrInsertFunction(Name, Op->getType(), |
| Op->getType(), Type::Int32Ty,NULL); |
| return B.CreateCall2(Callee, One, LdExpArg); |
| } |
| return 0; |
| } |
| }; |
| |
| |
| //===---------------------------------------===// |
| // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' |
| |
| struct VISIBILITY_HIDDEN UnaryDoubleFPOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 1 || FT->getReturnType() != Type::DoubleTy || |
| FT->getParamType(0) != Type::DoubleTy) |
| return 0; |
| |
| // If this is something like 'floor((double)floatval)', convert to floorf. |
| FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1)); |
| if (Cast == 0 || Cast->getOperand(0)->getType() != Type::FloatTy) |
| return 0; |
| |
| // floor((double)floatval) -> (double)floorf(floatval) |
| Value *V = Cast->getOperand(0); |
| V = EmitUnaryFloatFnCall(V, Callee->getNameStart(), B); |
| return B.CreateFPExt(V, Type::DoubleTy); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| //===---------------------------------------===// |
| // 'ffs*' Optimizations |
| |
| struct VISIBILITY_HIDDEN FFSOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| // Just make sure this has 2 arguments of the same FP type, which match the |
| // result type. |
| if (FT->getNumParams() != 1 || FT->getReturnType() != Type::Int32Ty || |
| !isa<IntegerType>(FT->getParamType(0))) |
| return 0; |
| |
| Value *Op = CI->getOperand(1); |
| |
| // Constant fold. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { |
| if (CI->getValue() == 0) // ffs(0) -> 0. |
| return Constant::getNullValue(CI->getType()); |
| return ConstantInt::get(Type::Int32Ty, // ffs(c) -> cttz(c)+1 |
| CI->getValue().countTrailingZeros()+1); |
| } |
| |
| // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 |
| const Type *ArgType = Op->getType(); |
| Value *F = Intrinsic::getDeclaration(Callee->getParent(), |
| Intrinsic::cttz, &ArgType, 1); |
| Value *V = B.CreateCall(F, Op, "cttz"); |
| V = B.CreateAdd(V, ConstantInt::get(Type::Int32Ty, 1), "tmp"); |
| V = B.CreateIntCast(V, Type::Int32Ty, false, "tmp"); |
| |
| Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp"); |
| return B.CreateSelect(Cond, V, ConstantInt::get(Type::Int32Ty, 0)); |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'isdigit' Optimizations |
| |
| struct VISIBILITY_HIDDEN IsDigitOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| // We require integer(i32) |
| if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) || |
| FT->getParamType(0) != Type::Int32Ty) |
| return 0; |
| |
| // isdigit(c) -> (c-'0') <u 10 |
| Value *Op = CI->getOperand(1); |
| Op = B.CreateSub(Op, ConstantInt::get(Type::Int32Ty, '0'), "isdigittmp"); |
| Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 10), "isdigit"); |
| return B.CreateZExt(Op, CI->getType()); |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'isascii' Optimizations |
| |
| struct VISIBILITY_HIDDEN IsAsciiOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| // We require integer(i32) |
| if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) || |
| FT->getParamType(0) != Type::Int32Ty) |
| return 0; |
| |
| // isascii(c) -> c <u 128 |
| Value *Op = CI->getOperand(1); |
| Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 128), "isascii"); |
| return B.CreateZExt(Op, CI->getType()); |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'abs', 'labs', 'llabs' Optimizations |
| |
| struct VISIBILITY_HIDDEN AbsOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| // We require integer(integer) where the types agree. |
| if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) || |
| FT->getParamType(0) != FT->getReturnType()) |
| return 0; |
| |
| // abs(x) -> x >s -1 ? x : -x |
| Value *Op = CI->getOperand(1); |
| Value *Pos = B.CreateICmpSGT(Op,ConstantInt::getAllOnesValue(Op->getType()), |
| "ispos"); |
| Value *Neg = B.CreateNeg(Op, "neg"); |
| return B.CreateSelect(Pos, Op, Neg); |
| } |
| }; |
| |
| |
| //===---------------------------------------===// |
| // 'toascii' Optimizations |
| |
| struct VISIBILITY_HIDDEN ToAsciiOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| const FunctionType *FT = Callee->getFunctionType(); |
| // We require i32(i32) |
| if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != Type::Int32Ty) |
| return 0; |
| |
| // isascii(c) -> c & 0x7f |
| return B.CreateAnd(CI->getOperand(1), ConstantInt::get(CI->getType(),0x7F)); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Formatting and IO Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| //===---------------------------------------===// |
| // 'printf' Optimizations |
| |
