| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> | 
 | <html><head><title>LLVM Programmer's Manual</title></head> | 
 |  | 
 | <body bgcolor=white> | 
 |  | 
 | <table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td>  <font size=+3 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Programmer's Manual</b></font></td> | 
 | </tr></table> | 
 |   | 
 | <ol> | 
 |   <li><a href="#introduction">Introduction</a> | 
 |   <li><a href="#general">General Information</a> | 
 |   <ul> | 
 |     <li><a href="#stl">The C++ Standard Template Library</a> | 
 | <!-- | 
 |     <li>The <tt>-time-passes</tt> option | 
 |     <li>How to use the LLVM Makefile system | 
 |     <li>How to write a regression test | 
 | --> | 
 |   </ul> | 
 |   <li><a href="#apis">Important and useful LLVM APIs</a> | 
 |   <ul> | 
 |     <li><a href="#isa">The <tt>isa<></tt>, <tt>cast<></tt> and | 
 |                        <tt>dyn_cast<></tt> templates</a> | 
 |     <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro & | 
 |                        <tt>-debug</tt> option</a> | 
 |     <li><a href="#Statistic">The <tt>Statistic</tt> template & | 
 |                        <tt>-stats</tt> option</a> | 
 | <!-- | 
 |     <li>The <tt>InstVisitor</tt> template | 
 |     <li>The general graph API | 
 | --> | 
 |   </ul> | 
 |   <li><a href="#common">Helpful Hints for Common Operations</a> | 
 |   <ul> | 
 |     <li><a href="#inspection">Basic Inspection and Traversal Routines</a> | 
 |     <ul> | 
 |       <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s | 
 |                                        in a <tt>Function</tt></a> | 
 |       <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s | 
 |                                        in a <tt>BasicBlock</tt></a> | 
 |       <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s | 
 |                                        in a <tt>Function</tt></a> | 
 |       <li><a href="#iterate_convert">Turning an iterator into a class | 
 |                                         pointer</a> | 
 |       <li><a href="#iterate_complex">Finding call sites: a more complex | 
 |                                         example</a> | 
 |       <li><a href="#iterate_chains">Iterating over def-use & use-def | 
 |                                     chains</a> | 
 |     </ul> | 
 |     <li><a href="#simplechanges">Making simple changes</a> | 
 |     <ul> | 
 |       <li><a href="#schanges_creating">Creating and inserting new | 
 | 		  <tt>Instruction</tt>s</a> | 
 |       <li><a href="#schanges_deleting">Deleting | 
 | 		  <tt>Instruction</tt>s</a>  | 
 |       <li><a href="#schanges_replacing">Replacing an | 
 | 		  <tt>Instruction</tt> with another <tt>Value</tt></a> | 
 |     </ul> | 
 | <!-- | 
 |     <li>Working with the Control Flow Graph | 
 |     <ul> | 
 |       <li>Accessing predecessors and successors of a <tt>BasicBlock</tt> | 
 |       <li> | 
 |       <li> | 
 |     </ul> | 
 | --> | 
 |   </ul> | 
 |   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a> | 
 |   <ul> | 
 |     <li><a href="#Value">The <tt>Value</tt> class</a> | 
 |     <ul> | 
 |       <li><a href="#User">The <tt>User</tt> class</a> | 
 |       <ul> | 
 |         <li><a href="#Instruction">The <tt>Instruction</tt> class</a> | 
 |         <ul> | 
 |         <li> | 
 |         </ul> | 
 |         <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a> | 
 |         <ul> | 
 |           <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a> | 
 |           <li><a href="#Function">The <tt>Function</tt> class</a> | 
 |           <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a> | 
 |         </ul> | 
 |         <li><a href="#Module">The <tt>Module</tt> class</a> | 
 |         <li><a href="#Constant">The <tt>Constant</tt> class</a> | 
 |         <ul> | 
 |         <li> | 
 |         <li> | 
 |         </ul> | 
 |       </ul> | 
 |       <li><a href="#Type">The <tt>Type</tt> class</a> | 
 |       <li><a href="#Argument">The <tt>Argument</tt> class</a> | 
 |     </ul> | 
 |     <li>The <tt>SymbolTable</tt> class | 
 |     <li>The <tt>ilist</tt> and <tt>iplist</tt> classes | 
 |     <ul> | 
 |       <li>Creating, inserting, moving and deleting from LLVM lists | 
 |     </ul> | 
 |     <li>Important iterator invalidation semantics to be aware of | 
 |   </ul> | 
 |  | 
 |   <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>, | 
 |         <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, and | 
 |       <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a></b><p> | 
 | </ol> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b> | 
 | <a name="introduction">Introduction | 
 | </b></font></td></tr></table><ul> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | This document is meant to highlight some of the important classes and interfaces | 
 | available in the LLVM source-base.  This manual is not intended to explain what | 
 | LLVM is, how it works, and what LLVM code looks like.  It assumes that you know | 
 | the basics of LLVM and are interested in writing transformations or otherwise | 
 | analyzing or manipulating the code.<p> | 
 |  | 
 | This document should get you oriented so that you can find your way in the | 
