blob: 32a48097b6261662893c761b33c7716518f696c5 [file] [log] [blame]
//===-- LegalizeTypesExpand.cpp - Expansion for LegalizeTypes -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements expansion support for LegalizeTypes. Expansion is the
// act of changing a computation in an invalid type to be a computation in
// multiple registers of a smaller type. For example, implementing i64
// arithmetic in two i32 registers (as is often needed on 32-bit targets, for
// example).
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/Constants.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Result Expansion
//===----------------------------------------------------------------------===//
/// ExpandResult - This method is called when the specified result of the
/// specified node is found to need expansion. At this point, the node may also
/// have invalid operands or may have other results that need promotion, we just
/// know that (at least) one result needs expansion.
void DAGTypeLegalizer::ExpandResult(SDNode *N, unsigned ResNo) {
DEBUG(cerr << "Expand node result: "; N->dump(&DAG); cerr << "\n");
SDOperand Lo, Hi;
Lo = Hi = SDOperand();
// See if the target wants to custom expand this node.
if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
TargetLowering::Custom) {
// If the target wants to, allow it to lower this itself.
if (SDNode *P = TLI.ExpandOperationResult(N, DAG)) {
// Everything that once used N now uses P. We are guaranteed that the
// result value types of N and the result value types of P match.
ReplaceNodeWith(N, P);
return;
}
}
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "ExpandResult #" << ResNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to expand the result of this operator!");
abort();
case ISD::UNDEF: ExpandResult_UNDEF(N, Lo, Hi); break;
case ISD::Constant: ExpandResult_Constant(N, Lo, Hi); break;
case ISD::BUILD_PAIR: ExpandResult_BUILD_PAIR(N, Lo, Hi); break;
case ISD::MERGE_VALUES: ExpandResult_MERGE_VALUES(N, Lo, Hi); break;
case ISD::ANY_EXTEND: ExpandResult_ANY_EXTEND(N, Lo, Hi); break;
case ISD::ZERO_EXTEND: ExpandResult_ZERO_EXTEND(N, Lo, Hi); break;
case ISD::SIGN_EXTEND: ExpandResult_SIGN_EXTEND(N, Lo, Hi); break;
case ISD::BIT_CONVERT: ExpandResult_BIT_CONVERT(N, Lo, Hi); break;
case ISD::SIGN_EXTEND_INREG: ExpandResult_SIGN_EXTEND_INREG(N, Lo, Hi); break;
case ISD::LOAD: ExpandResult_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
case ISD::AND:
case ISD::OR:
case ISD::XOR: ExpandResult_Logical(N, Lo, Hi); break;
case ISD::BSWAP: ExpandResult_BSWAP(N, Lo, Hi); break;
case ISD::ADD:
case ISD::SUB: ExpandResult_ADDSUB(N, Lo, Hi); break;
case ISD::ADDC:
case ISD::SUBC: ExpandResult_ADDSUBC(N, Lo, Hi); break;
case ISD::ADDE:
case ISD::SUBE: ExpandResult_ADDSUBE(N, Lo, Hi); break;
case ISD::SELECT: ExpandResult_SELECT(N, Lo, Hi); break;
case ISD::SELECT_CC: ExpandResult_SELECT_CC(N, Lo, Hi); break;
case ISD::MUL: ExpandResult_MUL(N, Lo, Hi); break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: ExpandResult_Shift(N, Lo, Hi); break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
if (Lo.Val)
SetExpandedOp(SDOperand(N, ResNo), Lo, Hi);
}
void DAGTypeLegalizer::ExpandResult_UNDEF(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
Lo = Hi = DAG.getNode(ISD::UNDEF, NVT);
}
void DAGTypeLegalizer::ExpandResult_Constant(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
uint64_t Cst = cast<ConstantSDNode>(N)->getValue();
Lo = DAG.getConstant(Cst, NVT);
Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT);
}
void DAGTypeLegalizer::ExpandResult_BUILD_PAIR(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Return the operands.
Lo = N->getOperand(0);
Hi = N->getOperand(1);
}
void DAGTypeLegalizer::ExpandResult_MERGE_VALUES(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// A MERGE_VALUES node can produce any number of values. We know that the
// first illegal one needs to be expanded into Lo/Hi.
unsigned i;
// The string of legal results gets turns into the input operands, which have
// the same type.
for (i = 0; isTypeLegal(N->getValueType(i)); ++i)
ReplaceValueWith(SDOperand(N, i), SDOperand(N->getOperand(i)));
// The first illegal result must be the one that needs to be expanded.