| struct VISIBILITY_HIDDEN PrintFOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Require one fixed pointer argument and an integer/void result. |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() < 1 || !isa<PointerType>(FT->getParamType(0)) || |
| !(isa<IntegerType>(FT->getReturnType()) || |
| FT->getReturnType() == Type::VoidTy)) |
| return 0; |
| |
| // Check for a fixed format string. |
| std::string FormatStr; |
| if (!GetConstantStringInfo(CI->getOperand(1), FormatStr)) |
| return 0; |
| |
| // Empty format string -> noop. |
| if (FormatStr.empty()) // Tolerate printf's declared void. |
| return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 0); |
| |
| // printf("x") -> putchar('x'), even for '%'. |
| if (FormatStr.size() == 1) { |
| EmitPutChar(ConstantInt::get(Type::Int32Ty, FormatStr[0]), B); |
| return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 1); |
| } |
| |
| // printf("foo\n") --> puts("foo") |
| if (FormatStr[FormatStr.size()-1] == '\n' && |
| FormatStr.find('%') == std::string::npos) { // no format characters. |
| // Create a string literal with no \n on it. We expect the constant merge |
| // pass to be run after this pass, to merge duplicate strings. |
| FormatStr.erase(FormatStr.end()-1); |
| Constant *C = ConstantArray::get(FormatStr, true); |
| C = new GlobalVariable(C->getType(), true,GlobalVariable::InternalLinkage, |
| C, "str", Callee->getParent()); |
| EmitPutS(C, B); |
| return CI->use_empty() ? (Value*)CI : |
| ConstantInt::get(CI->getType(), FormatStr.size()+1); |
| } |
| |
| // Optimize specific format strings. |
| // printf("%c", chr) --> putchar(*(i8*)dst) |
| if (FormatStr == "%c" && CI->getNumOperands() > 2 && |
| isa<IntegerType>(CI->getOperand(2)->getType())) { |
| EmitPutChar(CI->getOperand(2), B); |
| return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 1); |
| } |
| |
| // printf("%s\n", str) --> puts(str) |
| if (FormatStr == "%s\n" && CI->getNumOperands() > 2 && |
| isa<PointerType>(CI->getOperand(2)->getType()) && |
| CI->use_empty()) { |
| EmitPutS(CI->getOperand(2), B); |
| return CI; |
| } |
| return 0; |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'sprintf' Optimizations |
| |
| struct VISIBILITY_HIDDEN SPrintFOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Require two fixed pointer arguments and an integer result. |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) || |
| !isa<PointerType>(FT->getParamType(1)) || |
| !isa<IntegerType>(FT->getReturnType())) |
| return 0; |
| |
| // Check for a fixed format string. |
| std::string FormatStr; |
| if (!GetConstantStringInfo(CI->getOperand(2), FormatStr)) |
| return 0; |
| |
| // If we just have a format string (nothing else crazy) transform it. |
| if (CI->getNumOperands() == 3) { |
| // Make sure there's no % in the constant array. We could try to handle |
| // %% -> % in the future if we cared. |
| for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) |
| if (FormatStr[i] == '%') |
| return 0; // we found a format specifier, bail out. |
| |
| // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) |
| EmitMemCpy(CI->getOperand(1), CI->getOperand(2), // Copy the nul byte. |
| ConstantInt::get(TD->getIntPtrType(), FormatStr.size()+1),1,B); |
| return ConstantInt::get(CI->getType(), FormatStr.size()); |
| } |
| |
| // The remaining optimizations require the format string to be "%s" or "%c" |
| // and have an extra operand. |
| if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4) |
| return 0; |
| |
| // Decode the second character of the format string. |
| if (FormatStr[1] == 'c') { |
| // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 |
| if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0; |
| Value *V = B.CreateTrunc(CI->getOperand(3), Type::Int8Ty, "char"); |
| Value *Ptr = CastToCStr(CI->getOperand(1), B); |
| B.CreateStore(V, Ptr); |
| Ptr = B.CreateGEP(Ptr, ConstantInt::get(Type::Int32Ty, 1), "nul"); |
| B.CreateStore(Constant::getNullValue(Type::Int8Ty), Ptr); |
| |
| return ConstantInt::get(CI->getType(), 1); |
| } |
| |
| if (FormatStr[1] == 's') { |
| // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) |
| if (!isa<PointerType>(CI->getOperand(3)->getType())) return 0; |
| |
| Value *Len = EmitStrLen(CI->getOperand(3), B); |
| Value *IncLen = B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), |
| "leninc"); |
| EmitMemCpy(CI->getOperand(1), CI->getOperand(3), IncLen, 1, B); |
| |
| // The sprintf result is the unincremented number of bytes in the string. |
| return B.CreateIntCast(Len, CI->getType(), false); |
| } |