 | continuously growing source code that makes up the LLVM infrastructure.  Note | 
 | that this manual is not intended to serve as a replacement for reading the | 
 | source code, so if you think there should be a method in one of these classes to | 
 | do something, but it's not listed, check the source.  Links to the <a | 
 | href="/doxygen/">doxygen</a> sources are provided to make this as easy as | 
 | possible.<p> | 
 |  | 
 | The first section of this document describes general information that is useful | 
 | to know when working in the LLVM infrastructure, and the second describes the | 
 | Core LLVM classes.  In the future this manual will be extended with information | 
 | describing how to use extension libraries, such as dominator information, CFG | 
 | traversal routines, and useful utilities like the <tt><a | 
 | href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.<p> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b> | 
 | <a name="general">General Information | 
 | </b></font></td></tr></table><ul> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | This section contains general information that is useful if you are working in | 
 | the LLVM source-base, but that isn't specific to any particular API.<p> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="stl">The C++ Standard Template Library</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | LLVM makes heavy use of the C++ Standard Template Library (STL), perhaps much | 
 | more than you are used to, or have seen before.  Because of this, you might want | 
 | to do a little background reading in the techniques used and capabilities of the | 
 | library.  There are many good pages that discuss the STL, and several books on | 
 | the subject that you can get, so it will not be discussed in this document.<p> | 
 |  | 
 | Here are some useful links:<p> | 
 | <ol> | 
 | <li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ | 
 | Library reference</a> - an excellent reference for the STL and other parts of | 
 | the standard C++ library.<br> | 
 |  | 
 | <li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked | 
 | Questions</a> | 
 |  | 
 | <li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> - | 
 | Contains a useful <a | 
 | href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the | 
 | STL</a>. | 
 |  | 
 | <li><a href="http://www.research.att.com/~bs/C++.html">Bjarne Stroustrup's C++ | 
 | Page</a> | 
 |  | 
 | </ol><p> | 
 |  | 
 | You are also encouraged to take a look at the <a | 
 | href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how | 
 | to write maintainable code more than where to put your curly braces.<p> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b> | 
 | <a name="apis">Important and useful LLVM APIs | 
 | </b></font></td></tr></table><ul> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | Here we highlight some LLVM APIs that are generally useful and good to know | 
 | about when writing transformations.<p> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="isa">The isa<>, cast<> and dyn_cast<> templates</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | The LLVM source-base makes extensive use of a custom form of RTTI.  These | 
 | templates have many similarities to the C++ <tt>dynamic_cast<></tt> | 
 | operator, but they don't have some drawbacks (primarily stemming from the fact | 
 | that <tt>dynamic_cast<></tt> only works on classes that have a v-table). | 
 | Because they are used so often, you must know what they do and how they work. | 
 | All of these templates are defined in the <a | 
 | href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a> file (note | 
 | that you very rarely have to include this file directly).<p> | 
 |  | 
 | <dl> | 
 |  | 
 | <dt><tt>isa<></tt>: | 
 |  | 
 | <dd>The <tt>isa<></tt> operator works exactly like the Java | 
 | "<tt>instanceof</tt>" operator.  It returns true or false depending on whether a | 
 | reference or pointer points to an instance of the specified class.  This can be | 
 | very useful for constraint checking of various sorts (example below).<p> | 
 |  | 
 |  | 
 | <dt><tt>cast<></tt>: | 
 |  | 
 | <dd>The <tt>cast<></tt> operator is a "checked cast" operation.  It | 
 | converts a pointer or reference from a base class to a derived cast, causing an | 
 | assertion failure if it is not really an instance of the right type.  This | 
 | should be used in cases where you have some information that makes you believe | 
 | that something is of the right type.  An example of the <tt>isa<></tt> and | 
 | <tt>cast<></tt> template is:<p> | 
 |  | 
 | <pre> | 
 | static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) { | 
 |   if (isa<<a href="#Constant">Constant</a>>(V) || isa<<a href="#Argument">Argument</a>>(V) || isa<<a href="#GlobalValue">GlobalValue</a>>(V)) | 
 |     return true; | 
 |  | 
 |   <i>// Otherwise, it must be an instruction...</i> | 
 |   return !L->contains(cast<<a href="#Instruction">Instruction</a>>(V)->getParent()); | 
 | </pre><p> | 
 |  | 
 | Note that you should <b>not</b> use an <tt>isa<></tt> test followed by a | 