GetExpandedOp(N->getOperand(i), Lo, Hi);
// Legalize the rest of the results into the input operands whether they are
// legal or not.
unsigned e = N->getNumValues();
for (++i; i != e; ++i)
ReplaceValueWith(SDOperand(N, i), SDOperand(N->getOperand(i)));
}
void DAGTypeLegalizer::ExpandResult_ANY_EXTEND(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDOperand Op = N->getOperand(0);
if (MVT::getSizeInBits(Op.getValueType()) <= MVT::getSizeInBits(NVT)) {
// The low part is any extension of the input (which degenerates to a copy).
Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Op);
Hi = DAG.getNode(ISD::UNDEF, NVT); // The high part is undefined.
} else {
// For example, extension of an i48 to an i64. The operand type necessarily
// promotes to the result type, so will end up being expanded too.
assert(getTypeAction(Op.getValueType()) == Promote &&
"Don't know how to expand this result!");
SDOperand Res = GetPromotedOp(Op);
assert(Res.getValueType() == N->getValueType(0) &&
"Operand over promoted?");
// Split the promoted operand. This will simplify when it is expanded.
SplitOp(Res, Lo, Hi);
}
}
void DAGTypeLegalizer::ExpandResult_ZERO_EXTEND(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDOperand Op = N->getOperand(0);
if (MVT::getSizeInBits(Op.getValueType()) <= MVT::getSizeInBits(NVT)) {
// The low part is zero extension of the input (which degenerates to a copy).
Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, N->getOperand(0));
Hi = DAG.getConstant(0, NVT); // The high part is just a zero.
} else {
// For example, extension of an i48 to an i64. The operand type necessarily
// promotes to the result type, so will end up being expanded too.
assert(getTypeAction(Op.getValueType()) == Promote &&
"Don't know how to expand this result!");
SDOperand Res = GetPromotedOp(Op);
assert(Res.getValueType() == N->getValueType(0) &&
"Operand over promoted?");
// Split the promoted operand. This will simplify when it is expanded.
SplitOp(Res, Lo, Hi);
unsigned ExcessBits =
MVT::getSizeInBits(Op.getValueType()) - MVT::getSizeInBits(NVT);
Hi = DAG.getZeroExtendInReg(Hi, MVT::getIntegerType(ExcessBits));
}
}
void DAGTypeLegalizer::ExpandResult_SIGN_EXTEND(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
SDOperand Op = N->getOperand(0);
if (MVT::getSizeInBits(Op.getValueType()) <= MVT::getSizeInBits(NVT)) {
// The low part is sign extension of the input (which degenerates to a copy).
Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, N->getOperand(0));
// The high part is obtained by SRA'ing all but one of the bits of low part.
unsigned LoSize = MVT::getSizeInBits(NVT);
Hi = DAG.getNode(ISD::SRA, NVT, Lo,
DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
} else {
// For example, extension of an i48 to an i64. The operand type necessarily
// promotes to the result type, so will end up being expanded too.
assert(getTypeAction(Op.getValueType()) == Promote &&
"Don't know how to expand this result!");
SDOperand Res = GetPromotedOp(Op);
assert(Res.getValueType() == N->getValueType(0) &&
"Operand over promoted?");
// Split the promoted operand. This will simplify when it is expanded.
SplitOp(Res, Lo, Hi);
unsigned ExcessBits =
MVT::getSizeInBits(Op.getValueType()) - MVT::getSizeInBits(NVT);
Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, Hi.getValueType(), Hi,
DAG.getValueType(MVT::getIntegerType(ExcessBits)));
}
}
void DAGTypeLegalizer::ExpandResult_BIT_CONVERT(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Lower the bit-convert to a store/load from the stack, then expand the load.
SDOperand Op = CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
ExpandResult_LOAD(cast<LoadSDNode>(Op.Val), Lo, Hi);
}
void DAGTypeLegalizer::
ExpandResult_SIGN_EXTEND_INREG(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
GetExpandedOp(N->getOperand(0), Lo, Hi);
MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
if (MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(Lo.getValueType())) {
// sext_inreg the low part if needed.
Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, Lo.getValueType(), Lo,
N->getOperand(1));
// The high part gets the sign extension from the lo-part. This handles
// things like sextinreg V:i64 from i8.
Hi = DAG.getNode(ISD::SRA, Hi.getValueType(), Lo,
DAG.getConstant(MVT::getSizeInBits(Hi.getValueType())-1,
TLI.getShiftAmountTy()));
} else {
// For example, extension of an i48 to an i64. Leave the low part alone,
// sext_inreg the high part.
unsigned ExcessBits =
MVT::getSizeInBits(EVT) - MVT::getSizeInBits(Lo.getValueType());
Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, Hi.getValueType(), Hi,
DAG.getValueType(MVT::getIntegerType(ExcessBits)));
}
}
void DAGTypeLegalizer::ExpandResult_LOAD(LoadSDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType VT = N->getValueType(0);
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
SDOperand Ch = N->getChain(); // Legalize the chain.
SDOperand Ptr = N->getBasePtr(); // Legalize the pointer.