| return 0; |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'fwrite' Optimizations |
| |
| struct VISIBILITY_HIDDEN FWriteOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Require a pointer, an integer, an integer, a pointer, returning integer. |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 4 || !isa<PointerType>(FT->getParamType(0)) || |
| !isa<IntegerType>(FT->getParamType(1)) || |
| !isa<IntegerType>(FT->getParamType(2)) || |
| !isa<PointerType>(FT->getParamType(3)) || |
| !isa<IntegerType>(FT->getReturnType())) |
| return 0; |
| |
| // Get the element size and count. |
| ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getOperand(2)); |
| ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getOperand(3)); |
| if (!SizeC || !CountC) return 0; |
| uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue(); |
| |
| // If this is writing zero records, remove the call (it's a noop). |
| if (Bytes == 0) |
| return ConstantInt::get(CI->getType(), 0); |
| |
| // If this is writing one byte, turn it into fputc. |
| if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F) |
| Value *Char = B.CreateLoad(CastToCStr(CI->getOperand(1), B), "char"); |
| EmitFPutC(Char, CI->getOperand(4), B); |
| return ConstantInt::get(CI->getType(), 1); |
| } |
| |
| return 0; |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'fputs' Optimizations |
| |
| struct VISIBILITY_HIDDEN FPutsOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Require two pointers. Also, we can't optimize if return value is used. |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) || |
| !isa<PointerType>(FT->getParamType(1)) || |
| !CI->use_empty()) |
| return 0; |
| |
| // fputs(s,F) --> fwrite(s,1,strlen(s),F) |
| uint64_t Len = GetStringLength(CI->getOperand(1)); |
| if (!Len) return 0; |
| EmitFWrite(CI->getOperand(1), ConstantInt::get(TD->getIntPtrType(), Len-1), |
| CI->getOperand(2), B); |
| return CI; // Known to have no uses (see above). |
| } |
| }; |
| |
| //===---------------------------------------===// |
| // 'fprintf' Optimizations |
| |
| struct VISIBILITY_HIDDEN FPrintFOpt : public LibCallOptimization { |
| virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Require two fixed paramters as pointers and integer result. |
| const FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) || |
| !isa<PointerType>(FT->getParamType(1)) || |
| !isa<IntegerType>(FT->getReturnType())) |
| return 0; |
| |
| // All the optimizations depend on the format string. |
| std::string FormatStr; |
| if (!GetConstantStringInfo(CI->getOperand(2), FormatStr)) |
| return 0; |
| |
| // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) |
| if (CI->getNumOperands() == 3) { |
| for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) |
| if (FormatStr[i] == '%') // Could handle %% -> % if we cared. |
| return 0; // We found a format specifier. |
| |
| EmitFWrite(CI->getOperand(2), ConstantInt::get(TD->getIntPtrType(), |
| FormatStr.size()), |
| CI->getOperand(1), B); |
| return ConstantInt::get(CI->getType(), FormatStr.size()); |
| } |
| |
| // The remaining optimizations require the format string to be "%s" or "%c" |
| // and have an extra operand. |
| if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4) |
| return 0; |
| |
| // Decode the second character of the format string. |
| if (FormatStr[1] == 'c') { |
| // fprintf(F, "%c", chr) --> *(i8*)dst = chr |
| if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0; |
| EmitFPutC(CI->getOperand(3), CI->getOperand(1), B); |
| return ConstantInt::get(CI->getType(), 1); |
| } |
| |
| if (FormatStr[1] == 's') { |
| // fprintf(F, "%s", str) -> fputs(str, F) |
| if (!isa<PointerType>(CI->getOperand(3)->getType()) || !CI->use_empty()) |
| return 0; |
| EmitFPutS(CI->getOperand(3), CI->getOperand(1), B); |
| return CI; |
| } |
| return 0; |
| } |
| }; |
| |
| } // end anonymous namespace. |
| |
| //===----------------------------------------------------------------------===// |
| // SimplifyLibCalls Pass Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// This pass optimizes well known library functions from libc and libm. |
| /// |
| class VISIBILITY_HIDDEN SimplifyLibCalls : public FunctionPass { |
| StringMap<LibCallOptimization*> Optimizations; |
| // Miscellaneous LibCall Optimizations |
| ExitOpt Exit; |
| // String and Memory LibCall Optimizations |
| StrCatOpt StrCat; StrChrOpt StrChr; StrCmpOpt StrCmp; StrNCmpOpt StrNCmp; |
| StrCpyOpt StrCpy; StrLenOpt StrLen; StrToOpt StrTo; MemCmpOpt MemCmp; |
| MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet; |
| // Math Library Optimizations |
| PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP; |