 | <tt>cast<></tt>, for that use the <tt>dyn_cast<></tt> operator.<p> | 
 |  | 
 |  | 
 | <dt><tt>dyn_cast<></tt>: | 
 |  | 
 | <dd>The <tt>dyn_cast<></tt> operator is a "checking cast" operation.  It | 
 | checks to see if the operand is of the specified type, and if so, returns a | 
 | pointer to it (this operator does not work with references).  If the operand is | 
 | not of the correct type, a null pointer is returned.  Thus, this works very much | 
 | like the <tt>dynamic_cast</tt> operator in C++, and should be used in the same | 
 | circumstances.  Typically, the <tt>dyn_cast<></tt> operator is used in an | 
 | <tt>if</tt> statement or some other flow control statement like this:<p> | 
 |  | 
 | <pre> | 
 |   if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast<<a href="#AllocationInst">AllocationInst</a>>(Val)) { | 
 |     ... | 
 |   } | 
 | </pre><p> | 
 |  | 
 | This form of the <tt>if</tt> statement effectively combines together a call to | 
 | <tt>isa<></tt> and a call to <tt>cast<></tt> into one statement, | 
 | which is very convenient.<p> | 
 |  | 
 | Another common example is:<p> | 
 |  | 
 | <pre> | 
 |   <i>// Loop over all of the phi nodes in a basic block</i> | 
 |   BasicBlock::iterator BBI = BB->begin(); | 
 |   for (; <a href="#PhiNode">PHINode</a> *PN = dyn_cast<<a href="#PHINode">PHINode</a>>(&*BBI); ++BBI) | 
 |     cerr << *PN; | 
 | </pre><p> | 
 |  | 
 | Note that the <tt>dyn_cast<></tt> operator, like C++'s | 
 | <tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused.  In | 
 | particular you should not use big chained <tt>if/then/else</tt> blocks to check | 
 | for lots of different variants of classes.  If you find yourself wanting to do | 
 | this, it is much cleaner and more efficient to use the InstVisitor class to | 
 | dispatch over the instruction type directly.<p> | 
 |  | 
 |  | 
 | <dt><tt>cast_or_null<></tt>: | 
 |  | 
 | <dd>The <tt>cast_or_null<></tt> operator works just like the | 
 | <tt>cast<></tt> operator, except that it allows for a null pointer as an | 
 | argument (which it then propagates).  This can sometimes be useful, allowing you | 
 | to combine several null checks into one.<p> | 
 |  | 
 |  | 
 | <dt><tt>dyn_cast_or_null<></tt>: | 
 |  | 
 | <dd>The <tt>dyn_cast_or_null<></tt> operator works just like the | 
 | <tt>dyn_cast<></tt> operator, except that it allows for a null pointer as | 
 | an argument (which it then propagates).  This can sometimes be useful, allowing | 
 | you to combine several null checks into one.<p> | 
 |  | 
 | </dl> | 
 |  | 
 | These five templates can be used with any classes, whether they have a v-table | 
 | or not.  To add support for these templates, you simply need to add | 
 | <tt>classof</tt> static methods to the class you are interested casting to. | 
 | Describing this is currently outside the scope of this document, but there are | 
 | lots of examples in the LLVM source base.<p> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="DEBUG">The <tt>DEBUG()</tt> macro & <tt>-debug</tt> option</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | Often when working on your pass you will put a bunch of debugging printouts and | 
 | other code into your pass.  After you get it working, you want to remove | 
 | it... but you may need it again in the future (to work out new bugs that you run | 
 | across).<p> | 
 |  | 
 | Naturally, because of this, you don't want to delete the debug printouts, but | 
 | you don't want them to always be noisy.  A standard compromise is to comment | 
 | them out, allowing you to enable them if you need them in the future.<p> | 
 |  | 
 | The "<tt><a | 
 | href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>" | 
 | file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to | 
 | this problem.  Basically, you can put arbitrary code into the argument of the | 
 | <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' is run with the | 
 | '<tt>-debug</tt>' command line argument: | 
 |  | 
 | <pre> | 
 |      ...  | 
 |      DEBUG(std::cerr << "I am here!\n"); | 
 |      ... | 
 | </pre><p> | 
 |  | 
 | Then you can run your pass like this:<p> | 
 |  | 
 | <pre> | 
 |   $ opt < a.bc > /dev/null -mypass | 
 |     <no output> | 
 |   $ opt < a.bc > /dev/null -mypass -debug | 
 |     I am here! | 
 |   $ | 
 | </pre><p> | 
 |  | 
 | Using the <tt>DEBUG()</tt> macro instead of a home brewed solution allows you to | 
 | now have to create "yet another" command line option for the debug output for | 
 | your pass.  Note that <tt>DEBUG()</tt> macros are disabled for optimized | 
 | builds, so they do not cause a performance impact at all.<p> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="Statistic">The <tt>Statistic</tt> template & <tt>-stats</tt> | 
 | option</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | The "<tt><a | 
 | href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>" | 
 | file provides a template named <tt>Statistic</tt> that is used as a unified way | 
 | to keeping track of what the LLVM compiler is doing and how effective various | 
 | optimizations are.  It is useful to see what optimizations are contributing to | 
 | making a particular program run faster.<p> | 
