| //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Owen Anderson and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass transforms loops by placing phi nodes at the end of the loops for |
| // all values that are live across the loop boundary. For example, it turns |
| // the left into the right code: |
| // |
| // for (...) for (...) |
| // if (c) if(c) |
| // X1 = ... X1 = ... |
| // else else |
| // X2 = ... X2 = ... |
| // X3 = phi(X1, X2) X3 = phi(X1, X2) |
| // ... = X3 + 4 X4 = phi(X3) |
| // ... = X4 + 4 |
| // |
| // This is still valid LLVM; the extra phi nodes are purely redundant, and will |
| // be trivially eliminated by InstCombine. The major benefit of this |
| // transformation is that it makes many other loop optimizations, such as |
| // LoopUnswitching, simpler. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "lcssa" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Support/CFG.h" |
| #include <algorithm> |
| #include <map> |
| using namespace llvm; |
| |
| STATISTIC(NumLCSSA, "Number of live out of a loop variables"); |
| |
| namespace { |
| struct LCSSA : public FunctionPass { |
| // Cached analysis information for the current function. |
| LoopInfo *LI; |
| DominatorTree *DT; |
| std::vector<BasicBlock*> LoopBlocks; |
| |
| virtual bool runOnFunction(Function &F); |
| bool visitSubloop(Loop* L); |
| void ProcessInstruction(Instruction* Instr, |
| const std::vector<BasicBlock*>& exitBlocks); |
| |
| /// This transformation requires natural loop information & requires that |
| /// loop preheaders be inserted into the CFG. It maintains both of these, |
| /// as well as the CFG. It also requires dominator information. |
| /// |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addRequired<LoopInfo>(); |
| AU.addRequired<DominatorTree>(); |
| } |
| private: |
| SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L); |
| |
| Value *GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst, |
| std::map<DominatorTree::Node*, Value*> &Phis); |
| |
| /// inLoop - returns true if the given block is within the current loop |
| const bool inLoop(BasicBlock* B) { |
| return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); |
| } |
| }; |
| |
| RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); |
| } |
| |
| FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); } |
| const PassInfo *llvm::LCSSAID = X.getPassInfo(); |
| |
| /// runOnFunction - Process all loops in the function, inner-most out. |
| bool LCSSA::runOnFunction(Function &F) { |
| bool changed = false; |
| |
| LI = &getAnalysis<LoopInfo>(); |
| DT = &getAnalysis<DominatorTree>(); |
| |
| for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) |
| changed |= visitSubloop(*I); |
| |
| return changed; |
| } |
| |
| /// visitSubloop - Recursively process all subloops, and then process the given |
| /// loop if it has live-out values. |
| bool LCSSA::visitSubloop(Loop* L) { |
| for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) |
| visitSubloop(*I); |
| |
| // Speed up queries by creating a sorted list of blocks |
| LoopBlocks.clear(); |
| LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); |
| std::sort(LoopBlocks.begin(), LoopBlocks.end()); |
| |
| SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L); |
| |
| // If no values are affected, we can save a lot of work, since we know that |
| // nothing will be changed. |
| if (AffectedValues.empty()) |
| return false; |
| |
| std::vector<BasicBlock*> exitBlocks; |
| L->getExitBlocks(exitBlocks); |
| |
| |
| // Iterate over all affected values for this loop and insert Phi nodes |
| // for them in the appropriate exit blocks |
| |
| for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), |
| E = AffectedValues.end(); I != E; ++I) |
| ProcessInstruction(*I, exitBlocks); |
| |
| assert(L->isLCSSAForm()); |
| |
| return true; |
| } |
| |
| /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, |
| /// eliminate all out-of-loop uses. |
| void LCSSA::ProcessInstruction(Instruction *Instr, |
| const std::vector<BasicBlock*>& exitBlocks) { |
| ++NumLCSSA; // We are applying the transformation |
| |
| // Keep track of the blocks that have the value available already. |
| std::map<DominatorTree::Node*, Value*> Phis; |
| |
| DominatorTree::Node *InstrNode = DT->getNode(Instr->getParent()); |
| |
| // Insert the LCSSA phi's into the exit blocks (dominated by the value), and |
| // add them to the Phi's map. |
| for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(), |
| BBE = exitBlocks.end(); BBI != BBE; ++BBI) { |
| BasicBlock *BB = *BBI; |
