| //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that ARM uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARM.h" |
| #include "ARMAddressingModes.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMISelLowering.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "ARMRegisterInfo.h" |
| #include "ARMSubtarget.h" |
| #include "ARMTargetMachine.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instruction.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/GlobalValue.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/ADT/VectorExtras.h" |
| #include "llvm/Support/MathExtras.h" |
| using namespace llvm; |
| |
| static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| |
| ARMTargetLowering::ARMTargetLowering(TargetMachine &TM) |
| : TargetLowering(TM), ARMPCLabelIndex(0) { |
| Subtarget = &TM.getSubtarget<ARMSubtarget>(); |
| |
| if (Subtarget->isTargetDarwin()) { |
| // Uses VFP for Thumb libfuncs if available. |
| if (Subtarget->isThumb() && Subtarget->hasVFP2()) { |
| // Single-precision floating-point arithmetic. |
| setLibcallName(RTLIB::ADD_F32, "__addsf3vfp"); |
| setLibcallName(RTLIB::SUB_F32, "__subsf3vfp"); |
| setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp"); |
| setLibcallName(RTLIB::DIV_F32, "__divsf3vfp"); |
| |
| // Double-precision floating-point arithmetic. |
| setLibcallName(RTLIB::ADD_F64, "__adddf3vfp"); |
| setLibcallName(RTLIB::SUB_F64, "__subdf3vfp"); |
| setLibcallName(RTLIB::MUL_F64, "__muldf3vfp"); |
| setLibcallName(RTLIB::DIV_F64, "__divdf3vfp"); |
| |
| // Single-precision comparisons. |
| setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp"); |
| setLibcallName(RTLIB::UNE_F32, "__nesf2vfp"); |
| setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp"); |
| setLibcallName(RTLIB::OLE_F32, "__lesf2vfp"); |
| setLibcallName(RTLIB::OGE_F32, "__gesf2vfp"); |
| setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp"); |
| setLibcallName(RTLIB::UO_F32, "__unordsf2vfp"); |
| setLibcallName(RTLIB::O_F32, "__unordsf2vfp"); |
| |
| setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); |
| |
| // Double-precision comparisons. |
| setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp"); |
| setLibcallName(RTLIB::UNE_F64, "__nedf2vfp"); |
| setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp"); |
| setLibcallName(RTLIB::OLE_F64, "__ledf2vfp"); |
| setLibcallName(RTLIB::OGE_F64, "__gedf2vfp"); |
| setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp"); |
| setLibcallName(RTLIB::UO_F64, "__unorddf2vfp"); |
| setLibcallName(RTLIB::O_F64, "__unorddf2vfp"); |
| |
| setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); |
| |
| // Floating-point to integer conversions. |
| // i64 conversions are done via library routines even when generating VFP |
| // instructions, so use the same ones. |
| setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp"); |
| setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp"); |
| setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp"); |
| setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp"); |
| |
| // Conversions between floating types. |
| setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp"); |
| setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp"); |
| |
| // Integer to floating-point conversions. |
| // i64 conversions are done via library routines even when generating VFP |
| // instructions, so use the same ones. |
| // FIXME: There appears to be some naming inconsistency in ARM libgcc: |
| // e.g., __floatunsidf vs. __floatunssidfvfp. |
| setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp"); |
| setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp"); |
| } |
| } |
| |
| // These libcalls are not available in 32-bit. |
| setLibcallName(RTLIB::SHL_I128, 0); |
| setLibcallName(RTLIB::SRL_I128, 0); |
| setLibcallName(RTLIB::SRA_I128, 0); |
| |
| if (Subtarget->isThumb()) |
| addRegisterClass(MVT::i32, ARM::tGPRRegisterClass); |
| else |
| addRegisterClass(MVT::i32, ARM::GPRRegisterClass); |
| if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) { |
| addRegisterClass(MVT::f32, ARM::SPRRegisterClass); |
| addRegisterClass(MVT::f64, ARM::DPRRegisterClass); |
| |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| } |
| computeRegisterProperties(); |
| |
| // ARM does not have f32 extending load. |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); |
| |
| // ARM does not have i1 sign extending load. |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| |
| // ARM supports all 4 flavors of integer indexed load / store. |
| for (unsigned im = (unsigned)ISD::PRE_INC; |
| im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { |
| setIndexedLoadAction(im, MVT::i1, Legal); |
| setIndexedLoadAction(im, MVT::i8, Legal); |
| setIndexedLoadAction(im, MVT::i16, Legal); |
| setIndexedLoadAction(im, MVT::i32, Legal); |
| setIndexedStoreAction(im, MVT::i1, Legal); |
| setIndexedStoreAction(im, MVT::i8, Legal); |
| setIndexedStoreAction(im, MVT::i16, Legal); |
| setIndexedStoreAction(im, MVT::i32, Legal); |
| } |
| |
| // i64 operation support. |
| if (Subtarget->isThumb()) { |
| setOperationAction(ISD::MUL, MVT::i64, Expand); |
| setOperationAction(ISD::MULHU, MVT::i32, Expand); |
| setOperationAction(ISD::MULHS, MVT::i32, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); |
| setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); |
| } else { |
| setOperationAction(ISD::MUL, MVT::i64, Expand); |
| setOperationAction(ISD::MULHU, MVT::i32, Expand); |
| if (!Subtarget->hasV6Ops()) |
| setOperationAction(ISD::MULHS, MVT::i32, Expand); |
| } |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRL, MVT::i64, Custom); |
| setOperationAction(ISD::SRA, MVT::i64, Custom); |
| |
| // ARM does not have ROTL. |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| setOperationAction(ISD::CTTZ, MVT::i32, Expand); |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| if (!Subtarget->hasV5TOps() || Subtarget->isThumb()) |
| setOperationAction(ISD::CTLZ, MVT::i32, Expand); |
| |
| // Only ARMv6 has BSWAP. |
| if (!Subtarget->hasV6Ops()) |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| |
| // These are expanded into libcalls. |
| setOperationAction(ISD::SDIV, MVT::i32, Expand); |
| setOperationAction(ISD::UDIV, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| |
| // Support label based line numbers. |
| setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand); |
| setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); |
| |
| setOperationAction(ISD::RET, MVT::Other, Custom); |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); |
| setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand); |
| |
| if (!Subtarget->hasV6Ops()) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); |
| } |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| |
| if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) |
| // Turn f64->i64 into FMRRD, i64 -> f64 to FMDRR iff target supports vfp2. |
| setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom); |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| setOperationAction(ISD::SETCC, MVT::i32, Expand); |
| setOperationAction(ISD::SETCC, MVT::f32, Expand); |
| setOperationAction(ISD::SETCC, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f64, Custom); |
| setOperationAction(ISD::BR_JT, MVT::Other, Custom); |
| |
| // We don't support sin/cos/fmod/copysign/pow |
| setOperationAction(ISD::FSIN, MVT::f64, Expand); |
| setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FREM, MVT::f64, Expand); |
| setOperationAction(ISD::FREM, MVT::f32, Expand); |
| if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) { |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| } |
| setOperationAction(ISD::FPOW, MVT::f64, Expand); |
| setOperationAction(ISD::FPOW, MVT::f32, Expand); |
| |
| // int <-> fp are custom expanded into bit_convert + ARMISD ops. |
| if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) { |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| } |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| // ARMISD::FMRRD - No need to call setTargetDAGCombine |
| setTargetDAGCombine(ISD::ADD); |
| setTargetDAGCombine(ISD::SUB); |
| |
| setStackPointerRegisterToSaveRestore(ARM::SP); |
| setSchedulingPreference(SchedulingForRegPressure); |
| setIfCvtBlockSizeLimit(Subtarget->isThumb() ? 0 : 10); |
| setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2); |
| |
| if (!Subtarget->isThumb()) { |
| // Use branch latency information to determine if-conversion limits. |
| // FIXME: If-converter should use instruction latency of the branch being |
| // eliminated to compute the threshold. For ARMv6, the branch "latency" |
| // varies depending on whether it's dynamically or statically predicted |
| // and on whether the destination is in the prefetch buffer. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| const InstrItineraryData &InstrItins = Subtarget->getInstrItineraryData(); |