| // Integer Optimizations |
| FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii; |
| ToAsciiOpt ToAscii; |
| // Formatting and IO Optimizations |
| SPrintFOpt SPrintF; PrintFOpt PrintF; |
| FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF; |
| |
| bool Modified; // This is only used by doInitialization. |
| public: |
| static char ID; // Pass identification |
| SimplifyLibCalls() : FunctionPass(&ID) {} |
| |
| void InitOptimizations(); |
| bool runOnFunction(Function &F); |
| |
| void setDoesNotAccessMemory(Function &F); |
| void setOnlyReadsMemory(Function &F); |
| void setDoesNotThrow(Function &F); |
| void setDoesNotCapture(Function &F, unsigned n); |
| void setDoesNotAlias(Function &F, unsigned n); |
| bool doInitialization(Module &M); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<TargetData>(); |
| } |
| }; |
| char SimplifyLibCalls::ID = 0; |
| } // end anonymous namespace. |
| |
| static RegisterPass<SimplifyLibCalls> |
| X("simplify-libcalls", "Simplify well-known library calls"); |
| |
| // Public interface to the Simplify LibCalls pass. |
| FunctionPass *llvm::createSimplifyLibCallsPass() { |
| return new SimplifyLibCalls(); |
| } |
| |
| /// Optimizations - Populate the Optimizations map with all the optimizations |
| /// we know. |
| void SimplifyLibCalls::InitOptimizations() { |
| // Miscellaneous LibCall Optimizations |
| Optimizations["exit"] = &Exit; |
| |
| // String and Memory LibCall Optimizations |
| Optimizations["strcat"] = &StrCat; |
| Optimizations["strchr"] = &StrChr; |
| Optimizations["strcmp"] = &StrCmp; |
| Optimizations["strncmp"] = &StrNCmp; |
| Optimizations["strcpy"] = &StrCpy; |
| Optimizations["strlen"] = &StrLen; |
| Optimizations["strtol"] = &StrTo; |
| Optimizations["strtod"] = &StrTo; |
| Optimizations["strtof"] = &StrTo; |
| Optimizations["strtoul"] = &StrTo; |
| Optimizations["strtoll"] = &StrTo; |
| Optimizations["strtold"] = &StrTo; |
| Optimizations["strtoull"] = &StrTo; |
| Optimizations["memcmp"] = &MemCmp; |
| Optimizations["memcpy"] = &MemCpy; |
| Optimizations["memmove"] = &MemMove; |
| Optimizations["memset"] = &MemSet; |
| |
| // Math Library Optimizations |
| Optimizations["powf"] = &Pow; |
| Optimizations["pow"] = &Pow; |
| Optimizations["powl"] = &Pow; |
| Optimizations["llvm.pow.f32"] = &Pow; |
| Optimizations["llvm.pow.f64"] = &Pow; |
| Optimizations["llvm.pow.f80"] = &Pow; |
| Optimizations["llvm.pow.f128"] = &Pow; |
| Optimizations["llvm.pow.ppcf128"] = &Pow; |
| Optimizations["exp2l"] = &Exp2; |
| Optimizations["exp2"] = &Exp2; |
| Optimizations["exp2f"] = &Exp2; |
| Optimizations["llvm.exp2.ppcf128"] = &Exp2; |
| Optimizations["llvm.exp2.f128"] = &Exp2; |
| Optimizations["llvm.exp2.f80"] = &Exp2; |
| Optimizations["llvm.exp2.f64"] = &Exp2; |
| Optimizations["llvm.exp2.f32"] = &Exp2; |
| |
| #ifdef HAVE_FLOORF |
| Optimizations["floor"] = &UnaryDoubleFP; |
| #endif |
| #ifdef HAVE_CEILF |
| Optimizations["ceil"] = &UnaryDoubleFP; |
| #endif |
| #ifdef HAVE_ROUNDF |
| Optimizations["round"] = &UnaryDoubleFP; |
| #endif |
| #ifdef HAVE_RINTF |
| Optimizations["rint"] = &UnaryDoubleFP; |
| #endif |
| #ifdef HAVE_NEARBYINTF |
| Optimizations["nearbyint"] = &UnaryDoubleFP; |
| #endif |
| |
| // Integer Optimizations |
| Optimizations["ffs"] = &FFS; |
| Optimizations["ffsl"] = &FFS; |
| Optimizations["ffsll"] = &FFS; |
| Optimizations["abs"] = &Abs; |
| Optimizations["labs"] = &Abs; |
| Optimizations["llabs"] = &Abs; |
| Optimizations["isdigit"] = &IsDigit; |
| Optimizations["isascii"] = &IsAscii; |
| Optimizations["toascii"] = &ToAscii; |
| |
| // Formatting and IO Optimizations |
| Optimizations["sprintf"] = &SPrintF; |
| Optimizations["printf"] = &PrintF; |
| Optimizations["fwrite"] = &FWrite; |
| Optimizations["fputs"] = &FPuts; |
| Optimizations["fprintf"] = &FPrintF; |
| } |
| |
| |
| /// runOnFunction - Top level algorithm. |
| /// |
| bool SimplifyLibCalls::runOnFunction(Function &F) { |
| if (Optimizations.empty()) |
| InitOptimizations(); |
| |
| const TargetData &TD = getAnalysis<TargetData>(); |
| |
| IRBuilder<> Builder; |
| |
| bool Changed = false; |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { |
| // Ignore non-calls. |
| CallInst *CI = dyn_cast<CallInst>(I++); |
| if (!CI) continue; |
| |
| // Ignore indirect calls and calls to non-external functions. |
| Function *Callee = CI->getCalledFunction(); |
| if (Callee == 0 || !Callee->isDeclaration() || |
| !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage())) |
| continue; |
| |
| // Ignore unknown calls. |
| const char *CalleeName = Callee->getNameStart(); |