| DominatorTree::Node *ExitBBNode = DT->getNode(BB); |
| Value *&Phi = Phis[ExitBBNode]; |
| if (!Phi && InstrNode->dominates(ExitBBNode)) { |
| PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa", |
| BB->begin()); |
| PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB))); |
| |
| // Remember that this phi makes the value alive in this block. |
| Phi = PN; |
| |
| // Add inputs from inside the loop for this PHI. |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) |
| PN->addIncoming(Instr, *PI); |
| } |
| } |
| |
| |
| // Record all uses of Instr outside the loop. We need to rewrite these. The |
| // LCSSA phis won't be included because they use the value in the loop. |
| for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end(); |
| UI != E;) { |
| BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); |
| if (PHINode *P = dyn_cast<PHINode>(*UI)) { |
| unsigned OperandNo = UI.getOperandNo(); |
| UserBB = P->getIncomingBlock(OperandNo/2); |
| } |
| |
| // If the user is in the loop, don't rewrite it! |
| if (UserBB == Instr->getParent() || inLoop(UserBB)) { |
| ++UI; |
| continue; |
| } |
| |
| // Otherwise, patch up uses of the value with the appropriate LCSSA Phi, |
| // inserting PHI nodes into join points where needed. |
| Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis); |
| |
| // Preincrement the iterator to avoid invalidating it when we change the |
| // value. |
| Use &U = UI.getUse(); |
| ++UI; |
| U.set(Val); |
| } |
| } |
| |
| /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that |
| /// are used by instructions outside of it. |
| SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) { |
| |
| // FIXME: For large loops, we may be able to avoid a lot of use-scanning |
| // by using dominance information. In particular, if a block does not |
| // dominate any of the loop exits, then none of the values defined in the |
| // block could be used outside the loop. |
| |
| SetVector<Instruction*> AffectedValues; |
| for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); |
| BB != E; ++BB) { |
| for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; |
| ++UI) { |
| BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); |
| if (PHINode* p = dyn_cast<PHINode>(*UI)) { |
| unsigned OperandNo = UI.getOperandNo(); |
| UserBB = p->getIncomingBlock(OperandNo/2); |
| } |
| |
| if (*BB != UserBB && !inLoop(UserBB)) { |
| AffectedValues.insert(I); |
| break; |
| } |
| } |
| } |
| return AffectedValues; |
| } |
| |
| /// GetValueForBlock - Get the value to use within the specified basic block. |
| /// available values are in Phis. |
| Value *LCSSA::GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst, |
| std::map<DominatorTree::Node*, Value*> &Phis) { |
| // If there is no dominator info for this BB, it is unreachable. |
| if (BB == 0) |
| return UndefValue::get(OrigInst->getType()); |
| |
| // If we have already computed this value, return the previously computed val. |
| Value *&V = Phis[BB]; |
| if (V) return V; |
| |
| DominatorTree::Node *IDom = BB->getIDom(); |
| |
| // Otherwise, there are two cases: we either have to insert a PHI node or we |
| // don't. We need to insert a PHI node if this block is not dominated by one |
| // of the exit nodes from the loop (the loop could have multiple exits, and |
| // though the value defined *inside* the loop dominated all its uses, each |
| // exit by itself may not dominate all the uses). |
| // |
| // The simplest way to check for this condition is by checking to see if the |
| // idom is in the loop. If so, we *know* that none of the exit blocks |
| // dominate this block. Note that we *know* that the block defining the |
| // original instruction is in the idom chain, because if it weren't, then the |
| // original value didn't dominate this use. |
| if (!inLoop(IDom->getBlock())) { |
| // Idom is not in the loop, we must still be "below" the exit block and must |
| // be fully dominated by the value live in the idom. |
| return V = GetValueForBlock(IDom, OrigInst, Phis); |
| } |
| |
| BasicBlock *BBN = BB->getBlock(); |
| |
| // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so |
| // now, then get values to fill in the incoming values for the PHI. |
| PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa", |
| BBN->begin()); |
| PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN))); |
| V = PN; |
| |
| // Fill in the incoming values for the block. |
| for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI) |
| PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI); |
| return PN; |
| } |
| |