| unsigned Latency= InstrItins.getLatency(TII->get(ARM::Bcc).getSchedClass()); |
| if (Latency > 1) { |
| setIfCvtBlockSizeLimit(Latency-1); |
| if (Latency > 2) |
| setIfCvtDupBlockSizeLimit(Latency-2); |
| } else { |
| setIfCvtBlockSizeLimit(10); |
| setIfCvtDupBlockSizeLimit(2); |
| } |
| } |
| |
| maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type |
| // Do not enable CodePlacementOpt for now: it currently runs after the |
| // ARMConstantIslandPass and messes up branch relaxation and placement |
| // of constant islands. |
| // benefitFromCodePlacementOpt = true; |
| } |
| |
| const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return 0; |
| case ARMISD::Wrapper: return "ARMISD::Wrapper"; |
| case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; |
| case ARMISD::CALL: return "ARMISD::CALL"; |
| case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; |
| case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; |
| case ARMISD::tCALL: return "ARMISD::tCALL"; |
| case ARMISD::BRCOND: return "ARMISD::BRCOND"; |
| case ARMISD::BR_JT: return "ARMISD::BR_JT"; |
| case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; |
| case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; |
| case ARMISD::CMP: return "ARMISD::CMP"; |
| case ARMISD::CMPNZ: return "ARMISD::CMPNZ"; |
| case ARMISD::CMPFP: return "ARMISD::CMPFP"; |
| case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; |
| case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; |
| case ARMISD::CMOV: return "ARMISD::CMOV"; |
| case ARMISD::CNEG: return "ARMISD::CNEG"; |
| |
| case ARMISD::FTOSI: return "ARMISD::FTOSI"; |
| case ARMISD::FTOUI: return "ARMISD::FTOUI"; |
| case ARMISD::SITOF: return "ARMISD::SITOF"; |
| case ARMISD::UITOF: return "ARMISD::UITOF"; |
| |
| case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; |
| case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; |
| case ARMISD::RRX: return "ARMISD::RRX"; |
| |
| case ARMISD::FMRRD: return "ARMISD::FMRRD"; |
| case ARMISD::FMDRR: return "ARMISD::FMDRR"; |
| |
| case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lowering Code |
| //===----------------------------------------------------------------------===// |
| |
| /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC |
| static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: assert(0 && "Unknown condition code!"); |
| case ISD::SETNE: return ARMCC::NE; |
| case ISD::SETEQ: return ARMCC::EQ; |
| case ISD::SETGT: return ARMCC::GT; |
| case ISD::SETGE: return ARMCC::GE; |
| case ISD::SETLT: return ARMCC::LT; |
| case ISD::SETLE: return ARMCC::LE; |
| case ISD::SETUGT: return ARMCC::HI; |
| case ISD::SETUGE: return ARMCC::HS; |
| case ISD::SETULT: return ARMCC::LO; |
| case ISD::SETULE: return ARMCC::LS; |
| } |
| } |
| |
| /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It |
| /// returns true if the operands should be inverted to form the proper |
| /// comparison. |
| static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, |
| ARMCC::CondCodes &CondCode2) { |
| bool Invert = false; |
| CondCode2 = ARMCC::AL; |
| switch (CC) { |
| default: assert(0 && "Unknown FP condition!"); |
| case ISD::SETEQ: |
| case ISD::SETOEQ: CondCode = ARMCC::EQ; break; |
| case ISD::SETGT: |
| case ISD::SETOGT: CondCode = ARMCC::GT; break; |
| case ISD::SETGE: |
| case ISD::SETOGE: CondCode = ARMCC::GE; break; |
| case ISD::SETOLT: CondCode = ARMCC::MI; break; |
| case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break; |
| case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; |
| case ISD::SETO: CondCode = ARMCC::VC; break; |
| case ISD::SETUO: CondCode = ARMCC::VS; break; |
| case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; |
| case ISD::SETUGT: CondCode = ARMCC::HI; break; |
| case ISD::SETUGE: CondCode = ARMCC::PL; break; |
| case ISD::SETLT: |
| case ISD::SETULT: CondCode = ARMCC::LT; break; |
| case ISD::SETLE: |
| case ISD::SETULE: CondCode = ARMCC::LE; break; |
| case ISD::SETNE: |
| case ISD::SETUNE: CondCode = ARMCC::NE; break; |
| } |
| return Invert; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Calling Convention Implementation |
| // |
| // The lower operations present on calling convention works on this order: |
| // LowerCALL (virt regs --> phys regs, virt regs --> stack) |
| // LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs) |
| // LowerRET (virt regs --> phys regs) |
| // LowerCALL (phys regs --> virt regs) |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMGenCallingConv.inc" |
| |
| // APCS f64 is in register pairs, possibly split to stack |
| static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State) { |
| static const unsigned HiRegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; |
| static const unsigned LoRegList[] = { ARM::R1, |
| ARM::R2, |
| ARM::R3, |
| ARM::NoRegister }; |
| |
| unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 4); |
| if (Reg == 0) |
| return false; // we didn't handle it |
| |
| unsigned i; |
| for (i = 0; i < 4; ++i) |
| if (HiRegList[i] == Reg) |
| break; |
| |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, MVT::i32, LocInfo)); |
| if (LoRegList[i] != ARM::NoRegister) |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], |
| MVT::i32, LocInfo)); |
| else |
| State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, |
| State.AllocateStack(4, 4), |
| MVT::i32, LocInfo)); |
| return true; // we handled it |
| } |
| |
| // AAPCS f64 is in aligned register pairs |
| static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State) { |
| static const unsigned HiRegList[] = { ARM::R0, ARM::R2 }; |
| static const unsigned LoRegList[] = { ARM::R1, ARM::R3 }; |
| |
| unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2); |
| if (Reg == 0) |
| return false; // we didn't handle it |
| |
| unsigned i; |
| for (i = 0; i < 2; ++i) |
| if (HiRegList[i] == Reg) |
| break; |
| |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, MVT::i32, LocInfo)); |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], |
| MVT::i32, LocInfo)); |
| return true; // we handled it |
| } |
| |
| static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State) { |
| static const unsigned HiRegList[] = { ARM::R0, ARM::R2 }; |
| static const unsigned LoRegList[] = { ARM::R1, ARM::R3 }; |
| |
| unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2); |
| if (Reg == 0) |
| return false; // we didn't handle it |
| |
| unsigned i; |
| for (i = 0; i < 2; ++i) |
| if (HiRegList[i] == Reg) |
| break; |
| |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, MVT::i32, LocInfo)); |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], |
| MVT::i32, LocInfo)); |
| return true; // we handled it |
| } |
| |
| static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State) { |
| return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, |
| State); |
| } |
| |
| /// CCAssignFnForNode - Selects the correct CCAssignFn for a the |
| /// given CallingConvention value. |
| CCAssignFn *ARMTargetLowering::CCAssignFnForNode(unsigned CC, |
| bool Return) const { |
| switch (CC) { |
| default: |
| assert(0 && "Unsupported calling convention"); |
| case CallingConv::C: |
| case CallingConv::Fast: |
| // Use target triple & subtarget features to do actual dispatch. |
| if (Subtarget->isAAPCS_ABI()) { |
| if (Subtarget->hasVFP2() && |
| FloatABIType == FloatABI::Hard) |
| return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); |
| else |
| return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); |
| } else |
| return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); |
| case CallingConv::ARM_AAPCS_VFP: |
| return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); |
| case CallingConv::ARM_AAPCS: |
| return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); |
| case CallingConv::ARM_APCS: |
| return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); |
| } |
| } |
| |
| /// LowerCallResult - Lower the result values of an ISD::CALL into the |
| /// appropriate copies out of appropriate physical registers. This assumes that |
| /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call |
| /// being lowered. The returns a SDNode with the same number of values as the |
| /// ISD::CALL. |
| SDNode *ARMTargetLowering:: |
| LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall, |
| unsigned CallingConv, SelectionDAG &DAG) { |
| |
| DebugLoc dl = TheCall->getDebugLoc(); |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| bool isVarArg = TheCall->isVarArg(); |
| CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs); |
| CCInfo.AnalyzeCallResult(TheCall, |
| CCAssignFnForNode(CallingConv, /* Return*/ true)); |
| |
| SmallVector<SDValue, 8> ResultVals; |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign VA = RVLocs[i]; |
| |
| SDValue Val; |
| if (VA.needsCustom()) { |
