| //===- Reassociate.cpp - Reassociate binary expressions -------------------===// | 
 | // | 
 | // This pass reassociates commutative expressions in an order that is designed | 
 | // to promote better constant propogation, GCSE, LICM, PRE... | 
 | // | 
 | // For example: 4 + (x + 5) -> x + (4 + 5) | 
 | // | 
 | // Note that this pass works best if left shifts have been promoted to explicit | 
 | // multiplies before this pass executes. | 
 | // | 
 | // In the implementation of this algorithm, constants are assigned rank = 0, | 
 | // function arguments are rank = 1, and other values are assigned ranks | 
 | // corresponding to the reverse post order traversal of current function | 
 | // (starting at 2), which effectively gives values in deep loops higher rank | 
 | // than values not in loops. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/BasicBlock.h" | 
 | #include "llvm/iOperators.h" | 
 | #include "llvm/Type.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Constant.h" | 
 | #include "llvm/Support/CFG.h" | 
 | #include "Support/PostOrderIterator.h" | 
 |  | 
 | namespace { | 
 |   class Reassociate : public FunctionPass { | 
 |     map<BasicBlock*, unsigned> RankMap; | 
 |   public: | 
 |     const char *getPassName() const { | 
 |       return "Expression Reassociation"; | 
 |     } | 
 |  | 
 |     bool runOnFunction(Function *F); | 
 |  | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.preservesCFG(); | 
 |     } | 
 |   private: | 
 |     void BuildRankMap(Function *F); | 
 |     unsigned getRank(Value *V); | 
 |     bool ReassociateExpr(BinaryOperator *I); | 
 |     bool ReassociateBB(BasicBlock *BB); | 
 |   }; | 
 | } | 
 |  | 
 | Pass *createReassociatePass() { return new Reassociate(); } | 
 |  | 
 | void Reassociate::BuildRankMap(Function *F) { | 
 |   unsigned i = 1; | 
 |   ReversePostOrderTraversal<Function*> RPOT(F); | 
 |   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), | 
 |          E = RPOT.end(); I != E; ++I) | 
 |     RankMap[*I] = ++i; | 
 | } | 
 |  | 
 | unsigned Reassociate::getRank(Value *V) { | 
 |   if (isa<Argument>(V)) return 1;   // Function argument... | 
 |   if (Instruction *I = dyn_cast<Instruction>(V)) { | 
 |     // If this is an expression, return the MAX(rank(LHS), rank(RHS)) so that we | 
 |     // can reassociate expressions for code motion!  Since we do not recurse for | 
 |     // PHI nodes, we cannot have infinite recursion here, because there cannot | 
 |     // be loops in the value graph (except for PHI nodes). | 
 |     // | 
 |     if (I->getOpcode() == Instruction::PHINode || | 
 |         I->getOpcode() == Instruction::Alloca || | 
 |         I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) || | 
 |         I->hasSideEffects()) | 
 |       return RankMap[I->getParent()]; | 
 |  | 
 |     unsigned Rank = 0; | 
 |     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
 |       Rank = std::max(Rank, getRank(I->getOperand(i))); | 
 |  | 
 |     return Rank; | 
 |   } | 
 |  | 
 |   // Otherwise it's a global or constant, rank 0. | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | // isCommutativeOperator - Return true if the specified instruction is | 
 | // commutative and associative.  If the instruction is not commutative and | 
 | // associative, we can not reorder its operands! | 
 | // | 
 | static inline BinaryOperator *isCommutativeOperator(Instruction *I) { | 
 |   // Floating point operations do not commute! | 
 |   if (I->getType()->isFloatingPoint()) return 0; | 
 |  | 
 |   if (I->getOpcode() == Instruction::Add ||  | 
 |       I->getOpcode() == Instruction::Mul || | 
 |       I->getOpcode() == Instruction::And ||  | 
 |       I->getOpcode() == Instruction::Or  || | 
 |       I->getOpcode() == Instruction::Xor) | 
 |     return cast<BinaryOperator>(I); | 
 |   return 0;     | 
 | } | 