| StringMap<LibCallOptimization*>::iterator OMI = |
| Optimizations.find(CalleeName, CalleeName+Callee->getNameLen()); |
| if (OMI == Optimizations.end()) continue; |
| |
| // Set the builder to the instruction after the call. |
| Builder.SetInsertPoint(BB, I); |
| |
| // Try to optimize this call. |
| Value *Result = OMI->second->OptimizeCall(CI, TD, Builder); |
| if (Result == 0) continue; |
| |
| DEBUG(DOUT << "SimplifyLibCalls simplified: " << *CI; |
| DOUT << " into: " << *Result << "\n"); |
| |
| // Something changed! |
| Changed = true; |
| ++NumSimplified; |
| |
| // Inspect the instruction after the call (which was potentially just |
| // added) next. |
| I = CI; ++I; |
| |
| if (CI != Result && !CI->use_empty()) { |
| CI->replaceAllUsesWith(Result); |
| if (!Result->hasName()) |
| Result->takeName(CI); |
| } |
| CI->eraseFromParent(); |
| } |
| } |
| return Changed; |
| } |
| |
| // Utility methods for doInitialization. |
| |
| void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) { |
| if (!F.doesNotAccessMemory()) { |
| F.setDoesNotAccessMemory(); |
| ++NumAnnotated; |
| Modified = true; |
| } |
| } |
| void SimplifyLibCalls::setOnlyReadsMemory(Function &F) { |
| if (!F.onlyReadsMemory()) { |
| F.setOnlyReadsMemory(); |
| ++NumAnnotated; |
| Modified = true; |
| } |
| } |
| void SimplifyLibCalls::setDoesNotThrow(Function &F) { |
| if (!F.doesNotThrow()) { |
| F.setDoesNotThrow(); |
| ++NumAnnotated; |
| Modified = true; |
| } |
| } |
| void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) { |
| if (!F.doesNotCapture(n)) { |
| F.setDoesNotCapture(n); |
| ++NumAnnotated; |
| Modified = true; |
| } |
| } |
| void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) { |
| if (!F.doesNotAlias(n)) { |
| F.setDoesNotAlias(n); |
| ++NumAnnotated; |
| Modified = true; |
| } |
| } |
| |
| /// doInitialization - Add attributes to well-known functions. |
| /// |
| bool SimplifyLibCalls::doInitialization(Module &M) { |
| Modified = false; |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { |
| Function &F = *I; |
| if (!F.isDeclaration()) |
| continue; |
| |
| unsigned NameLen = F.getNameLen(); |
| if (!NameLen) |
| continue; |
| |
| const FunctionType *FTy = F.getFunctionType(); |
| |
| const char *NameStr = F.getNameStart(); |
| switch (NameStr[0]) { |
| case 's': |
| if (NameLen == 6 && !strcmp(NameStr, "strlen")) { |
| if (FTy->getNumParams() != 1 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setOnlyReadsMemory(F); |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } else if ((NameLen == 6 && !strcmp(NameStr, "strcpy")) || |
| (NameLen == 6 && !strcmp(NameStr, "stpcpy")) || |
| (NameLen == 6 && !strcmp(NameStr, "strcat")) || |
| (NameLen == 6 && !strcmp(NameStr, "strtol")) || |
| (NameLen == 6 && !strcmp(NameStr, "strtod")) || |
| (NameLen == 6 && !strcmp(NameStr, "strtof")) || |
| (NameLen == 7 && !strcmp(NameStr, "strtoul")) || |
| (NameLen == 7 && !strcmp(NameStr, "strtoll")) || |
| (NameLen == 7 && !strcmp(NameStr, "strtold")) || |
| (NameLen == 7 && !strcmp(NameStr, "strncat")) || |
| (NameLen == 7 && !strcmp(NameStr, "strncpy")) || |
| (NameLen == 8 && !strcmp(NameStr, "strtoull"))) { |
| if (FTy->getNumParams() < 2 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 7 && !strcmp(NameStr, "strxfrm")) { |
| if (FTy->getNumParams() != 3 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } else if ((NameLen == 6 && !strcmp(NameStr, "strcmp")) || |
| (NameLen == 6 && !strcmp(NameStr, "strspn")) || |
| (NameLen == 7 && !strcmp(NameStr, "strncmp")) || |
| (NameLen == 7 && !strcmp(NameStr, "strcspn")) || |
| (NameLen == 7 && !strcmp(NameStr, "strcoll")) || |
| (NameLen == 10 && !strcmp(NameStr, "strcasecmp")) || |
| (NameLen == 11 && !strcmp(NameStr, "strncasecmp"))) { |
| if (FTy->getNumParams() < 2 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setOnlyReadsMemory(F); |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } else if ((NameLen == 6 && !strcmp(NameStr, "strstr")) || |
| (NameLen == 7 && !strcmp(NameStr, "strpbrk"))) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setOnlyReadsMemory(F); |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 2); |
| } else if ((NameLen == 6 && !strcmp(NameStr, "strtok")) || |
| (NameLen == 8 && !strcmp(NameStr, "strtok_r"))) { |
| if (FTy->getNumParams() < 2 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 2); |
| } else if ((NameLen == 5 && !strcmp(NameStr, "scanf")) || |
| (NameLen == 6 && !strcmp(NameStr, "setbuf")) || |
| (NameLen == 7 && !strcmp(NameStr, "setvbuf"))) { |