| // Handle f64 as custom. |
| SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, |
| InFlag); |
| Chain = Lo.getValue(1); |
| InFlag = Lo.getValue(2); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, |
| InFlag); |
| Chain = Hi.getValue(1); |
| InFlag = Hi.getValue(2); |
| Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi); |
| } else { |
| Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), |
| InFlag); |
| Chain = Val.getValue(1); |
| InFlag = Val.getValue(2); |
| } |
| |
| switch (VA.getLocInfo()) { |
| default: assert(0 && "Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val); |
| break; |
| } |
| |
| ResultVals.push_back(Val); |
| } |
| |
| // Merge everything together with a MERGE_VALUES node. |
| ResultVals.push_back(Chain); |
| return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(), |
| &ResultVals[0], ResultVals.size()).getNode(); |
| } |
| |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified |
| /// by "Src" to address "Dst" of size "Size". Alignment information is |
| /// specified by the specific parameter attribute. The copy will be passed as |
| /// a byval function parameter. |
| /// Sometimes what we are copying is the end of a larger object, the part that |
| /// does not fit in registers. |
| static SDValue |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, |
| ISD::ArgFlagsTy Flags, SelectionDAG &DAG, |
| DebugLoc dl) { |
| SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); |
| return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), |
| /*AlwaysInline=*/false, NULL, 0, NULL, 0); |
| } |
| |
| /// LowerMemOpCallTo - Store the argument to the stack. |
| SDValue |
| ARMTargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG, |
| const SDValue &StackPtr, |
| const CCValAssign &VA, SDValue Chain, |
| SDValue Arg, ISD::ArgFlagsTy Flags) { |
| DebugLoc dl = TheCall->getDebugLoc(); |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); |
| PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); |
| if (Flags.isByVal()) { |
| return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); |
| } |
| return DAG.getStore(Chain, dl, Arg, PtrOff, |
| PseudoSourceValue::getStack(), LocMemOffset); |
| } |
| |
| /// LowerCALL - Lowering a ISD::CALL node into a callseq_start <- |
| /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter |
| /// nodes. |
| SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) { |
| CallSDNode *TheCall = cast<CallSDNode>(Op.getNode()); |
| MVT RetVT = TheCall->getRetValType(0); |
| SDValue Chain = TheCall->getChain(); |
| unsigned CC = TheCall->getCallingConv(); |
| bool isVarArg = TheCall->isVarArg(); |
| SDValue Callee = TheCall->getCallee(); |
| DebugLoc dl = TheCall->getDebugLoc(); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); |
| CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC, /* Return*/ false)); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); |
| |
| SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32); |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| // Walk the register/memloc assignments, inserting copies/loads. In the case |
| // of tail call optimization, arguments are handled later. |
| for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); |
| i != e; |
| ++i, ++realArgIdx) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = TheCall->getArg(realArgIdx); |
| ISD::ArgFlagsTy Flags = TheCall->getArgFlags(realArgIdx); |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: assert(0 && "Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| // f64 is passed in i32 pairs and must be combined |
| if (VA.needsCustom()) { |
| SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1); |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd)); |
| VA = ArgLocs[++i]; // skip ahead to next loc |
| if (VA.isRegLoc()) |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(1))); |
| else { |
| assert(VA.isMemLoc()); |
| if (StackPtr.getNode() == 0) |
| StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); |
| |
| MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA, |
| Chain, fmrrd.getValue(1), |
| Flags)); |
| } |
| } else if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } else { |
| assert(VA.isMemLoc()); |
| if (StackPtr.getNode() == 0) |
| StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); |
| |
| MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA, |
| Chain, Arg, Flags)); |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| bool isDirect = false; |
| bool isARMFunc = false; |
| bool isLocalARMFunc = false; |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| GlobalValue *GV = G->getGlobal(); |
| isDirect = true; |
| bool isExt = (GV->isDeclaration() || GV->hasWeakLinkage() || |
| GV->hasLinkOnceLinkage()); |
| bool isStub = (isExt && Subtarget->isTargetDarwin()) && |
| getTargetMachine().getRelocationModel() != Reloc::Static; |
| isARMFunc = !Subtarget->isThumb() || isStub; |
| // ARM call to a local ARM function is predicable. |
| isLocalARMFunc = !Subtarget->isThumb() && !isExt; |
| // tBX takes a register source operand. |
| if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) { |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex, |
| ARMCP::CPStub, 4); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad(getPointerTy(), dl, |
| DAG.getEntryNode(), CPAddr, NULL, 0); |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); |
| Callee = DAG.getNode(ARMISD::PIC_ADD, dl, |
| getPointerTy(), Callee, PICLabel); |
| } else |
| Callee = DAG.getTargetGlobalAddress(GV, getPointerTy()); |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| isDirect = true; |
| bool isStub = Subtarget->isTargetDarwin() && |
| getTargetMachine().getRelocationModel() != Reloc::Static; |
| isARMFunc = !Subtarget->isThumb() || isStub; |
| // tBX takes a register source operand. |
| const char *Sym = S->getSymbol(); |
| if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) { |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex, |
| ARMCP::CPStub, 4); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad(getPointerTy(), dl, |
| DAG.getEntryNode(), CPAddr, NULL, 0); |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); |
| Callee = DAG.getNode(ARMISD::PIC_ADD, dl, |
| getPointerTy(), Callee, PICLabel); |
| } else |
| Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy()); |
| } |
| |
| // FIXME: handle tail calls differently. |
| unsigned CallOpc; |
| if (Subtarget->isThumb()) { |
| if (!Subtarget->hasV5TOps() && (!isDirect || isARMFunc)) |
| CallOpc = ARMISD::CALL_NOLINK; |
| else |
| CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; |
| } else { |
| CallOpc = (isDirect || Subtarget->hasV5TOps()) |
| ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL) |
| : ARMISD::CALL_NOLINK; |
| } |
| if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb()) { |
| // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK |
| Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| std::vector<SDValue> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| // Returns a chain and a flag for retval copy to use. |
| Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag), |
| &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(0, true), InFlag); |
| if (RetVT != MVT::Other) |
| InFlag = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG), |
| Op.getResNo()); |
| } |
| |
| SDValue ARMTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) { |
| // The chain is always operand #0 |
| SDValue Chain = Op.getOperand(0); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| // CCValAssign - represent the assignment of the return value to a location. |
| SmallVector<CCValAssign, 16> RVLocs; |
| unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); |
| bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); |
| |
| // CCState - Info about the registers and stack slots. |
| CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs); |
| |
| // Analyze return values of ISD::RET. |
| CCInfo.AnalyzeReturn(Op.getNode(), CCAssignFnForNode(CC, /* Return */ true)); |
| |
| // If this is the first return lowered for this function, add |
| // the regs to the liveout set for the function. |
| if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { |
| for (unsigned i = 0; i != RVLocs.size(); ++i) |
| if (RVLocs[i].isRegLoc()) |
| DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); |
| } |
| |
| SDValue Flag; |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0, realRVLocIdx = 0; |
| i != RVLocs.size(); |
| ++i, ++realRVLocIdx) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| // ISD::RET => ret chain, (regnum1,val1), ... |
| // So i*2+1 index only the regnums |
| SDValue Arg = Op.getOperand(realRVLocIdx*2+1); |
| |
| switch (VA.getLocInfo()) { |
| default: assert(0 && "Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is |
| // available. |
| if (VA.needsCustom()) { |
| SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1); |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag); |
| Flag = Chain.getValue(1); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1), |
| Flag); |
| } else |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); |
| |
| // Guarantee that all emitted copies are |
| // stuck together, avoiding something bad. |
| Flag = Chain.getValue(1); |
| } |
| |
| SDValue result; |
| if (Flag.getNode()) |
| result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag); |
| else // Return Void |
| result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain); |
| |
| return result; |
| } |
| |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as |
| // their target countpart wrapped in the ARMISD::Wrapper node. Suppose N is |
| // one of the above mentioned nodes. It has to be wrapped because otherwise |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only |
| // be used to form addressing mode. These wrapped nodes will be selected |
| // into MOVi. |
| static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) { |
| MVT PtrVT = Op.getValueType(); |
| // FIXME there is no actual debug info here |
| DebugLoc dl = Op.getDebugLoc(); |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| SDValue Res; |
| if (CP->isMachineConstantPoolEntry()) |
| Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, |
| CP->getAlignment()); |
| else |
| Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, |
| CP->getAlignment()); |
| return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model |
| SDValue |
| ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG) { |
| DebugLoc dl = GA->getDebugLoc(); |
| MVT PtrVT = getPointerTy(); |
| unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue, |
| PCAdj, "tlsgd", true); |
| SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); |
| Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, NULL, 0); |
| SDValue Chain = Argument.getValue(1); |
| |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); |
| Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); |
| |
| // call __tls_get_addr. |
| ArgListTy Args; |
| ArgListEntry Entry; |
| Entry.Node = Argument; |
| Entry.Ty = (const Type *) Type::Int32Ty; |
| Args.push_back(Entry); |
| // FIXME: is there useful debug info available here? |
| std::pair<SDValue, SDValue> CallResult = |
| LowerCallTo(Chain, (const Type *) Type::Int32Ty, false, false, false, false, |
| CallingConv::C, false, |
| DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl); |
| return CallResult.first; |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "initial exec" or |
| // "local exec" model. |
| SDValue |
| ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG) { |
| GlobalValue *GV = GA->getGlobal(); |
| DebugLoc dl = GA->getDebugLoc(); |
| SDValue Offset; |
| SDValue Chain = DAG.getEntryNode(); |
| MVT PtrVT = getPointerTy(); |
| // Get the Thread Pointer |
| SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); |
| |
| if (GV->isDeclaration()){ |
| // initial exec model |
| unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue, |
| PCAdj, "gottpoff", true); |
| Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); |
| Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0); |
| Chain = Offset.getValue(1); |
| |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); |
| Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); |
| |
| Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0); |
| } else { |
| // local exec model |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff"); |
| Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); |
| Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0); |
| } |
| |
| // The address of the thread local variable is the add of the thread |
| // pointer with the offset of the variable. |
| return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) { |
| // TODO: implement the "local dynamic" model |
| assert(Subtarget->isTargetELF() && |
| "TLS not implemented for non-ELF targets"); |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| // If the relocation model is PIC, use the "General Dynamic" TLS Model, |
| // otherwise use the "Local Exec" TLS Model |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_) |
| return LowerToTLSGeneralDynamicModel(GA, DAG); |
| else |
| return LowerToTLSExecModels(GA, DAG); |
| } |
| |
| SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, |
| SelectionDAG &DAG) { |
| MVT PtrVT = getPointerTy(); |
| DebugLoc dl = Op.getDebugLoc(); |
| GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| if (RelocM == Reloc::PIC_) { |
| bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT"); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), |
| CPAddr, NULL, 0); |
| SDValue Chain = Result.getValue(1); |
| SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); |
| Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT); |
| if (!UseGOTOFF) |
| Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0); |
| return Result; |
| } else { |
| SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0); |
| } |
| } |
| |
| /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol |
| /// even in non-static mode. |
| static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) { |
| // If symbol visibility is hidden, the extra load is not needed if |
| // the symbol is definitely defined in the current translation unit. |
| bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode(); |
| if (GV->hasHiddenVisibility() && (!isDecl && !GV->hasCommonLinkage())) |
| return false; |
| return RelocM != Reloc::Static && (isDecl || GV->isWeakForLinker()); |
| } |
| |
| SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, |
| SelectionDAG &DAG) { |
| MVT PtrVT = getPointerTy(); |
| DebugLoc dl = Op.getDebugLoc(); |
| GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| bool IsIndirect = GVIsIndirectSymbol(GV, RelocM); |
| SDValue CPAddr; |
| if (RelocM == Reloc::Static) |
| CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); |
| else { |
| unsigned PCAdj = (RelocM != Reloc::PIC_) |
| ? 0 : (Subtarget->isThumb() ? 4 : 8); |
| ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr |
| : ARMCP::CPValue; |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex, |
| Kind, PCAdj); |
| CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| } |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| |
| SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0); |
| SDValue Chain = Result.getValue(1); |
| |
| if (RelocM == Reloc::PIC_) { |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); |
| Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); |
| } |
| if (IsIndirect) |
| Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0); |
| |
| return Result; |
| } |
| |
| SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, |
| SelectionDAG &DAG){ |
| assert(Subtarget->isTargetELF() && |
| "GLOBAL OFFSET TABLE not implemented for non-ELF targets"); |
| MVT PtrVT = getPointerTy(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_", |
| ARMPCLabelIndex, |
| ARMCP::CPValue, PCAdj); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0); |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); |
| return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) { |
| MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| DebugLoc dl = Op.getDebugLoc(); |
| switch (IntNo) { |
| default: return SDValue(); // Don't custom lower most intrinsics. |
| case Intrinsic::arm_thread_pointer: |
| return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); |
| case Intrinsic::eh_sjlj_setjmp: |
| SDValue Res = DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, |
| Op.getOperand(1)); |
| return Res; |
| } |
| } |
| |
| static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, |
| unsigned VarArgsFrameIndex) { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| DebugLoc dl = Op.getDebugLoc(); |
| MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| |
| SDValue Root = Op.getOperand(0); |
| DebugLoc dl = Op.getDebugLoc(); |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0; |
| unsigned CC = MF.getFunction()->getCallingConv(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); |
| CCInfo.AnalyzeFormalArguments(Op.getNode(), |
| CCAssignFnForNode(CC, /* Return*/ false)); |
| |
| SmallVector<SDValue, 16> ArgValues; |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| |
| // Arguments stored in registers. |
| if (VA.isRegLoc()) { |
| MVT RegVT = VA.getLocVT(); |
| TargetRegisterClass *RC; |
| if (AFI->isThumbFunction()) |
| RC = ARM::tGPRRegisterClass; |
| else |
| RC = ARM::GPRRegisterClass; |
| |
| if (FloatABIType == FloatABI::Hard) { |
| if (RegVT == MVT::f32) |
| RC = ARM::SPRRegisterClass; |
| else if (RegVT == MVT::f64) |
| RC = ARM::DPRRegisterClass; |
| } else if (RegVT == MVT::f64) { |
| // f64 is passed in pairs of GPRs and must be combined. |
| RegVT = MVT::i32; |
| } else if (!((RegVT == MVT::i32) || (RegVT == MVT::f32))) |