 |  | 
 | Often you may run your pass on some big program, and you're interested to see | 
 | how many times it makes a certain transformation.  Although you can do this with | 
 | hand inspection, or some ad-hoc method, this is a real pain and not very useful | 
 | for big programs.  Using the <tt>Statistic</tt> template makes it very easy to | 
 | keep track of this information, and the calculated information is presented in a | 
 | uniform manner with the rest of the passes being executed.<p> | 
 |  | 
 | There are many examples of <tt>Statistic</tt> users, but this basics of using it | 
 | are as follows:<p> | 
 |  | 
 | <ol> | 
 | <li>Define your statistic like this:<p> | 
 |  | 
 | <pre> | 
 | static Statistic<> NumXForms("mypassname", "The # of times I did stuff"); | 
 | </pre><p> | 
 |  | 
 | The <tt>Statistic</tt> template can emulate just about any data-type, but if you | 
 | do not specify a template argument, it defaults to acting like an unsigned int | 
 | counter (this is usually what you want).<p> | 
 |  | 
 | <li>Whenever you make a transformation, bump the counter:<p> | 
 |  | 
 | <pre> | 
 |    ++NumXForms;   // I did stuff | 
 | </pre><p> | 
 |  | 
 | </ol><p> | 
 |  | 
 | That's all you have to do.  To get '<tt>opt</tt>' to print out the statistics | 
 | gathered, use the '<tt>-stats</tt>' option:<p> | 
 |  | 
 | <pre> | 
 |    $ opt -stats -mypassname < program.bc > /dev/null | 
 |     ... statistic output ... | 
 | </pre><p> | 
 |  | 
 | When running <tt>gccas</tt> on a C file from the SPEC benchmark suite, it gives | 
 | a report that looks like this:<p> | 
 |  | 
 | <pre> | 
 |    7646 bytecodewriter  - Number of normal instructions | 
 |     725 bytecodewriter  - Number of oversized instructions | 
 |  129996 bytecodewriter  - Number of bytecode bytes written | 
 |    2817 raise           - Number of insts DCEd or constprop'd | 
 |    3213 raise           - Number of cast-of-self removed | 
 |    5046 raise           - Number of expression trees converted | 
 |      75 raise           - Number of other getelementptr's formed | 
 |     138 raise           - Number of load/store peepholes | 
 |      42 deadtypeelim    - Number of unused typenames removed from symtab | 
 |     392 funcresolve     - Number of varargs functions resolved | 
 |      27 globaldce       - Number of global variables removed | 
 |       2 adce            - Number of basic blocks removed | 
 |     134 cee             - Number of branches revectored | 
 |      49 cee             - Number of setcc instruction eliminated | 
 |     532 gcse            - Number of loads removed | 
 |    2919 gcse            - Number of instructions removed | 
 |      86 indvars         - Number of cannonical indvars added | 
 |      87 indvars         - Number of aux indvars removed | 
 |      25 instcombine     - Number of dead inst eliminate | 
 |     434 instcombine     - Number of insts combined | 
 |     248 licm            - Number of load insts hoisted | 
 |    1298 licm            - Number of insts hoisted to a loop pre-header | 
 |       3 licm            - Number of insts hoisted to multiple loop preds (bad, no loop pre-header) | 
 |      75 mem2reg         - Number of alloca's promoted | 
 |    1444 cfgsimplify     - Number of blocks simplified | 
 | </pre><p> | 
 |  | 
 | Obviously, with so many optimizations, having a unified framework for this stuff | 
 | is very nice.  Making your pass fit well into the framework makes it more | 
 | maintainable and useful.<p> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b> | 
 | <a name="common">Helpful Hints for Common Operations | 
 | </b></font></td></tr></table><ul> <!-- | 
 | *********************************************************************** --> | 
 |  | 
 | This section describes how to perform some very simple transformations of LLVM | 
 | code.  This is meant to give examples of common idioms used, showing the | 
 | practical side of LLVM transformations.<p> | 
 |  | 
 | Because this is a "how-to" section, you should also read about the main classes | 
 | that you will be working with.  The <a href="#coreclasses">Core LLVM Class | 
 | Hierarchy Reference</a> contains details and descriptions of the main classes | 
 | that you should know about.<p> | 
 |  | 
 | <!-- NOTE: this section should be heavy on example code --> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="inspection">Basic Inspection and Traversal Routines</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | The LLVM compiler infrastructure have many different data structures that may be | 
 | traversed.  Following the example of the C++ standard template library, the | 
 | techniques used to traverse these various data structures are all basically the | 
 | same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or | 
 | method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt> | 
 | function returns an iterator pointing to one past the last valid element of the | 
 | sequence, and there is some <tt>XXXiterator</tt> data type that is common | 
 | between the two operations.<p> | 
 |  | 
 | Because the pattern for iteration is common across many different aspects of the | 