| if (FTy->getNumParams() < 1 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } else if (NameLen == 6 && !strcmp(NameStr, "sscanf")) { |
| if (FTy->getNumParams() < 2 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } else if ((NameLen == 6 && !strcmp(NameStr, "strdup")) || |
| (NameLen == 7 && !strcmp(NameStr, "strndup"))) { |
| if (FTy->getNumParams() < 1 || |
| !isa<PointerType>(FTy->getReturnType()) || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotAlias(F, 0); |
| setDoesNotCapture(F, 1); |
| } else if (NameLen == 7 && !strcmp(NameStr, "sprintf")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 8 && !strcmp(NameStr, "snprintf")) { |
| if (FTy->getNumParams() != 3 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(2))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 3); |
| } |
| break; |
| case 'm': |
| if (NameLen == 6 && !strcmp(NameStr, "memcmp")) { |
| if (FTy->getNumParams() != 3 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setOnlyReadsMemory(F); |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } else if ((NameLen == 6 && !strcmp(NameStr, "memchr")) || |
| (NameLen == 7 && !strcmp(NameStr, "memrchr"))) { |
| if (FTy->getNumParams() != 3) |
| continue; |
| setOnlyReadsMemory(F); |
| setDoesNotThrow(F); |
| } else if ((NameLen == 6 && !strcmp(NameStr, "memcpy")) || |
| (NameLen == 7 && !strcmp(NameStr, "memccpy")) || |
| (NameLen == 7 && !strcmp(NameStr, "memmove"))) { |
| if (FTy->getNumParams() < 3 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 8 && !strcmp(NameStr, "memalign")) { |
| if (!isa<PointerType>(FTy->getReturnType())) |
| continue; |
| setDoesNotAlias(F, 0); |
| } |
| break; |
| case 'r': |
| if (NameLen == 7 && !strcmp(NameStr, "realloc")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getReturnType())) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotAlias(F, 0); |
| setDoesNotCapture(F, 1); |
| } else if (NameLen == 4 && !strcmp(NameStr, "read")) { |
| if (FTy->getNumParams() != 3 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| // May throw; "read" is a valid pthread cancellation point. |
| setDoesNotCapture(F, 2); |
| } else if ((NameLen == 5 && !strcmp(NameStr, "rmdir")) || |
| (NameLen == 6 && !strcmp(NameStr, "rewind")) || |
| (NameLen == 6 && !strcmp(NameStr, "remove"))) { |
| if (FTy->getNumParams() != 1 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } else if (NameLen == 6 && !strcmp(NameStr, "rename")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } |
| break; |
| case 'w': |
| if (NameLen == 5 && !strcmp(NameStr, "write")) { |
| if (FTy->getNumParams() != 3 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| // May throw; "write" is a valid pthread cancellation point. |
| setDoesNotCapture(F, 2); |
| } |
| break; |
| case 'b': |
| if (NameLen == 5 && !strcmp(NameStr, "bcopy")) { |
| if (FTy->getNumParams() != 3 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 4 && !strcmp(NameStr, "bcmp")) { |
| if (FTy->getNumParams() != 3 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setOnlyReadsMemory(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 5 && !strcmp(NameStr, "bzero")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } |
| break; |
| case 'c': |
| if (NameLen == 6 && !strcmp(NameStr, "calloc")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getReturnType())) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotAlias(F, 0); |
| } else if ((NameLen == 5 && !strcmp(NameStr, "chown")) || |
| (NameLen == 8 && !strcmp(NameStr, "clearerr")) || |
| (NameLen == 8 && !strcmp(NameStr, "closedir"))) { |
| if (FTy->getNumParams() == 0 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } |
| break; |
| case 'a': |
| if ((NameLen == 4 && !strcmp(NameStr, "atoi")) || |
| (NameLen == 4 && !strcmp(NameStr, "atol")) || |
| (NameLen == 4 && !strcmp(NameStr, "atof")) || |
| (NameLen == 5 && !strcmp(NameStr, "atoll"))) { |
| if (FTy->getNumParams() != 1 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setOnlyReadsMemory(F); |
| setDoesNotCapture(F, 1); |
| } else if (NameLen == 6 && !strcmp(NameStr, "access")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } |
| break; |
| case 'f': |
| if (NameLen == 5 && !strcmp(NameStr, "fopen")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getReturnType()) || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotAlias(F, 0); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 6 && !strcmp(NameStr, "fdopen")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getReturnType()) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotAlias(F, 0); |
| setDoesNotCapture(F, 2); |
| } else if ((NameLen == 4 && !strcmp(NameStr, "feof")) || |