ISD::LoadExtType ExtType = N->getExtensionType();
int SVOffset = N->getSrcValueOffset();
unsigned Alignment = N->getAlignment();
bool isVolatile = N->isVolatile();
assert(!(MVT::getSizeInBits(NVT) & 7) && "Expanded type not byte sized!");
if (ExtType == ISD::NON_EXTLOAD) {
Lo = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset,
isVolatile, Alignment);
// Increment the pointer to the other half.
unsigned IncrementSize = MVT::getSizeInBits(NVT)/8;
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
getIntPtrConstant(IncrementSize));
Hi = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
isVolatile, MinAlign(Alignment, IncrementSize));
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Handle endianness of the load.
if (!TLI.isLittleEndian())
std::swap(Lo, Hi);
} else if (MVT::getSizeInBits(N->getLoadedVT()) <= MVT::getSizeInBits(NVT)) {
MVT::ValueType EVT = N->getLoadedVT();
Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset, EVT,
isVolatile, Alignment);
// Remember the chain.
Ch = Lo.getValue(1);
if (ExtType == ISD::SEXTLOAD) {
// The high part is obtained by SRA'ing all but one of the bits of the
// lo part.
unsigned LoSize = MVT::getSizeInBits(Lo.getValueType());
Hi = DAG.getNode(ISD::SRA, NVT, Lo,
DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
} else if (ExtType == ISD::ZEXTLOAD) {
// The high part is just a zero.
Hi = DAG.getConstant(0, NVT);
} else {
assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
// The high part is undefined.
Hi = DAG.getNode(ISD::UNDEF, NVT);
}
} else if (TLI.isLittleEndian()) {
// Little-endian - low bits are at low addresses.
Lo = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset,
isVolatile, Alignment);
unsigned ExcessBits =
MVT::getSizeInBits(N->getLoadedVT()) - MVT::getSizeInBits(NVT);
MVT::ValueType NEVT = MVT::getIntegerType(ExcessBits);
// Increment the pointer to the other half.
unsigned IncrementSize = MVT::getSizeInBits(NVT)/8;
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
getIntPtrConstant(IncrementSize));
Hi = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(),
SVOffset+IncrementSize, NEVT,
isVolatile, MinAlign(Alignment, IncrementSize));
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
} else {
// Big-endian - high bits are at low addresses. Favor aligned loads at
// the cost of some bit-fiddling.
MVT::ValueType EVT = N->getLoadedVT();
unsigned EBytes = MVT::getStoreSizeInBits(EVT)/8;
unsigned IncrementSize = MVT::getSizeInBits(NVT)/8;
unsigned ExcessBits = (EBytes - IncrementSize)*8;
// Load both the high bits and maybe some of the low bits.
Hi = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset,
MVT::getIntegerType(MVT::getSizeInBits(EVT)-ExcessBits),
isVolatile, Alignment);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
getIntPtrConstant(IncrementSize));
// Load the rest of the low bits.
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, NVT, Ch, Ptr, N->getSrcValue(),
SVOffset+IncrementSize, MVT::getIntegerType(ExcessBits),
isVolatile, MinAlign(Alignment, IncrementSize));
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
if (ExcessBits < MVT::getSizeInBits(NVT)) {
// Transfer low bits from the bottom of Hi to the top of Lo.
Lo = DAG.getNode(ISD::OR, NVT, Lo,
DAG.getNode(ISD::SHL, NVT, Hi,
DAG.getConstant(ExcessBits,
TLI.getShiftAmountTy())));
// Move high bits to the right position in Hi.
Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, NVT, Hi,
DAG.getConstant(MVT::getSizeInBits(NVT) - ExcessBits,
TLI.getShiftAmountTy()));
}
}
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDOperand(N, 1), Ch);
}
void DAGTypeLegalizer::ExpandResult_Logical(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
SDOperand LL, LH, RL, RH;
GetExpandedOp(N->getOperand(0), LL, LH);
GetExpandedOp(N->getOperand(1), RL, RH);
Lo = DAG.getNode(N->getOpcode(), LL.getValueType(), LL, RL);
Hi = DAG.getNode(N->getOpcode(), LL.getValueType(), LH, RH);
}
void DAGTypeLegalizer::ExpandResult_BSWAP(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
GetExpandedOp(N->getOperand(0), Hi, Lo); // Note swapped operands.