 | program representation, the standard template library algorithms may be used on | 
 | them, and it is easier to remember how to iterate.  First we show a few common | 
 | examples of the data structures that need to be traversed.  Other data | 
 | structures are traversed in very similar ways.<p> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="iterate_function"><hr size=0>Iterating over the <a | 
 | href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a | 
 | href="#Function"><tt>Function</tt></a> </h4><ul> | 
 |  | 
 | It's quite common to have a <tt>Function</tt> instance that you'd like | 
 | to transform in some way; in particular, you'd like to manipulate its | 
 | <tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over | 
 | all of the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. | 
 | The following is an example that prints the name of a | 
 | <tt>BasicBlock</tt> and the number of <tt>Instruction</tt>s it | 
 | contains: | 
 |  | 
 | <pre> | 
 |   // func is a pointer to a Function instance | 
 |   for(Function::iterator i = func->begin(), e = func->end(); i != e; ++i) { | 
 |  | 
 |       // print out the name of the basic block if it has one, and then the | 
 |       // number of instructions that it contains | 
 |  | 
 |       cerr << "Basic block (name=" << i->getName() << ") has "  | 
 |            << i->size() << " instructions.\n"; | 
 |   } | 
 | </pre> | 
 |  | 
 | Note that i can be used as if it were a pointer for the purposes of | 
 | invoking member functions of the <tt>Instruction</tt> class.  This is | 
 | because the indirection operator is overloaded for the iterator | 
 | classes.  In the above code, the expression <tt>i->size()</tt> is | 
 | exactly equivalent to <tt>(*i).size()</tt> just like you'd expect. | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="iterate_basicblock"><hr size=0>Iterating over the <a | 
 | href="#Instruction"><tt>Instruction</tt></a>s in a <a | 
 | href="#BasicBlock"><tt>BasicBlock</tt></a> </h4><ul> | 
 |  | 
 | Just like when dealing with <tt>BasicBlock</tt>s in | 
 | <tt>Function</tt>s, it's easy to iterate over the individual | 
 | instructions that make up <tt>BasicBlock</tt>s.  Here's a code snippet | 
 | that prints out each instruction in a <tt>BasicBlock</tt>: | 
 |  | 
 | <pre> | 
 |   // blk is a pointer to a BasicBlock instance | 
 |   for(BasicBlock::iterator i = blk->begin(), e = blk->end(); i != e; ++i) | 
 |      // the next statement works since operator<<(ostream&,...)  | 
 |      // is overloaded for Instruction& | 
 |      cerr << *i << "\n"; | 
 | </pre> | 
 |  | 
 | However, this isn't really the best way to print out the contents of a | 
 | <tt>BasicBlock</tt>!  Since the ostream operators are overloaded for | 
 | virtually anything you'll care about, you could have just invoked the | 
 | print routine on the basic block itself: <tt>cerr << *blk << | 
 | "\n";</tt>.<p> | 
 |  | 
 | Note that currently operator<< is implemented for <tt>Value*</tt>, so it  | 
 | will print out the contents of the pointer, instead of  | 
 | the pointer value you might expect.  This is a deprecated interface that will | 
 | be removed in the future, so it's best not to depend on it.  To print out the | 
 | pointer value for now, you must cast to <tt>void*</tt>.<p> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="iterate_institer"><hr size=0>Iterating over the <a | 
 | href="#Instruction"><tt>Instruction</tt></a>s in a <a | 
 | href="#Function"><tt>Function</tt></a></h4><ul> | 
 |  | 
 | If you're finding that you commonly iterate over a <tt>Function</tt>'s | 
 | <tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s | 
 | <tt>Instruction</tt>s, <tt>InstIterator</tt> should be used instead. | 
 | You'll need to include <a href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>, and then | 
 | instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a | 
 | small example that shows how to dump all instructions in a function to | 
 | stderr (<b>Note:</b> Dereferencing an <tt>InstIterator</tt> yields an | 
 | <tt>Instruction*</tt>, <i>not</i> an <tt>Instruction&</tt>!): | 
 |  | 
 | <pre> | 
 | #include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>" | 
 | ... | 
 | // Suppose F is a ptr to a function | 
 | for(inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i) | 
 |   cerr << **i << "\n"; | 
 | </pre> | 
 |  | 
 | Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a | 
 | worklist with its initial contents.  For example, if you wanted to | 
 | initialize a worklist to contain all instructions in a | 
 | <tt>Function</tt> F, all you would need to do is something like: | 
 |  | 
 | <pre> | 
 | std::set<Instruction*> worklist; | 
 | worklist.insert(inst_begin(F), inst_end(F)); | 
 | </pre> | 
 |  | 
 | The STL set <tt>worklist</tt> would now contain all instructions in | 
 | the <tt>Function</tt> pointed to by F. | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="iterate_convert"><hr size=0>Turning an iterator into a class | 
 | pointer (and vice-versa) </h4><ul> | 
 |  | 
 | Sometimes, it'll be useful to grab a reference (or pointer) to a class | 