| (NameLen == 4 && !strcmp(NameStr, "free")) || |
| (NameLen == 5 && !strcmp(NameStr, "fseek")) || |
| (NameLen == 5 && !strcmp(NameStr, "ftell")) || |
| (NameLen == 5 && !strcmp(NameStr, "fgetc")) || |
| (NameLen == 6 && !strcmp(NameStr, "fseeko")) || |
| (NameLen == 6 && !strcmp(NameStr, "ftello")) || |
| (NameLen == 6 && !strcmp(NameStr, "fileno")) || |
| (NameLen == 6 && !strcmp(NameStr, "fflush")) || |
| (NameLen == 6 && !strcmp(NameStr, "fclose")) || |
| (NameLen == 7 && !strcmp(NameStr, "fsetpos"))) { |
| if (FTy->getNumParams() == 0 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } else if (NameLen == 6 && !strcmp(NameStr, "ferror")) { |
| if (FTy->getNumParams() != 1 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setOnlyReadsMemory(F); |
| } else if ((NameLen == 5 && !strcmp(NameStr, "fputc")) || |
| (NameLen == 5 && !strcmp(NameStr, "fputs"))) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 5 && !strcmp(NameStr, "fgets")) { |
| if (FTy->getNumParams() != 3 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(2))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 3); |
| } else if ((NameLen == 5 && !strcmp(NameStr, "fread")) || |
| (NameLen == 6 && !strcmp(NameStr, "fwrite"))) { |
| if (FTy->getNumParams() != 4 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(3))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 4); |
| } else if (NameLen == 7 && !strcmp(NameStr, "fgetpos")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 6 && !strcmp(NameStr, "fscanf")) { |
| if (FTy->getNumParams() < 2 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 7 && !strcmp(NameStr, "fprintf")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } |
| break; |
| case 'g': |
| if ((NameLen == 4 && !strcmp(NameStr, "getc")) || |
| (NameLen == 10 && !strcmp(NameStr, "getlogin_r"))) { |
| if (FTy->getNumParams() == 0 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } else if (NameLen == 6 && !strcmp(NameStr, "getenv")) { |
| if (FTy->getNumParams() != 1 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setOnlyReadsMemory(F); |
| setDoesNotCapture(F, 1); |
| } else if ((NameLen == 4 && !strcmp(NameStr, "gets")) || |
| (NameLen == 7 && !strcmp(NameStr, "getchar"))) { |
| setDoesNotThrow(F); |
| } |
| break; |
| case 'u': |
| if (NameLen == 6 && !strcmp(NameStr, "ungetc")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 6 && !strcmp(NameStr, "unlink")) { |
| if (FTy->getNumParams() != 1 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } |
| break; |
| case 'p': |
| if (NameLen == 4 && !strcmp(NameStr, "putc")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 2); |
| } else if ((NameLen == 4 && !strcmp(NameStr, "puts")) || |
| (NameLen == 6 && !strcmp(NameStr, "printf")) || |
| (NameLen == 6 && !strcmp(NameStr, "perror"))) { |
| if (FTy->getNumParams() != 1 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } else if ((NameLen == 5 && !strcmp(NameStr, "pread")) || |
| (NameLen == 6 && !strcmp(NameStr, "pwrite"))) { |
| if (FTy->getNumParams() != 4 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| // May throw; these are valid pthread cancellation points. |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 7 && !strcmp(NameStr, "putchar")) { |
| setDoesNotThrow(F); |
| } |
| break; |
| case 'v': |
| if (NameLen == 6 && !strcmp(NameStr, "vscanf")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } else if ((NameLen == 7 && !strcmp(NameStr, "vsscanf")) || |
| (NameLen == 7 && !strcmp(NameStr, "vfscanf"))) { |
| if (FTy->getNumParams() != 3 || |
| !isa<PointerType>(FTy->getParamType(1)) || |
| !isa<PointerType>(FTy->getParamType(2))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 6 && !strcmp(NameStr, "valloc")) { |
| if (!isa<PointerType>(FTy->getReturnType())) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotAlias(F, 0); |
| } else if (NameLen == 7 && !strcmp(NameStr, "vprintf")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } else if ((NameLen == 8 && !strcmp(NameStr, "vfprintf")) || |
| (NameLen == 8 && !strcmp(NameStr, "vsprintf"))) { |
| if (FTy->getNumParams() != 3 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 9 && !strcmp(NameStr, "vsnprintf")) { |
| if (FTy->getNumParams() != 4 || |
| !isa<PointerType>(FTy->getParamType(0)) || |
| !isa<PointerType>(FTy->getParamType(2))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 3); |
| } |
| break; |
| case 'o': |
| if (NameLen == 7 && !strcmp(NameStr, "opendir")) { |
| // The description of fdopendir sounds like opening the same fd |
| // twice might result in the same DIR* ! |