Lo = DAG.getNode(ISD::BSWAP, Lo.getValueType(), Lo);
Hi = DAG.getNode(ISD::BSWAP, Hi.getValueType(), Hi);
}
void DAGTypeLegalizer::ExpandResult_SELECT(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
SDOperand LL, LH, RL, RH;
GetExpandedOp(N->getOperand(1), LL, LH);
GetExpandedOp(N->getOperand(2), RL, RH);
Lo = DAG.getNode(ISD::SELECT, LL.getValueType(), N->getOperand(0), LL, RL);
assert(N->getOperand(0).getValueType() != MVT::f32 &&
"FIXME: softfp shouldn't use expand!");
Hi = DAG.getNode(ISD::SELECT, LL.getValueType(), N->getOperand(0), LH, RH);
}
void DAGTypeLegalizer::ExpandResult_SELECT_CC(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
SDOperand LL, LH, RL, RH;
GetExpandedOp(N->getOperand(2), LL, LH);
GetExpandedOp(N->getOperand(3), RL, RH);
Lo = DAG.getNode(ISD::SELECT_CC, LL.getValueType(), N->getOperand(0),
N->getOperand(1), LL, RL, N->getOperand(4));
assert(N->getOperand(0).getValueType() != MVT::f32 &&
"FIXME: softfp shouldn't use expand!");
Hi = DAG.getNode(ISD::SELECT_CC, LL.getValueType(), N->getOperand(0),
N->getOperand(1), LH, RH, N->getOperand(4));
}
void DAGTypeLegalizer::ExpandResult_ADDSUB(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Expand the subcomponents.
SDOperand LHSL, LHSH, RHSL, RHSH;
GetExpandedOp(N->getOperand(0), LHSL, LHSH);
GetExpandedOp(N->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDOperand LoOps[2] = { LHSL, RHSL };
SDOperand HiOps[3] = { LHSH, RHSH };
if (N->getOpcode() == ISD::ADD) {
Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
} else {
Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
}
}
void DAGTypeLegalizer::ExpandResult_ADDSUBC(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Expand the subcomponents.
SDOperand LHSL, LHSH, RHSL, RHSH;
GetExpandedOp(N->getOperand(0), LHSL, LHSH);
GetExpandedOp(N->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDOperand LoOps[2] = { LHSL, RHSL };
SDOperand HiOps[3] = { LHSH, RHSH };
if (N->getOpcode() == ISD::ADDC) {
Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
} else {
Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
}
// Legalized the flag result - switch anything that used the old flag to
// use the new one.
ReplaceValueWith(SDOperand(N, 1), Hi.getValue(1));
}
void DAGTypeLegalizer::ExpandResult_ADDSUBE(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Expand the subcomponents.
SDOperand LHSL, LHSH, RHSL, RHSH;
GetExpandedOp(N->getOperand(0), LHSL, LHSH);
GetExpandedOp(N->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDOperand LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
SDOperand HiOps[3] = { LHSH, RHSH };
Lo = DAG.getNode(N->getOpcode(), VTList, LoOps, 3);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(N->getOpcode(), VTList, HiOps, 3);
// Legalized the flag result - switch anything that used the old flag to
// use the new one.
ReplaceValueWith(SDOperand(N, 1), Hi.getValue(1));
}
void DAGTypeLegalizer::ExpandResult_MUL(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType VT = N->getValueType(0);
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT);
bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT);
bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT);
bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT);
if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
SDOperand LL, LH, RL, RH;
GetExpandedOp(N->getOperand(0), LL, LH);
GetExpandedOp(N->getOperand(1), RL, RH);
unsigned BitSize = MVT::getSizeInBits(NVT);
unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
// FIXME: generalize this to handle other bit sizes
if (LHSSB == 32 && RHSSB == 32 &&
DAG.MaskedValueIsZero(N->getOperand(0), 0xFFFFFFFF00000000ULL) &&
DAG.MaskedValueIsZero(N->getOperand(1), 0xFFFFFFFF00000000ULL)) {
// The inputs are both zero-extended.
if (HasUMUL_LOHI) {
// We can emit a umul_lohi.
Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL);
Hi = SDOperand(Lo.Val, 1);
return;
}
if (HasMULHU) {
// We can emit a mulhu+mul.
Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL);
return;
}
}
if (LHSSB > BitSize && RHSSB > BitSize) {
// The input values are both sign-extended.
if (HasSMUL_LOHI) {
// We can emit a smul_lohi.
Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL);
Hi = SDOperand(Lo.Val, 1);
return;
}
if (HasMULHS) {
// We can emit a mulhs+mul.
Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL);
return;
}
}
if (HasUMUL_LOHI) {
// Lo,Hi = umul LHS, RHS.
SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI,
DAG.getVTList(NVT, NVT), LL, RL);
Lo = UMulLOHI;
Hi = UMulLOHI.getValue(1);
RH = DAG.getNode(ISD::MUL, NVT, LL, RH);
LH = DAG.getNode(ISD::MUL, NVT, LH, RL);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH);
return;
}
}
abort();
#if 0 // FIXME!
// If nothing else, we can make a libcall.