 | instance when all you've got at hand is an iterator.  Well, extracting | 
 | a reference or a pointer from an iterator is very straightforward. | 
 | Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and | 
 | <tt>j</tt> is a <tt>BasicBlock::const_iterator</tt>: | 
 |  | 
 | <pre> | 
 |     Instruction& inst = *i;   // grab reference to instruction reference | 
 |     Instruction* pinst = &*i; // grab pointer to instruction reference | 
 |     const Instruction& inst = *j; | 
 | </pre> | 
 | However, the iterators you'll be working with in the LLVM framework | 
 | are special: they will automatically convert to a ptr-to-instance type | 
 | whenever they need to.  Instead of dereferencing the iterator and then | 
 | taking the address of the result, you can simply assign the iterator | 
 | to the proper pointer type and you get the dereference and address-of | 
 | operation as a result of the assignment (behind the scenes, this is a | 
 | result of overloading casting mechanisms).  Thus the last line of the | 
 | last example, | 
 |  | 
 | <pre>Instruction* pinst = &*i;</pre> | 
 |  | 
 | is semantically equivalent to | 
 |  | 
 | <pre>Instruction* pinst = i;</pre> | 
 |  | 
 | <b>Caveat emptor</b>: The above syntax works <i>only</i> when you're <i>not</i> | 
 | working with <tt>dyn_cast</tt>.  The template definition of <tt><a | 
 | href="#isa">dyn_cast</a></tt> isn't implemented to handle this yet, so you'll | 
 | still need the following in order for things to work properly: | 
 |  | 
 | <pre> | 
 | BasicBlock::iterator bbi = ...; | 
 | <a href="#BranchInst">BranchInst</a>* b = <a href="#isa">dyn_cast</a><<a href="#BranchInst">BranchInst</a>>(&*bbi); | 
 | </pre> | 
 |  | 
 | It's also possible to turn a class pointer into the corresponding | 
 | iterator.  Usually, this conversion is quite inexpensive.  The | 
 | following code snippet illustrates use of the conversion constructors | 
 | provided by LLVM iterators.  By using these, you can explicitly grab | 
 | the iterator of something without actually obtaining it via iteration | 
 | over some structure: | 
 |  | 
 | <pre> | 
 | void printNextInstruction(Instruction* inst) { | 
 |     BasicBlock::iterator it(inst); | 
 |     ++it; // after this line, it refers to the instruction after *inst. | 
 |     if(it != inst->getParent()->end()) cerr << *it << "\n"; | 
 | } | 
 | </pre> | 
 | Of course, this example is strictly pedagogical, because it'd be much | 
 | better to explicitly grab the next instruction directly from inst. | 
 |  | 
 |  | 
 | <!--_______________________________________________________________________--> | 
 | </ul><h4><a name="iterate_complex"><hr size=0>Finding call sites: a slightly | 
 | more complex example </h4><ul> | 
 |  | 
 | Say that you're writing a FunctionPass and would like to count all the | 
 | locations in the entire module (that is, across every | 
 | <tt>Function</tt>) where a certain function (i.e. some | 
 | <tt>Function</tt>*) already in scope.  As you'll learn later, you may | 
 | want to use an <tt>InstVisitor</tt> to accomplish this in a much more | 
 | straightforward manner, but this example will allow us to explore how | 
 | you'd do it if you didn't have <tt>InstVisitor</tt> around.  In | 
 | pseudocode, this is what we want to do: | 
 |  | 
 | <pre> | 
 | initialize callCounter to zero | 
 | for each Function f in the Module | 
 |     for each BasicBlock b in f | 
 |       for each Instruction i in b | 
 |         if(i is a CallInst and calls the given function) | 
 |           increment callCounter | 
 | </pre> | 
 |  | 
 | And the actual code is (remember, since we're writing a | 
 | <tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply | 
 | has to override the <tt>runOnFunction</tt> method...): | 
 |  | 
 | <pre> | 
 | Function* targetFunc = ...; | 
 |  | 
 | class OurFunctionPass : public FunctionPass { | 
 |   public: | 
 |     OurFunctionPass(): callCounter(0) { } | 
 |  | 
 |     virtual runOnFunction(Function& F) { | 
 |  	for(Function::iterator b = F.begin(), be = F.end(); b != be; ++b) { | 
 |  	    for(BasicBlock::iterator i = b->begin(); ie = b->end(); i != ie; ++i) { | 
 |  		if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a><<a href="#CallInst">CallInst</a>>(&*i)) { | 
 |  		    // we know we've encountered a call instruction, so we | 
 |  		    // need to determine if it's a call to the | 
 | 	            // function pointed to by m_func or not. | 
 |    | 
 |  		    if(callInst->getCalledFunction() == targetFunc) | 
 |  			++callCounter; | 
 |  	    } | 
 |  	} | 
 |     } | 
 |      | 
 |   private: | 
 |     unsigned  callCounter; | 
 | }; | 
 | </pre> | 
 |  | 
 | <!--_______________________________________________________________________--> | 
 | </ul><h4><a name="iterate_chains"><hr size=0>Iterating over def-use & | 
 | use-def chains</h4><ul> | 
 |  | 
 | Frequently, we might have an instance of the <a | 
 | href="/doxygen/classValue.html">Value Class</a> and we want to | 
 | determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of | 
 | all <tt>User</tt>s of a particular <tt>Value</tt> is called a | 
 | <i>def-use</i> chain.  For example, let's say we have a | 