| if (!isa<PointerType>(FTy->getReturnType())) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotAlias(F, 0); |
| } |
| break; |
| case 't': |
| if (NameLen == 7 && !strcmp(NameStr, "tmpfile")) { |
| if (!isa<PointerType>(FTy->getReturnType())) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotAlias(F, 0); |
| } |
| case 'h': |
| if ((NameLen == 5 && !strcmp(NameStr, "htonl")) || |
| (NameLen == 5 && !strcmp(NameStr, "htons"))) { |
| setDoesNotThrow(F); |
| setDoesNotAccessMemory(F); |
| } |
| break; |
| case 'n': |
| if ((NameLen == 5 && !strcmp(NameStr, "ntohl")) || |
| (NameLen == 5 && !strcmp(NameStr, "ntohs"))) { |
| setDoesNotThrow(F); |
| setDoesNotAccessMemory(F); |
| } |
| case '_': |
| if ((NameLen == 8 && !strcmp(NameStr, "__strdup")) || |
| (NameLen == 9 && !strcmp(NameStr, "__strndup"))) { |
| if (FTy->getNumParams() < 1 || |
| !isa<PointerType>(FTy->getReturnType()) || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotAlias(F, 0); |
| setDoesNotCapture(F, 1); |
| } else if (NameLen == 10 && !strcmp(NameStr, "__strtok_r")) { |
| if (FTy->getNumParams() != 3 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 2); |
| } else if (NameLen == 8 && !strcmp(NameStr, "_IO_getc")) { |
| if (FTy->getNumParams() != 1 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } else if (NameLen == 8 && !strcmp(NameStr, "_IO_putc")) { |
| if (FTy->getNumParams() != 2 || |
| !isa<PointerType>(FTy->getParamType(1))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 2); |
| } |
| case 1: |
| if (NameLen == 15 && !strcmp(NameStr, "\1__isoc99_scanf")) { |
| if (FTy->getNumParams() < 1 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| } else if (NameLen == 16 && !strcmp(NameStr, "\1__isoc99_sscanf")) { |
| if (FTy->getNumParams() < 1 || |
| !isa<PointerType>(FTy->getParamType(0))) |
| continue; |
| setDoesNotThrow(F); |
| setDoesNotCapture(F, 1); |
| setDoesNotCapture(F, 2); |
| } |
| break; |
| } |
| } |
| return Modified; |
| } |
| |
| // TODO: |
| // Additional cases that we need to add to this file: |
| // |
| // cbrt: |
| // * cbrt(expN(X)) -> expN(x/3) |
| // * cbrt(sqrt(x)) -> pow(x,1/6) |
| // * cbrt(sqrt(x)) -> pow(x,1/9) |
| // |
| // cos, cosf, cosl: |
| // * cos(-x) -> cos(x) |
| // |
| // exp, expf, expl: |
| // * exp(log(x)) -> x |
| // |
| // log, logf, logl: |
| // * log(exp(x)) -> x |
| // * log(x**y) -> y*log(x) |
| // * log(exp(y)) -> y*log(e) |
| // * log(exp2(y)) -> y*log(2) |
| // * log(exp10(y)) -> y*log(10) |
| // * log(sqrt(x)) -> 0.5*log(x) |
| // * log(pow(x,y)) -> y*log(x) |
| // |
| // lround, lroundf, lroundl: |
| // * lround(cnst) -> cnst' |
| // |
| // memcmp: |
| // * memcmp(x,y,l) -> cnst |
| // (if all arguments are constant and strlen(x) <= l and strlen(y) <= l) |
| // |
| // pow, powf, powl: |
| // * pow(exp(x),y) -> exp(x*y) |
| // * pow(sqrt(x),y) -> pow(x,y*0.5) |
| // * pow(pow(x,y),z)-> pow(x,y*z) |
| // |
| // puts: |
| // * puts("") -> putchar("\n") |
| // |
| // round, roundf, roundl: |
| // * round(cnst) -> cnst' |
| // |
| // signbit: |
| // * signbit(cnst) -> cnst' |
| // * signbit(nncst) -> 0 (if pstv is a non-negative constant) |
| // |
| // sqrt, sqrtf, sqrtl: |
| // * sqrt(expN(x)) -> expN(x*0.5) |
| // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) |
| // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) |
| // |
| // stpcpy: |
| // * stpcpy(str, "literal") -> |
| // llvm.memcpy(str,"literal",strlen("literal")+1,1) |
| // strrchr: |
| // * strrchr(s,c) -> reverse_offset_of_in(c,s) |
| // (if c is a constant integer and s is a constant string) |
| // * strrchr(s1,0) -> strchr(s1,0) |
| // |
| // strncat: |
| // * strncat(x,y,0) -> x |
| // * strncat(x,y,0) -> x (if strlen(y) = 0) |
| // * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y)) |
| // |
| // strncpy: |
| // * strncpy(d,s,0) -> d |
| // * strncpy(d,s,l) -> memcpy(d,s,l,1) |
| // (if s and l are constants) |
| // |
| // strpbrk: |
| // * strpbrk(s,a) -> offset_in_for(s,a) |
| // (if s and a are both constant strings) |
| // * strpbrk(s,"") -> 0 |
| // * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1) |
| // |
| // strspn, strcspn: |
| // * strspn(s,a) -> const_int (if both args are constant) |
| // * strspn("",a) -> 0 |
| // * strspn(s,"") -> 0 |
| // * strcspn(s,a) -> const_int (if both args are constant) |
| // * strcspn("",a) -> 0 |
| // * strcspn(s,"") -> strlen(a) |
| // |
| // strstr: |
| // * strstr(x,x) -> x |
| // * strstr(s1,s2) -> offset_of_s2_in(s1) |
| // (if s1 and s2 are constant strings) |
| // |
| // tan, tanf, tanl: |
| // * tan(atan(x)) -> x |
| // |
| // trunc, truncf, truncl: |
| // * trunc(cnst) -> cnst' |
| // |
| // |