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), N,
false/*sign irrelevant*/, Hi);
#endif
}
void DAGTypeLegalizer::ExpandResult_Shift(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType VT = N->getValueType(0);
// If we can emit an efficient shift operation, do so now. Check to see if
// the RHS is a constant.
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
return ExpandShiftByConstant(N, CN->getValue(), Lo, Hi);
// If we can determine that the high bit of the shift is zero or one, even if
// the low bits are variable, emit this shift in an optimized form.
if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
return;
// If this target supports shift_PARTS, use it. First, map to the _PARTS opc.
unsigned PartsOpc;
if (N->getOpcode() == ISD::SHL)
PartsOpc = ISD::SHL_PARTS;
else if (N->getOpcode() == ISD::SRL)
PartsOpc = ISD::SRL_PARTS;
else {
assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
PartsOpc = ISD::SRA_PARTS;
}
// Next check to see if the target supports this SHL_PARTS operation or if it
// will custom expand it.
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
Action == TargetLowering::Custom) {
// Expand the subcomponents.
SDOperand LHSL, LHSH;
GetExpandedOp(N->getOperand(0), LHSL, LHSH);
SDOperand Ops[] = { LHSL, LHSH, N->getOperand(1) };
MVT::ValueType VT = LHSL.getValueType();
Lo = DAG.getNode(PartsOpc, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3);
Hi = Lo.getValue(1);
return;
}
abort();
#if 0 // FIXME!
// Otherwise, emit a libcall.
unsigned RuntimeCode = ; // SRL -> SRL_I64 etc.
bool Signed = ;
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), N,
false/*lshr is unsigned*/, Hi);
#endif
}
/// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
/// and the shift amount is a constant 'Amt'. Expand the operation.
void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
SDOperand &Lo, SDOperand &Hi) {
// Expand the incoming operand to be shifted, so that we have its parts
SDOperand InL, InH;
GetExpandedOp(N->getOperand(0), InL, InH);
MVT::ValueType NVT = InL.getValueType();
unsigned VTBits = MVT::getSizeInBits(N->getValueType(0));
unsigned NVTBits = MVT::getSizeInBits(NVT);
MVT::ValueType ShTy = N->getOperand(1).getValueType();
if (N->getOpcode() == ISD::SHL) {
if (Amt > VTBits) {
Lo = Hi = DAG.getConstant(0, NVT);
} else if (Amt > NVTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt-NVTBits,ShTy));
} else if (Amt == NVTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = InL;
} else {
Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt, ShTy));
Hi = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SHL, NVT, InH,
DAG.getConstant(Amt, ShTy)),
DAG.getNode(ISD::SRL, NVT, InL,
DAG.getConstant(NVTBits-Amt, ShTy)));
}
return;
}
if (N->getOpcode() == ISD::SRL) {
if (Amt > VTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = DAG.getConstant(0, NVT);
} else if (Amt > NVTBits) {
Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
Hi = DAG.getConstant(0, NVT);
} else if (Amt == NVTBits) {
Lo = InH;
Hi = DAG.getConstant(0, NVT);
} else {
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL,
DAG.getConstant(Amt, ShTy)),
DAG.getNode(ISD::SHL, NVT, InH,
DAG.getConstant(NVTBits-Amt, ShTy)));
Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt, ShTy));
}
return;
}
assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
if (Amt > VTBits) {
Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else if (Amt > NVTBits) {
Lo = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(Amt-NVTBits, ShTy));
Hi = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else if (Amt == NVTBits) {
Lo = InH;
Hi = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else {
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL,
DAG.getConstant(Amt, ShTy)),
DAG.getNode(ISD::SHL, NVT, InH,
DAG.getConstant(NVTBits-Amt, ShTy)));
Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Amt, ShTy));
}
}
/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
/// this shift based on knowledge of the high bit of the shift amount. If we
/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
/// shift amount.
bool DAGTypeLegalizer::
ExpandShiftWithKnownAmountBit(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
unsigned NVTBits = MVT::getSizeInBits(NVT);
assert(!(NVTBits & (NVTBits - 1)) &&
"Expanded integer type size not a power of two!");
uint64_t HighBitMask = NVTBits, KnownZero, KnownOne;
DAG.ComputeMaskedBits(N->getOperand(1), HighBitMask, KnownZero, KnownOne);
// If we don't know anything about the high bit, exit.
if (((KnownZero|KnownOne) & HighBitMask) == 0)
return false;
// Get the incoming operand to be shifted.
SDOperand InL, InH;
GetExpandedOp(N->getOperand(0), InL, InH);
SDOperand Amt = N->getOperand(1);
// If we know that the high bit of the shift amount is one, then we can do
// this as a couple of simple shifts.
if (KnownOne & HighBitMask) {
// Mask out the high bit, which we know is set.
Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt,
DAG.getConstant(NVTBits-1, Amt.getValueType()));
switch (N->getOpcode()) {
default: assert(0 && "Unknown shift");
case ISD::SHL:
Lo = DAG.getConstant(0, NVT); // Low part is zero.
Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part.
return true;
case ISD::SRL:
Hi = DAG.getConstant(0, NVT); // Hi part is zero.
Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part.
return true;
case ISD::SRA:
Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part.
DAG.getConstant(NVTBits-1, Amt.getValueType()));
Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part.
return true;
}
}
// If we know that the high bit of the shift amount is zero, then we can do
// this as a couple of simple shifts.
assert((KnownZero & HighBitMask) && "Bad mask computation above");
// Compute 32-amt.
SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(),
DAG.getConstant(NVTBits, Amt.getValueType()),
Amt);
unsigned Op1, Op2;
switch (N->getOpcode()) {
default: assert(0 && "Unknown shift");
case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break;
case ISD::SRL:
case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break;
}
Lo = DAG.getNode(N->getOpcode(), NVT, InL, Amt);
Hi = DAG.getNode(ISD::OR, NVT,
DAG.getNode(Op1, NVT, InH, Amt),
DAG.getNode(Op2, NVT, InL, Amt2));
return true;
}
//===----------------------------------------------------------------------===//
// Operand Expansion
//===----------------------------------------------------------------------===//
/// ExpandOperand - This method is called when the specified operand of the
/// specified node is found to need expansion. At this point, all of the result
/// types of the node are known to be legal, but other operands of the node may
/// need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::ExpandOperand(SDNode *N, unsigned OpNo) {
DEBUG(cerr << "Expand node operand: "; N->dump(&DAG); cerr << "\n");
SDOperand Res(0, 0);
if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
TargetLowering::Custom)
Res = TLI.LowerOperation(SDOperand(N, 0), DAG);
if (Res.Val == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "ExpandOperand Op #" << OpNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to expand this operator's operand!");
abort();
case ISD::TRUNCATE: Res = ExpandOperand_TRUNCATE(N); break;
case ISD::BIT_CONVERT: Res = ExpandOperand_BIT_CONVERT(N); break;
case ISD::SINT_TO_FP:
Res = ExpandOperand_SINT_TO_FP(N->getOperand(0), N->getValueType(0));
break;
case ISD::UINT_TO_FP:
Res = ExpandOperand_UINT_TO_FP(N->getOperand(0), N->getValueType(0));
break;
case ISD::EXTRACT_ELEMENT: Res = ExpandOperand_EXTRACT_ELEMENT(N); break;
case ISD::SETCC: Res = ExpandOperand_SETCC(N); break;
case ISD::STORE:
Res = ExpandOperand_STORE(cast<StoreSDNode>(N), OpNo);
break;
case ISD::MEMSET:
case ISD::MEMCPY:
case ISD::MEMMOVE: Res = HandleMemIntrinsic(N); break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.Val) return false;
// If the result is N, the sub-method updated N in place. Check to see if any
// operands are new, and if so, mark them.
if (Res.Val == N) {
// Mark N as new and remark N and its operands. This allows us to correctly
// revisit N if it needs another step of promotion and allows us to visit
// any new operands to N.
N->setNodeId(NewNode);
MarkNewNodes(N);
return true;
}
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDOperand(N, 0), Res);
return false;
}
SDOperand DAGTypeLegalizer::ExpandOperand_TRUNCATE(SDNode *N) {
SDOperand InL, InH;
GetExpandedOp(N->getOperand(0), InL, InH);
// Just truncate the low part of the source.
return DAG.getNode(ISD::TRUNCATE, N->getValueType(0), InL);
}
SDOperand DAGTypeLegalizer::ExpandOperand_BIT_CONVERT(SDNode *N) {
return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
}
SDOperand DAGTypeLegalizer::ExpandOperand_SINT_TO_FP(SDOperand Source,
MVT::ValueType DestTy) {
// We know the destination is legal, but that the input needs to be expanded.
assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!");
// Check to see if the target has a custom way to lower this. If so, use it.
switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) {
default: assert(0 && "This action not implemented for this operation!");
case TargetLowering::Legal:
case TargetLowering::Expand:
break; // This case is handled below.
case TargetLowering::Custom:
SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy,
Source), DAG);
if (NV.Val) return NV;
break; // The target lowered this.
}
RTLIB::Libcall LC;
if (DestTy == MVT::f32)
LC = RTLIB::SINTTOFP_I64_F32;
else {
assert(DestTy == MVT::f64 && "Unknown fp value type!");
LC = RTLIB::SINTTOFP_I64_F64;
}
assert(0 && "FIXME: no libcalls yet!");
abort();
#if 0
assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!");
Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source);
SDOperand UnusedHiPart;
return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, true, UnusedHiPart);
#endif
}
SDOperand DAGTypeLegalizer::ExpandOperand_UINT_TO_FP(SDOperand Source,
MVT::ValueType DestTy) {
// We know the destination is legal, but that the input needs to be expanded.
assert(getTypeAction(Source.getValueType()) == Expand &&
"This is not an expansion!");
assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!");
// If this is unsigned, and not supported, first perform the conversion to
// signed, then adjust the result if the sign bit is set.