 |  | 
 |  | 
 | bool Reassociate::ReassociateExpr(BinaryOperator *I) { | 
 |   Value *LHS = I->getOperand(0); | 
 |   Value *RHS = I->getOperand(1); | 
 |   unsigned LHSRank = getRank(LHS); | 
 |   unsigned RHSRank = getRank(RHS); | 
 |    | 
 |   bool Changed = false; | 
 |  | 
 |   // Make sure the LHS of the operand always has the greater rank... | 
 |   if (LHSRank < RHSRank) { | 
 |     I->swapOperands(); | 
 |     std::swap(LHS, RHS); | 
 |     std::swap(LHSRank, RHSRank); | 
 |     Changed = true; | 
 |     //cerr << "Transposed: " << I << " Result BB: " << I->getParent(); | 
 |   } | 
 |    | 
 |   // If the LHS is the same operator as the current one is, and if we are the | 
 |   // only expression using it... | 
 |   // | 
 |   if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS)) | 
 |     if (LHSI->getOpcode() == I->getOpcode() && LHSI->use_size() == 1) { | 
 |       // If the rank of our current RHS is less than the rank of the LHS's LHS, | 
 |       // then we reassociate the two instructions... | 
 |       if (RHSRank < getRank(LHSI->getOperand(0))) { | 
 |         unsigned TakeOp = 0; | 
 |         if (BinaryOperator *IOp = dyn_cast<BinaryOperator>(LHSI->getOperand(0))) | 
 |           if (IOp->getOpcode() == LHSI->getOpcode()) | 
 |             TakeOp = 1;   // Hoist out non-tree portion | 
 |  | 
 |         // Convert ((a + 12) + 10) into (a + (12 + 10)) | 
 |         I->setOperand(0, LHSI->getOperand(TakeOp)); | 
 |         LHSI->setOperand(TakeOp, RHS); | 
 |         I->setOperand(1, LHSI); | 
 |  | 
 |         //cerr << "Reassociated: " << I << " Result BB: " << I->getParent(); | 
 |  | 
 |         // Since we modified the RHS instruction, make sure that we recheck it. | 
 |         ReassociateExpr(LHSI); | 
 |         return true; | 
 |       } | 
 |     } | 
 |  | 
 |   return Changed; | 
 | } | 
 |  | 
 |  | 
 | bool Reassociate::ReassociateBB(BasicBlock *BB) { | 
 |   bool Changed = false; | 
 |   for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) { | 
 |     Instruction *Inst = *BI; | 
 |  | 
 |     // If this instruction is a commutative binary operator, and the ranks of | 
 |     // the two operands are sorted incorrectly, fix it now. | 
 |     // | 
 |     if (BinaryOperator *I = isCommutativeOperator(Inst)) { | 
 |       // Make sure that this expression is correctly reassociated with respect | 
 |       // to it's used values... | 
 |       // | 
 |       Changed |= ReassociateExpr(I); | 
 |  | 
 |     } else if (Inst->getOpcode() == Instruction::Sub && | 
 |                Inst->getOperand(0) != Constant::getNullValue(Inst->getType())) { | 
 |       // Convert a subtract into an add and a neg instruction... so that sub | 
 |       // instructions can be commuted with other add instructions... | 
 |       // | 
 |       Instruction *New = BinaryOperator::create(Instruction::Add, | 
 |                                                 Inst->getOperand(0), Inst, | 
 |                                                 Inst->getName()+".add"); | 
 |       // Everyone now refers to the add instruction... | 
 |       Inst->replaceAllUsesWith(New); | 
 |       New->setOperand(1, Inst);        // Except for the add inst itself! | 
 |  | 
 |       BI = BB->getInstList().insert(BI+1, New)-1;  // Add to the basic block... | 
 |       Inst->setOperand(0, Constant::getNullValue(Inst->getType())); | 
 |       Changed = true; | 
 |     } | 
 |   } | 
 |  | 
 |   return Changed; | 
 | } | 
 |  | 
 |  | 
 | bool Reassociate::runOnFunction(Function *F) { | 
 |   // Recalculate the rank map for F | 
 |   BuildRankMap(F); | 
 |  | 
 |   bool Changed = false; | 
 |   for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) | 
 |     Changed |= ReassociateBB(*FI); | 
 |  | 
 |   // We are done with the rank map... | 
 |   RankMap.clear(); | 
 |   return Changed; | 
 | } |