| assert(0 && "RegVT not supported by FORMAL_ARGUMENTS Lowering"); |
| |
| // Transform the arguments stored in physical registers into virtual ones. |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT); |
| |
| // f64 is passed in i32 pairs and must be combined. |
| if (VA.needsCustom()) { |
| SDValue ArgValue2; |
| |
| VA = ArgLocs[++i]; // skip ahead to next loc |
| if (VA.isMemLoc()) { |
| // must be APCS to split like this |
| unsigned ArgSize = VA.getLocVT().getSizeInBits()/8; |
| int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset()); |
| |
| // Create load node to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, NULL, 0); |
| } else { |
| Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); |
| } |
| |
| ArgValue = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, |
| ArgValue, ArgValue2); |
| } |
| |
| // If this is an 8 or 16-bit value, it is really passed promoted |
| // to 32 bits. Insert an assert[sz]ext to capture this, then |
| // truncate to the right size. |
| switch (VA.getLocInfo()) { |
| default: assert(0 && "Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::SExt: |
| ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::ZExt: |
| ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| break; |
| } |
| |
| ArgValues.push_back(ArgValue); |
| |
| } else { // VA.isRegLoc() |
| |
| // sanity check |
| assert(VA.isMemLoc()); |
| assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); |
| |
| unsigned ArgSize = VA.getLocVT().getSizeInBits()/8; |
| int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset()); |
| |
| // Create load nodes to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0)); |
| } |
| } |
| |
| // varargs |
| if (isVarArg) { |
| static const unsigned GPRArgRegs[] = { |
| ARM::R0, ARM::R1, ARM::R2, ARM::R3 |
| }; |
| |
| unsigned NumGPRs = CCInfo.getFirstUnallocated |
| (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0])); |
| |
| unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); |
| unsigned VARegSize = (4 - NumGPRs) * 4; |
| unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1); |
| unsigned ArgOffset = 0; |
| if (VARegSaveSize) { |
| // If this function is vararg, store any remaining integer argument regs |
| // to their spots on the stack so that they may be loaded by deferencing |
| // the result of va_next. |
| AFI->setVarArgsRegSaveSize(VARegSaveSize); |
| ArgOffset = CCInfo.getNextStackOffset(); |
| VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset + |
| VARegSaveSize - VARegSize); |
| SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); |
| |
| SmallVector<SDValue, 4> MemOps; |
| for (; NumGPRs < 4; ++NumGPRs) { |
| TargetRegisterClass *RC; |
| if (AFI->isThumbFunction()) |
| RC = ARM::tGPRRegisterClass; |
| else |
| RC = ARM::GPRRegisterClass; |
| |
| unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC); |
| SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32); |
| SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0); |
| MemOps.push_back(Store); |
| FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, |
| DAG.getConstant(4, getPointerTy())); |
| } |
| if (!MemOps.empty()) |
| Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOps[0], MemOps.size()); |
| } else |
| // This will point to the next argument passed via stack. |
| VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); |
| } |
| |
| ArgValues.push_back(Root); |
| |
| // Return the new list of results. |
| return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(), |
| &ArgValues[0], ArgValues.size()).getValue(Op.getResNo()); |
| } |
| |
| /// isFloatingPointZero - Return true if this is +0.0. |
| static bool isFloatingPointZero(SDValue Op) { |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) |
| return CFP->getValueAPF().isPosZero(); |
| else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { |
| // Maybe this has already been legalized into the constant pool? |
| if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { |
| SDValue WrapperOp = Op.getOperand(1).getOperand(0); |
| if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp)) |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) |
| return CFP->getValueAPF().isPosZero(); |
| } |
| } |
| return false; |
| } |
| |
| static bool isLegalCmpImmediate(unsigned C, bool isThumb) { |
| return ( isThumb && (C & ~255U) == 0) || |
| (!isThumb && ARM_AM::getSOImmVal(C) != -1); |
| } |
| |
| /// Returns appropriate ARM CMP (cmp) and corresponding condition code for |
| /// the given operands. |
| static SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| SDValue &ARMCC, SelectionDAG &DAG, bool isThumb, |
| DebugLoc dl) { |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { |
| unsigned C = RHSC->getZExtValue(); |
| if (!isLegalCmpImmediate(C, isThumb)) { |
| // Constant does not fit, try adjusting it by one? |
| switch (CC) { |
| default: break; |
| case ISD::SETLT: |
| case ISD::SETGE: |
| if (isLegalCmpImmediate(C-1, isThumb)) { |
| CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; |
| RHS = DAG.getConstant(C-1, MVT::i32); |
| } |
| break; |
| case ISD::SETULT: |
| case ISD::SETUGE: |
| if (C > 0 && isLegalCmpImmediate(C-1, isThumb)) { |
| CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; |
| RHS = DAG.getConstant(C-1, MVT::i32); |
| } |
| break; |
| case ISD::SETLE: |
| case ISD::SETGT: |
| if (isLegalCmpImmediate(C+1, isThumb)) { |
| CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; |
| RHS = DAG.getConstant(C+1, MVT::i32); |
| } |
| break; |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb)) { |
| CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
| RHS = DAG.getConstant(C+1, MVT::i32); |
| } |
| break; |
| } |
| } |
| } |
| |
| ARMCC::CondCodes CondCode = IntCCToARMCC(CC); |
| ARMISD::NodeType CompareType; |
| switch (CondCode) { |
| default: |
| CompareType = ARMISD::CMP; |
| break; |
| case ARMCC::EQ: |
| case ARMCC::NE: |
| case ARMCC::MI: |
| case ARMCC::PL: |
| // Uses only N and Z Flags |
| CompareType = ARMISD::CMPNZ; |
| break; |
| } |
| ARMCC = DAG.getConstant(CondCode, MVT::i32); |
| return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS); |
| } |
| |
| /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. |
| static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, |
| DebugLoc dl) { |
| SDValue Cmp; |
| if (!isFloatingPointZero(RHS)) |
| Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS); |
| else |
| Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS); |
| return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp); |
| } |
| |
| static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| MVT VT = Op.getValueType(); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| SDValue TrueVal = Op.getOperand(2); |
| SDValue FalseVal = Op.getOperand(3); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (LHS.getValueType() == MVT::i32) { |
| SDValue ARMCC; |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb(), dl); |
| return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp); |
| } |
| |
| ARMCC::CondCodes CondCode, CondCode2; |
| if (FPCCToARMCC(CC, CondCode, CondCode2)) |
| std::swap(TrueVal, FalseVal); |
| |
| SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); |
| SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, |
| ARMCC, CCR, Cmp); |
| if (CondCode2 != ARMCC::AL) { |
| SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32); |
| // FIXME: Needs another CMP because flag can have but one use. |
| SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); |
| Result = DAG.getNode(ARMISD::CMOV, dl, VT, |
| Result, TrueVal, ARMCC2, CCR, Cmp2); |
| } |
| return Result; |
| } |
| |
| static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| SDValue Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (LHS.getValueType() == MVT::i32) { |
| SDValue ARMCC; |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb(), dl); |
| return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, |
| Chain, Dest, ARMCC, CCR,Cmp); |
| } |
| |
| assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); |
| ARMCC::CondCodes CondCode, CondCode2; |
| if (FPCCToARMCC(CC, CondCode, CondCode2)) |
| // Swap the LHS/RHS of the comparison if needed. |
| std::swap(LHS, RHS); |
| |
| SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); |
| SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp }; |
| SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); |
| if (CondCode2 != ARMCC::AL) { |
| ARMCC = DAG.getConstant(CondCode2, MVT::i32); |
| SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) }; |
| Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); |
| } |
| return Res; |
| } |
| |
| SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Table = Op.getOperand(1); |
| SDValue Index = Op.getOperand(2); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| MVT PTy = getPointerTy(); |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); |
| ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>(); |
| SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy); |
| SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); |
| Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId); |
| Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy)); |
| SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); |
| bool isPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_; |
| Addr = DAG.getLoad(isPIC ? (MVT)MVT::i32 : PTy, dl, |
| Chain, Addr, NULL, 0); |
| Chain = Addr.getValue(1); |
| if (isPIC) |
| Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table); |
| return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); |
| } |
| |
| static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Opc = |
| Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI; |
| Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0)); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); |
| } |
| |
| static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) { |
| MVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Opc = |
| Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF; |
| |
| Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0)); |
| return DAG.getNode(Opc, dl, VT, Op); |
| } |
| |
| static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { |
| // Implement fcopysign with a fabs and a conditional fneg. |
| SDValue Tmp0 = Op.getOperand(0); |
| SDValue Tmp1 = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| MVT VT = Op.getValueType(); |
| MVT SrcVT = Tmp1.getValueType(); |
| SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0); |
| SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl); |
| SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp); |
| } |
| |
| SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) { |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI->setFrameAddressIsTaken(true); |
| MVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin()) |
| ? ARM::R7 : ARM::R11; |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); |
| while (Depth--) |
| FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0); |
| return FrameAddr; |
| } |
| |
| SDValue |
| ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl, |
| SDValue Chain, |
| SDValue Dst, SDValue Src, |
| SDValue Size, unsigned Align, |
| bool AlwaysInline, |
| const Value *DstSV, uint64_t DstSVOff, |
| const Value *SrcSV, uint64_t SrcSVOff){ |
| // Do repeated 4-byte loads and stores. To be improved. |
| // This requires 4-byte alignment. |
| if ((Align & 3) != 0) |
| return SDValue(); |
| // This requires the copy size to be a constant, preferrably |
| // within a subtarget-specific limit. |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (!ConstantSize) |
| return SDValue(); |
| uint64_t SizeVal = ConstantSize->getZExtValue(); |
| if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold()) |
| return SDValue(); |
| |
| unsigned BytesLeft = SizeVal & 3; |
| unsigned NumMemOps = SizeVal >> 2; |
| unsigned EmittedNumMemOps = 0; |
| MVT VT = MVT::i32; |
| unsigned VTSize = 4; |
| unsigned i = 0; |
| const unsigned MAX_LOADS_IN_LDM = 6; |
| SDValue TFOps[MAX_LOADS_IN_LDM]; |
| SDValue Loads[MAX_LOADS_IN_LDM]; |
| uint64_t SrcOff = 0, DstOff = 0; |
| |
| // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the |
| // same number of stores. The loads and stores will get combined into |
| // ldm/stm later on. |
| while (EmittedNumMemOps < NumMemOps) { |
| for (i = 0; |
| i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) { |
| Loads[i] = DAG.getLoad(VT, dl, Chain, |
| DAG.getNode(ISD::ADD, dl, MVT::i32, Src, |
| DAG.getConstant(SrcOff, MVT::i32)), |
| SrcSV, SrcSVOff + SrcOff); |
| TFOps[i] = Loads[i].getValue(1); |
| SrcOff += VTSize; |
| } |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i); |
| |
| for (i = 0; |
| i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) { |
| TFOps[i] = DAG.getStore(Chain, dl, Loads[i], |
| DAG.getNode(ISD::ADD, dl, MVT::i32, Dst, |
| DAG.getConstant(DstOff, MVT::i32)), |
| DstSV, DstSVOff + DstOff); |
| DstOff += VTSize; |
| } |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i); |
| |
| EmittedNumMemOps += i; |
| } |
| |
| if (BytesLeft == 0) |
| return Chain; |
| |
| // Issue loads / stores for the trailing (1 - 3) bytes. |
| unsigned BytesLeftSave = BytesLeft; |
| i = 0; |
| while (BytesLeft) { |
| if (BytesLeft >= 2) { |
| VT = MVT::i16; |
| VTSize = 2; |
| } else { |
| VT = MVT::i8; |
| VTSize = 1; |
| } |
| |
| Loads[i] = DAG.getLoad(VT, dl, Chain, |
| DAG.getNode(ISD::ADD, dl, MVT::i32, Src, |
| DAG.getConstant(SrcOff, MVT::i32)), |
| SrcSV, SrcSVOff + SrcOff); |
| TFOps[i] = Loads[i].getValue(1); |
| ++i; |
| SrcOff += VTSize; |
| BytesLeft -= VTSize; |
| } |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i); |
| |
| i = 0; |
| BytesLeft = BytesLeftSave; |
| while (BytesLeft) { |
| if (BytesLeft >= 2) { |
| VT = MVT::i16; |
| VTSize = 2; |
| } else { |
| VT = MVT::i8; |
| VTSize = 1; |
| } |
| |
| TFOps[i] = DAG.getStore(Chain, dl, Loads[i], |
| DAG.getNode(ISD::ADD, dl, MVT::i32, Dst, |
| DAG.getConstant(DstOff, MVT::i32)), |
| DstSV, DstSVOff + DstOff); |
| ++i; |
| DstOff += VTSize; |
| BytesLeft -= VTSize; |
| } |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i); |
| } |
| |
| static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) { |
| SDValue Op = N->getOperand(0); |
| DebugLoc dl = N->getDebugLoc(); |
| if (N->getValueType(0) == MVT::f64) { |
| // Turn i64->f64 into FMDRR. |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, |
| DAG.getConstant(0, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, |
| DAG.getConstant(1, MVT::i32)); |
| return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi); |
| } |
| |
| // Turn f64->i64 into FMRRD. |
| SDValue Cvt = DAG.getNode(ARMISD::FMRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), &Op, 1); |
| |
| // Merge the pieces into a single i64 value. |
| return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); |
| } |
| |
| static SDValue ExpandSRx(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { |
| assert(N->getValueType(0) == MVT::i64 && |
| (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && |
| "Unknown shift to lower!"); |
| |
| // We only lower SRA, SRL of 1 here, all others use generic lowering. |
| if (!isa<ConstantSDNode>(N->getOperand(1)) || |
| cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1) |
| return SDValue(); |
| |
| // If we are in thumb mode, we don't have RRX. |
| if (ST->isThumb()) return SDValue(); |
| |
| // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. |
| DebugLoc dl = N->getDebugLoc(); |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), |
| DAG.getConstant(0, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), |
| DAG.getConstant(1, MVT::i32)); |
| |
| // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and |
| // captures the result into a carry flag. |
| unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; |
| Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1); |
| |
| // The low part is an ARMISD::RRX operand, which shifts the carry in. |
| Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); |
| |
| // Merge the pieces into a single i64 value. |
| return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); |
| } |
| |
| SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { |
| switch (Op.getOpcode()) { |
| default: assert(0 && "Don't know how to custom lower this!"); abort(); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::GlobalAddress: |
| return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) : |
| LowerGlobalAddressELF(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::CALL: return LowerCALL(Op, DAG); |
| case ISD::RET: return LowerRET(Op, DAG); |
| case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, Subtarget); |
| case ISD::BR_CC: return LowerBR_CC(Op, DAG, Subtarget); |
| case ISD::BR_JT: return LowerBR_JT(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex); |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); |
| case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); |
| case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); |
| case ISD::RETURNADDR: break; |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::BIT_CONVERT: return ExpandBIT_CONVERT(Op.getNode(), DAG); |
| case ISD::SRL: |
| case ISD::SRA: return ExpandSRx(Op.getNode(), DAG,Subtarget); |
| } |
| return SDValue(); |
| } |
| |
| /// ReplaceNodeResults - Replace the results of node with an illegal result |
| /// type with new values built out of custom code. |
| void ARMTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG) { |
| switch (N->getOpcode()) { |
| default: |
| assert(0 && "Don't know how to custom expand this!"); |
| return; |
| case ISD::BIT_CONVERT: |
| Results.push_back(ExpandBIT_CONVERT(N, DAG)); |
| return; |
| case ISD::SRL: |