 | <tt>Function*</tt> named <tt>F</tt> to a particular function | 
 | <tt>foo</tt>. Finding all of the instructions that <i>use</i> | 
 | <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain of | 
 | <tt>F</tt>: | 
 |  | 
 | <pre> | 
 | Function* F = ...; | 
 |  | 
 | for(Value::use_iterator i = F->use_begin(), e = F->use_end(); i != e; ++i) { | 
 |     if(Instruction* Inst = dyn_cast<Instruction>(*i)) { | 
 |         cerr << "F is used in instruction:\n"; | 
 |         cerr << *Inst << "\n"; | 
 |     } | 
 | } | 
 | </pre> | 
 |  | 
 | Alternately, it's common to have an instance of the <a | 
 | href="/doxygen/classUser.html">User Class</a> and need to know what | 
 | <tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used | 
 | by a <tt>User</tt> is known as a <i>use-def</i> chain.  Instances of | 
 | class <tt>Instruction</tt> are common <tt>User</tt>s, so we might want | 
 | to iterate over all of the values that a particular instruction uses | 
 | (that is, the operands of the particular <tt>Instruction</tt>): | 
 |  | 
 | <pre> | 
 | Instruction* pi = ...; | 
 |  | 
 | for(User::op_iterator i = pi->op_begin(), e = pi->op_end(); i != e; ++i) { | 
 |     Value* v = *i; | 
 |     ... | 
 | } | 
 | </pre> | 
 |      | 
 |  | 
 | <!-- | 
 |   def-use chains ("finding all users of"): Value::use_begin/use_end | 
 |   use-def chains ("finding all values used"): User::op_begin/op_end [op=operand] | 
 | --> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="simplechanges">Making simple changes</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | There are some primitive transformation operations present in the LLVM | 
 | infrastructure that are worth knowing about.  When performing | 
 | transformations, it's fairly common to manipulate the contents of | 
 | basic blocks.  This section describes some of the common methods for | 
 | doing so and gives example code. | 
 |  | 
 | <!--_______________________________________________________________________--> | 
 | </ul><h4><a name="schanges_creating"><hr size=0>Creating and inserting | 
 |     new <tt>Instruction</tt>s</h4><ul>  | 
 |  | 
 | <i>Instantiating Instructions</i> | 
 |  | 
 | <p>Creation of <tt>Instruction</tt>s is straightforward: simply call the | 
 | constructor for the kind of instruction to instantiate and provide the | 
 | necessary parameters.  For example, an <tt>AllocaInst</tt> only | 
 | <i>requires</i> a (const-ptr-to) <tt>Type</tt>.  Thus: | 
 |  | 
 | <pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>  | 
 |  | 
 | will create an <tt>AllocaInst</tt> instance that represents the | 
 | allocation of one integer in the current stack frame, at runtime. | 
 | Each <tt>Instruction</tt> subclass is likely to have varying default | 
 | parameters which change the semantics of the instruction, so refer to | 
 | the <a href="/doxygen/classInstruction.html">doxygen documentation for | 
 | the subclass of Instruction</a> that you're interested in | 
 | instantiating.</p> | 
 |  | 
 | <p><i>Naming values</i></p> | 
 |  | 
 | <p> | 
 | It is very useful to name the values of instructions when you're able | 
 | to, as this facilitates the debugging of your transformations.  If you | 
 | end up looking at generated LLVM machine code, you definitely want to | 
 | have logical names associated with the results of instructions!  By | 
 | supplying a value for the <tt>Name</tt> (default) parameter of the | 
 | <tt>Instruction</tt> constructor, you associate a logical name with | 
 | the result of the instruction's execution at runtime.  For example, | 
 | say that I'm writing a transformation that dynamically allocates space | 
 | for an integer on the stack, and that integer is going to be used as | 
 | some kind of index by some other code.  To accomplish this, I place an | 
 | <tt>AllocaInst</tt> at the first point in the first | 
 | <tt>BasicBlock</tt> of some <tt>Function</tt>, and I'm intending to | 
 | use it within the same <tt>Function</tt>.  I might do: | 
 |  | 
 | <pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre> | 
 |  | 
 | where <tt>indexLoc</tt> is now the logical name of the instruction's | 
 | execution value, which is a pointer to an integer on the runtime | 
 | stack. | 
 | </p> | 
 |  | 
 | <p><i>Inserting instructions</i></p> | 
 |  | 
 | <p> | 
 | There are essentially two ways to insert an <tt>Instruction</tt> into | 
 | an existing sequence of instructions that form a <tt>BasicBlock</tt>: | 
 | <ul> | 
 | <li>Insertion into an explicit instruction list | 
 |  | 
 | <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within | 
 | that <tt>BasicBlock</tt>, and a newly-created instruction | 
 | we wish to insert before <tt>*pi</tt>, we do the following: | 
 |  | 
 | <pre> | 
 | BasicBlock* pb = ...; | 
 | Instruction* pi = ...; | 
 | Instruction* newInst = new Instruction(...); | 
 | pb->getInstList().insert(pi, newInst); // inserts newInst before pi in pb | 
 | </pre> | 
 | </p> | 
 |  | 
 | <li>Insertion into an implicit instruction list | 
 | <p><tt>Instruction</tt> instances that are already in | 
 | <tt>BasicBlock</tt>s are implicitly associated with an existing | 
 | instruction list: the instruction list of the enclosing basic block. | 