SDOperand SignedConv = ExpandOperand_SINT_TO_FP(Source, DestTy);
// The 64-bit value loaded will be incorrectly if the 'sign bit' of the
// incoming integer is set. To handle this, we dynamically test to see if
// it is set, and, if so, add a fudge factor.
SDOperand Lo, Hi;
GetExpandedOp(Source, Lo, Hi);
SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi,
DAG.getConstant(0, Hi.getValueType()),
ISD::SETLT);
SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4);
SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
SignSet, Four, Zero);
uint64_t FF = 0x5f800000ULL;
if (TLI.isLittleEndian()) FF <<= 32;
Constant *FudgeFactor = ConstantInt::get((Type*)Type::Int64Ty, FF);
SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
SDOperand FudgeInReg;
if (DestTy == MVT::f32)
FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0);
else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32))
// FIXME: Avoid the extend by construction the right constantpool?
FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(),
CPIdx, NULL, 0, MVT::f32);
else
assert(0 && "Unexpected conversion");
return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg);
}
SDOperand DAGTypeLegalizer::ExpandOperand_EXTRACT_ELEMENT(SDNode *N) {
SDOperand Lo, Hi;
GetExpandedOp(N->getOperand(0), Lo, Hi);
return cast<ConstantSDNode>(N->getOperand(1))->getValue() ? Hi : Lo;
}
SDOperand DAGTypeLegalizer::ExpandOperand_SETCC(SDNode *N) {
SDOperand NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
ExpandSetCCOperands(NewLHS, NewRHS, CCCode);
// If ExpandSetCCOperands returned a scalar, use it.
if (NewRHS.Val == 0) return NewLHS;
// Otherwise, update N to have the operands specified.
return DAG.UpdateNodeOperands(SDOperand(N, 0), NewLHS, NewRHS,
DAG.getCondCode(CCCode));
}
/// ExpandSetCCOperands - Expand the operands of a comparison. This code is
/// shared among BR_CC, SELECT_CC, and SETCC handlers.
void DAGTypeLegalizer::ExpandSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS,
ISD::CondCode &CCCode) {
SDOperand LHSLo, LHSHi, RHSLo, RHSHi;
GetExpandedOp(NewLHS, LHSLo, LHSHi);
GetExpandedOp(NewRHS, RHSLo, RHSHi);
MVT::ValueType VT = NewLHS.getValueType();
if (VT == MVT::f32 || VT == MVT::f64) {
assert(0 && "FIXME: softfp not implemented yet! should be promote not exp");
}
if (VT == MVT::ppcf128) {
// FIXME: This generated code sucks. We want to generate
// FCMP crN, hi1, hi2
// BNE crN, L:
// FCMP crN, lo1, lo2
// The following can be improved, but not that much.
SDOperand Tmp1, Tmp2, Tmp3;
Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ);
Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode);
Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE);
Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode);
Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
NewLHS = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3);
NewRHS = SDOperand(); // LHS is the result, not a compare.
return;
}
if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
if (RHSLo == RHSHi)
if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo))
if (RHSCST->isAllOnesValue()) {
// Equality comparison to -1.
NewLHS = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi);
NewRHS = RHSLo;
return;
}
NewLHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo);
NewRHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi);
NewLHS = DAG.getNode(ISD::OR, NewLHS.getValueType(), NewLHS, NewRHS);
NewRHS = DAG.getConstant(0, NewLHS.getValueType());
return;
}
// If this is a comparison of the sign bit, just look at the top part.
// X > -1, x < 0
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
if ((CCCode == ISD::SETLT && CST->getValue() == 0) || // X < 0
(CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1
NewLHS = LHSHi;
NewRHS = RHSHi;
return;
}
// FIXME: This generated code sucks.
ISD::CondCode LowCC;
switch (CCCode) {
default: assert(0 && "Unknown integer setcc!");
case ISD::SETLT:
case ISD::SETULT: LowCC = ISD::SETULT; break;
case ISD::SETGT:
case ISD::SETUGT: LowCC = ISD::SETUGT; break;
case ISD::SETLE:
case ISD::SETULE: LowCC = ISD::SETULE; break;
case ISD::SETGE:
case ISD::SETUGE: LowCC = ISD::SETUGE; break;
}
// Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
// Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
// dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
// NOTE: on targets without efficient SELECT of bools, we can always use
// this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL);
SDOperand Tmp1, Tmp2;
Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC,
false, DagCombineInfo);
if (!Tmp1.Val)
Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC);
Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi,
CCCode, false, DagCombineInfo);
if (!Tmp2.Val)
Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,
DAG.getCondCode(CCCode));
ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val);
ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val);
if ((Tmp1C && Tmp1C->getValue() == 0) ||
(Tmp2C && Tmp2C->getValue() == 0 &&
(CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
(Tmp2C && Tmp2C->getValue() == 1 &&
(CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
// low part is known false, returns high part.