| case ISD::SRA: { |
| SDValue Res = ExpandSRx(N, DAG, Subtarget); |
| if (Res.getNode()) |
| Results.push_back(Res); |
| return; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Scheduler Hooks |
| //===----------------------------------------------------------------------===// |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *BB) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| switch (MI->getOpcode()) { |
| default: assert(false && "Unexpected instr type to insert"); |
| case ARM::tMOVCCr: { |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB) |
| .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg()); |
| F->insert(It, copy0MBB); |
| F->insert(It, sinkMBB); |
| // Update machine-CFG edges by first adding all successors of the current |
| // block to the new block which will contain the Phi node for the select. |
| for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), |
| e = BB->succ_end(); i != e; ++i) |
| sinkMBB->addSuccessor(*i); |
| // Next, remove all successors of the current block, and add the true |
| // and fallthrough blocks as its successors. |
| while(!BB->succ_empty()) |
| BB->removeSuccessor(BB->succ_begin()); |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| |
| F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. |
| return BB; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| static |
| SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SelectionDAG &DAG = DCI.DAG; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| MVT VT = N->getValueType(0); |
| unsigned Opc = N->getOpcode(); |
| bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC; |
| SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1); |
| SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2); |
| ISD::CondCode CC = ISD::SETCC_INVALID; |
| |
| if (isSlctCC) { |
| CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get(); |
| } else { |
| SDValue CCOp = Slct.getOperand(0); |
| if (CCOp.getOpcode() == ISD::SETCC) |
| CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get(); |
| } |
| |
| bool DoXform = false; |
| bool InvCC = false; |
| assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) && |
| "Bad input!"); |
| |
| if (LHS.getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(LHS)->isNullValue()) { |
| DoXform = true; |
| } else if (CC != ISD::SETCC_INVALID && |
| RHS.getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(RHS)->isNullValue()) { |
| std::swap(LHS, RHS); |
| SDValue Op0 = Slct.getOperand(0); |
| MVT OpVT = isSlctCC ? Op0.getValueType() : |
| Op0.getOperand(0).getValueType(); |
| bool isInt = OpVT.isInteger(); |
| CC = ISD::getSetCCInverse(CC, isInt); |
| |
| if (!TLI.isCondCodeLegal(CC, OpVT)) |
| return SDValue(); // Inverse operator isn't legal. |
| |
| DoXform = true; |
| InvCC = true; |
| } |
| |
| if (DoXform) { |
| SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS); |
| if (isSlctCC) |
| return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result, |
| Slct.getOperand(0), Slct.getOperand(1), CC); |
| SDValue CCOp = Slct.getOperand(0); |
| if (InvCC) |
| CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(), |
| CCOp.getOperand(0), CCOp.getOperand(1), CC); |
| return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT, |
| CCOp, OtherOp, Result); |
| } |
| return SDValue(); |
| } |
| |
| /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. |
| static SDValue PerformADDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // added by evan in r37685 with no testcase. |
| SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); |
| |
| // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) |
| if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) { |
| SDValue Result = combineSelectAndUse(N, N0, N1, DCI); |
| if (Result.getNode()) return Result; |
| } |
| if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) { |
| SDValue Result = combineSelectAndUse(N, N1, N0, DCI); |
| if (Result.getNode()) return Result; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. |
| static SDValue PerformSUBCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // added by evan in r37685 with no testcase. |
| SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); |
| |
| // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) |
| if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) { |
| SDValue Result = combineSelectAndUse(N, N1, N0, DCI); |
| if (Result.getNode()) return Result; |
| } |
| |
| return SDValue(); |
| } |
| |
| |
| /// PerformFMRRDCombine - Target-specific dag combine xforms for ARMISD::FMRRD. |
| static SDValue PerformFMRRDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // fmrrd(fmdrr x, y) -> x,y |
| SDValue InDouble = N->getOperand(0); |
| if (InDouble.getOpcode() == ARMISD::FMDRR) |
| return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); |
| return SDValue(); |
| } |
| |
| SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::ADD: return PerformADDCombine(N, DCI); |
| case ISD::SUB: return PerformSUBCombine(N, DCI); |
| case ARMISD::FMRRD: return PerformFMRRDCombine(N, DCI); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// isLegalAddressImmediate - Return true if the integer value can be used |
| /// as the offset of the target addressing mode for load / store of the |
| /// given type. |
| static bool isLegalAddressImmediate(int64_t V, MVT VT, |
| const ARMSubtarget *Subtarget) { |
| if (V == 0) |
| return true; |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| if (Subtarget->isThumb()) { |
| if (V < 0) |
| return false; |
| |
| unsigned Scale = 1; |
| switch (VT.getSimpleVT()) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| // Scale == 1; |
| break; |
| case MVT::i16: |
| // Scale == 2; |
| Scale = 2; |
| break; |
| case MVT::i32: |
| // Scale == 4; |
| Scale = 4; |
| break; |
| } |
| |
| if ((V & (Scale - 1)) != 0) |
| return false; |
| V /= Scale; |
| return V == (V & ((1LL << 5) - 1)); |
| } |
| |
| if (V < 0) |
| V = - V; |
| switch (VT.getSimpleVT()) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i32: |
| // +- imm12 |
| return V == (V & ((1LL << 12) - 1)); |
| case MVT::i16: |
| // +- imm8 |
| return V == (V & ((1LL << 8) - 1)); |
| case MVT::f32: |
| case MVT::f64: |
| if (!Subtarget->hasVFP2()) |
| return false; |
| if ((V & 3) != 0) |
| return false; |
| V >>= 2; |
| return V == (V & ((1LL << 8) - 1)); |
| } |
| } |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM, |
| const Type *Ty) const { |
| MVT VT = getValueType(Ty, true); |
| if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) |
| return false; |
| |
| // Can never fold addr of global into load/store. |
| if (AM.BaseGV) |
| return false; |
| |
| switch (AM.Scale) { |
| case 0: // no scale reg, must be "r+i" or "r", or "i". |
| break; |
| case 1: |
| if (Subtarget->isThumb()) |
| return false; |
| // FALL THROUGH. |
| default: |
| // ARM doesn't support any R+R*scale+imm addr modes. |
| if (AM.BaseOffs) |
| return false; |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| int Scale = AM.Scale; |
| switch (VT.getSimpleVT()) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i32: |
| case MVT::i64: |
| // This assumes i64 is legalized to a pair of i32. If not (i.e. |
| // ldrd / strd are used, then its address mode is same as i16. |
| // r + r |
| if (Scale < 0) Scale = -Scale; |
| if (Scale == 1) |
| return true; |
| // r + r << imm |
| return isPowerOf2_32(Scale & ~1); |
| case MVT::i16: |
| // r + r |
| if (((unsigned)AM.HasBaseReg + Scale) <= 2) |
| return true; |
| return false; |
| |
| case MVT::isVoid: |
| // Note, we allow "void" uses (basically, uses that aren't loads or |
| // stores), because arm allows folding a scale into many arithmetic |
| // operations. This should be made more precise and revisited later. |
| |
| // Allow r << imm, but the imm has to be a multiple of two. |
| if (AM.Scale & 1) return false; |
| return isPowerOf2_32(AM.Scale); |
| } |
| break; |
| } |
| return true; |
| } |
| |
| static bool getIndexedAddressParts(SDNode *Ptr, MVT VT, |
| bool isSEXTLoad, SDValue &Base, |
| SDValue &Offset, bool &isInc, |
| SelectionDAG &DAG) { |
| if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) |
| return false; |
| |
| if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { |
| // AddressingMode 3 |
| Base = Ptr->getOperand(0); |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC < 0 && RHSC > -256) { |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); |
| return true; |
| } |
| } |
| isInc = (Ptr->getOpcode() == ISD::ADD); |
| Offset = Ptr->getOperand(1); |
| return true; |
| } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { |
| // AddressingMode 2 |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC < 0 && RHSC > -0x1000) { |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); |
| Base = Ptr->getOperand(0); |
| return true; |
| } |
| } |
| |
| if (Ptr->getOpcode() == ISD::ADD) { |
| isInc = true; |
| ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0)); |
| if (ShOpcVal != ARM_AM::no_shift) { |
| Base = Ptr->getOperand(1); |
| Offset = Ptr->getOperand(0); |
| } else { |
| Base = Ptr->getOperand(0); |
| Offset = Ptr->getOperand(1); |
| } |
| return true; |
| } |
| |
| isInc = (Ptr->getOpcode() == ISD::ADD); |
| Base = Ptr->getOperand(0); |
| Offset = Ptr->getOperand(1); |
| return true; |
| } |
| |
| // FIXME: Use FLDM / FSTM to emulate indexed FP load / store. |
| return false; |
| } |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| bool |
| ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| if (Subtarget->isThumb()) |
| return false; |
| |
| MVT VT; |
| SDValue Ptr; |
| bool isSEXTLoad = false; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| Ptr = LD->getBasePtr(); |
| VT = LD->getMemoryVT(); |
| isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| Ptr = ST->getBasePtr(); |
| VT = ST->getMemoryVT(); |
| } else |
| return false; |
| |
| bool isInc; |
| bool isLegal = getIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, Offset, |
| isInc, DAG); |
| if (isLegal) { |
| AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; |
| return true; |
| } |
| return false; |
| } |
| |
| /// getPostIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if this node can be |
| /// combined with a load / store to form a post-indexed load / store. |
| bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, |
| SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| if (Subtarget->isThumb()) |
| return false; |
| |
| MVT VT; |
| SDValue Ptr; |
| bool isSEXTLoad = false; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| VT = LD->getMemoryVT(); |
| isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| VT = ST->getMemoryVT(); |
| } else |
| return false; |
| |
| bool isInc; |
| bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, |
| isInc, DAG); |
| if (isLegal) { |
| AM = isInc ? ISD::POST_INC : ISD::POST_DEC; |
| return true; |
| } |
| return false; |
| } |
| |
| void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, |
| const APInt &Mask, |
| APInt &KnownZero, |
| APInt &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); |
| switch (Op.getOpcode()) { |
| default: break; |
| case ARMISD::CMOV: { |
| // Bits are known zero/one if known on the LHS and RHS. |
| DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| if (KnownZero == 0 && KnownOne == 0) return; |
| |
| APInt KnownZeroRHS, KnownOneRHS; |
| DAG.ComputeMaskedBits(Op.getOperand(1), Mask, |
| KnownZeroRHS, KnownOneRHS, Depth+1); |
| KnownZero &= KnownZeroRHS; |
| KnownOne &= KnownOneRHS; |
| return; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| ARMTargetLowering::ConstraintType |
| ARMTargetLowering::getConstraintType(const std::string &Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 'l': return C_RegisterClass; |
| case 'w': return C_RegisterClass; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, |
| MVT VT) const { |
| if (Constraint.size() == 1) { |
| // GCC RS6000 Constraint Letters |
| switch (Constraint[0]) { |
| case 'l': |
| if (Subtarget->isThumb()) |
| return std::make_pair(0U, ARM::tGPRRegisterClass); |
| else |
| return std::make_pair(0U, ARM::GPRRegisterClass); |
| case 'r': |
| return std::make_pair(0U, ARM::GPRRegisterClass); |
| case 'w': |
| if (VT == MVT::f32) |
| return std::make_pair(0U, ARM::SPRRegisterClass); |
| if (VT == MVT::f64) |
| return std::make_pair(0U, ARM::DPRRegisterClass); |
| break; |
| } |
| } |
| return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| } |
| |
| std::vector<unsigned> ARMTargetLowering:: |
| getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| MVT VT) const { |
| if (Constraint.size() != 1) |
| return std::vector<unsigned>(); |
| |
| switch (Constraint[0]) { // GCC ARM Constraint Letters |
| default: break; |
| case 'l': |
| return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3, |
| ARM::R4, ARM::R5, ARM::R6, ARM::R7, |
| 0); |
| case 'r': |
| return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3, |
| ARM::R4, ARM::R5, ARM::R6, ARM::R7, |
| ARM::R8, ARM::R9, ARM::R10, ARM::R11, |
| ARM::R12, ARM::LR, 0); |
| case 'w': |
| if (VT == MVT::f32) |
| return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3, |
| ARM::S4, ARM::S5, ARM::S6, ARM::S7, |
| ARM::S8, ARM::S9, ARM::S10, ARM::S11, |
| ARM::S12,ARM::S13,ARM::S14,ARM::S15, |
| ARM::S16,ARM::S17,ARM::S18,ARM::S19, |
| ARM::S20,ARM::S21,ARM::S22,ARM::S23, |
| ARM::S24,ARM::S25,ARM::S26,ARM::S27, |
| ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0); |
| if (VT == MVT::f64) |
| return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3, |
| ARM::D4, ARM::D5, ARM::D6, ARM::D7, |
| ARM::D8, ARM::D9, ARM::D10,ARM::D11, |
| ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0); |
| break; |
| } |
| |
| return std::vector<unsigned>(); |
| } |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| char Constraint, |
| bool hasMemory, |
| std::vector<SDValue>&Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result(0, 0); |
| |
| switch (Constraint) { |
| default: break; |
| case 'I': case 'J': case 'K': case 'L': |
| case 'M': case 'N': case 'O': |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| if (!C) |
| return; |
| |
| int64_t CVal64 = C->getSExtValue(); |
| int CVal = (int) CVal64; |
| // None of these constraints allow values larger than 32 bits. Check |
| // that the value fits in an int. |
| if (CVal != CVal64) |
| return; |
| |
| switch (Constraint) { |
| case 'I': |
| if (Subtarget->isThumb()) { |
| // This must be a constant between 0 and 255, for ADD immediates. |
| if (CVal >= 0 && CVal <= 255) |
| break; |
| } else { |
| // A constant that can be used as an immediate value in a |
| // data-processing instruction. |
| if (ARM_AM::getSOImmVal(CVal) != -1) |
| break; |
| } |
| return; |
| |
| case 'J': |
| if (Subtarget->isThumb()) { |
| // This must be a constant between -255 and -1, for negated ADD |
| // immediates. This can be used in GCC with an "n" modifier that |
| // prints the negated value, for use with SUB instructions. It is |
| // not useful otherwise but is implemented for compatibility. |
| if (CVal >= -255 && CVal <= -1) |
| break; |
| } else { |
| // This must be a constant between -4095 and 4095. It is not clear |
| // what this constraint is intended for. Implemented for |
| // compatibility with GCC. |
| if (CVal >= -4095 && CVal <= 4095) |
| break; |
| } |
| return; |
| |
| case 'K': |
| if (Subtarget->isThumb()) { |
| // A 32-bit value where only one byte has a nonzero value. Exclude |
| // zero to match GCC. This constraint is used by GCC internally for |
| // constants that can be loaded with a move/shift combination. |
| // It is not useful otherwise but is implemented for compatibility. |
| if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) |
| break; |
| } else { |
| // A constant whose bitwise inverse can be used as an immediate |
| // value in a data-processing instruction. This can be used in GCC |
| // with a "B" modifier that prints the inverted value, for use with |
| // BIC and MVN instructions. It is not useful otherwise but is |
| // implemented for compatibility. |
| if (ARM_AM::getSOImmVal(~CVal) != -1) |
| break; |
| } |
| return; |
| |
| case 'L': |
| if (Subtarget->isThumb()) { |
| // This must be a constant between -7 and 7, |
| // for 3-operand ADD/SUB immediate instructions. |
| if (CVal >= -7 && CVal < 7) |
| break; |
| } else { |
| // A constant whose negation can be used as an immediate value in a |
| // data-processing instruction. This can be used in GCC with an "n" |
| // modifier that prints the negated value, for use with SUB |
| // instructions. It is not useful otherwise but is implemented for |
| // compatibility. |
| if (ARM_AM::getSOImmVal(-CVal) != -1) |
| break; |
| } |
| return; |
| |
| case 'M': |
| if (Subtarget->isThumb()) { |
| // This must be a multiple of 4 between 0 and 1020, for |
| // ADD sp + immediate. |
| if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) |
| break; |
| } else { |
| // A power of two or a constant between 0 and 32. This is used in |
| // GCC for the shift amount on shifted register operands, but it is |
| // useful in general for any shift amounts. |
| if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) |
| break; |
| } |
| return; |
| |
| case 'N': |
| if (Subtarget->isThumb()) { |
| // This must be a constant between 0 and 31, for shift amounts. |
| if (CVal >= 0 && CVal <= 31) |
| break; |
| } |
| return; |
| |
| case 'O': |
| if (Subtarget->isThumb()) { |
| // This must be a multiple of 4 between -508 and 508, for |
| // ADD/SUB sp = sp + immediate. |
| if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) |
| break; |
| } |
| return; |
| } |
| Result = DAG.getTargetConstant(CVal, Op.getValueType()); |
| break; |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory, |
| Ops, DAG); |
| } |