// For LE / GE, if high part is known false, ignore the low part.
// For LT / GT, if high part is known true, ignore the low part.
NewLHS = Tmp2;
NewRHS = SDOperand();
return;
}
NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi,
ISD::SETEQ, false, DagCombineInfo);
if (!NewLHS.Val)
NewLHS = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ);
NewLHS = DAG.getNode(ISD::SELECT, Tmp1.getValueType(),
NewLHS, Tmp1, Tmp2);
NewRHS = SDOperand();
}
SDOperand DAGTypeLegalizer::ExpandOperand_STORE(StoreSDNode *N, unsigned OpNo) {
assert(OpNo == 1 && "Can only expand the stored value so far");
MVT::ValueType VT = N->getOperand(1).getValueType();
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
SDOperand Ch = N->getChain();
SDOperand Ptr = N->getBasePtr();
int SVOffset = N->getSrcValueOffset();
unsigned Alignment = N->getAlignment();
bool isVolatile = N->isVolatile();
SDOperand Lo, Hi;
assert(!(MVT::getSizeInBits(NVT) & 7) && "Expanded type not byte sized!");
if (!N->isTruncatingStore()) {
unsigned IncrementSize = 0;
GetExpandedOp(N->getValue(), Lo, Hi);
IncrementSize = MVT::getSizeInBits(Hi.getValueType())/8;
if (!TLI.isLittleEndian())
std::swap(Lo, Hi);
Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(),
SVOffset, isVolatile, Alignment);
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
getIntPtrConstant(IncrementSize));
assert(isTypeLegal(Ptr.getValueType()) && "Pointers must be legal!");
Hi = DAG.getStore(Ch, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
isVolatile, MinAlign(Alignment, IncrementSize));
return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
} else if (MVT::getSizeInBits(N->getStoredVT()) <= MVT::getSizeInBits(NVT)) {
GetExpandedOp(N->getValue(), Lo, Hi);
return DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset,
N->getStoredVT(), isVolatile, Alignment);
} else if (TLI.isLittleEndian()) {
// Little-endian - low bits are at low addresses.
GetExpandedOp(N->getValue(), Lo, Hi);
Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset,
isVolatile, Alignment);
unsigned ExcessBits =
MVT::getSizeInBits(N->getStoredVT()) - MVT::getSizeInBits(NVT);
MVT::ValueType NEVT = MVT::getIntegerType(ExcessBits);
// Increment the pointer to the other half.
unsigned IncrementSize = MVT::getSizeInBits(NVT)/8;
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
getIntPtrConstant(IncrementSize));
Hi = DAG.getTruncStore(Ch, Hi, Ptr, N->getSrcValue(),
SVOffset+IncrementSize, NEVT,
isVolatile, MinAlign(Alignment, IncrementSize));
return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
} else {
// Big-endian - high bits are at low addresses. Favor aligned stores at
// the cost of some bit-fiddling.
GetExpandedOp(N->getValue(), Lo, Hi);
MVT::ValueType EVT = N->getStoredVT();
unsigned EBytes = MVT::getStoreSizeInBits(EVT)/8;
unsigned IncrementSize = MVT::getSizeInBits(NVT)/8;
unsigned ExcessBits = (EBytes - IncrementSize)*8;
MVT::ValueType HiVT =
MVT::getIntegerType(MVT::getSizeInBits(EVT)-ExcessBits);
if (ExcessBits < MVT::getSizeInBits(NVT)) {
// Transfer high bits from the top of Lo to the bottom of Hi.
Hi = DAG.getNode(ISD::SHL, NVT, Hi,
DAG.getConstant(MVT::getSizeInBits(NVT) - ExcessBits,
TLI.getShiftAmountTy()));
Hi = DAG.getNode(ISD::OR, NVT, Hi,
DAG.getNode(ISD::SRL, NVT, Lo,
DAG.getConstant(ExcessBits,
TLI.getShiftAmountTy())));
}
// Store both the high bits and maybe some of the low bits.
Hi = DAG.getTruncStore(Ch, Hi, Ptr, N->getSrcValue(),
SVOffset, HiVT, isVolatile, Alignment);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
getIntPtrConstant(IncrementSize));
// Store the lowest ExcessBits bits in the second half.
Lo = DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(),
SVOffset+IncrementSize,
MVT::getIntegerType(ExcessBits),
isVolatile, MinAlign(Alignment, IncrementSize));
return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
}
}