 | Thus, we could have accomplished the same thing as the above code | 
 | without being given a <tt>BasicBlock</tt> by doing: | 
 | <pre> | 
 | Instruction* pi = ...; | 
 | Instruction* newInst = new Instruction(...); | 
 | pi->getParent()->getInstList().insert(pi, newInst); | 
 | </pre> | 
 | In fact, this sequence of steps occurs so frequently that the | 
 | <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes | 
 | provide constructors which take (as a default parameter) a pointer to | 
 | an <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> | 
 | should precede.  That is, <tt>Instruction</tt> constructors are | 
 | capable of inserting the newly-created instance into the | 
 | <tt>BasicBlock</tt> of a provided instruction, immediately before that | 
 | instruction.  Using an <tt>Instruction</tt> constructor with a | 
 | <tt>insertBefore</tt> (default) parameter, the above code becomes: | 
 | <pre> | 
 | Instruction* pi = ...; | 
 | Instruction* newInst = new Instruction(..., pi); | 
 | </pre> | 
 | which is much cleaner, especially if you're creating a lot of | 
 | instructions and adding them to <tt>BasicBlock</tt>s. | 
 |  </p> | 
 | </p> | 
 | </ul> | 
 |  | 
 | <!--_______________________________________________________________________--> | 
 | </ul><h4><a name="schanges_deleting"><hr size=0>Deleting | 
 | <tt>Instruction</tt>s</h4><ul> | 
 |  | 
 | Deleting an instruction from an existing sequence of instructions that form a <a | 
 | href="#BasicBlock"><tt>BasicBlock</tt></a> is very straightforward. First, you | 
 | must have a pointer to the instruction that you wish to delete.  Second, you | 
 | need to obtain the pointer to that instruction's basic block. You use the | 
 | pointer to the basic block to get its list of instructions and then use the | 
 | erase function to remove your instruction.<p> | 
 |  | 
 | For example:<p> | 
 |  | 
 | <pre> | 
 |   <a href="#Instruction">Instruction</a> *I = .. ; | 
 |   <a href="#BasicBlock">BasicBlock</a> *BB = I->getParent(); | 
 |   BB->getInstList().erase(I); | 
 | </pre><p> | 
 |  | 
 | <!--_______________________________________________________________________--> | 
 | </ul><h4><a name="schanges_replacing"><hr size=0>Replacing an | 
 |     <tt>Instruction</tt> with another <tt>Value</tt></h4><ul> | 
 |  | 
 | <p><i>Replacing individual instructions</i></p> | 
 | <p> | 
 | Including "<a | 
 | href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h | 
 | </a>" permits use of two very useful replace functions: | 
 | <tt>ReplaceInstWithValue</tt> and <tt>ReplaceInstWithInst</tt>.   | 
 |  | 
 | <ul> | 
 |  | 
 | <li><tt>ReplaceInstWithValue</tt> | 
 |  | 
 | <p>This function replaces all uses (within a basic block) of a given | 
 | instruction with a value, and then removes the original instruction. | 
 | The following example illustrates the replacement of the result of a | 
 | particular <tt>AllocaInst</tt> that allocates memory for a single | 
 | integer with an null pointer to an integer.</p> | 
 |  | 
 | <pre> | 
 | AllocaInst* instToReplace = ...; | 
 | BasicBlock::iterator ii(instToReplace); | 
 | ReplaceInstWithValue(instToReplace->getParent()->getInstList(), ii, | 
 |                      Constant::getNullValue(PointerType::get(Type::IntTy))); | 
 | </pre> | 
 |  | 
 | <li><tt>ReplaceInstWithInst</tt> | 
 |  | 
 | <p>This function replaces a particular instruction with another | 
 | instruction.  The following example illustrates the replacement of one | 
 | <tt>AllocaInst</tt> with another.<p> | 
 |  | 
 | <pre> | 
 | AllocaInst* instToReplace = ...; | 
 | BasicBlock::iterator ii(instToReplace); | 
 | ReplaceInstWithInst(instToReplace->getParent()->getInstList(), ii, | 
 |                     new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"); | 
 | </pre> | 
 |  | 
 | </ul> | 
 | <p><i>Replacing multiple uses of <tt>User</tt>s and | 
 | 		    <tt>Value</tt>s</i></p> | 
 |    | 
 | You can use <tt>Value::replaceAllUsesWith</tt> and | 
 | <tt>User::replaceUsesOfWith</tt> to change more than one use at a | 
 | time.  See the doxygen documentation for the <a | 
 | href="/doxygen/classValue.html">Value Class</a> and <a | 
 | href="/doxygen/classUser.html">User Class</a>, respectively, for more | 
 | information. | 
 |  | 
 | <!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out: | 
 | include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with: | 
 | ReplaceInstWithValue, ReplaceInstWithInst | 
 | --> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b> | 
 | <a name="coreclasses">The Core LLVM Class Hierarchy Reference | 
 | </b></font></td></tr></table><ul> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | The Core LLVM classes are the primary means of representing the program being | 
 | inspected or transformed.  The core LLVM classes are defined in header files in | 
 | the <tt>include/llvm/</tt> directory, and implemented in the <tt>lib/VMCore</tt> | 
 | directory.<p> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="Value">The <tt>Value</tt> class</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | <tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt></b><br> | 
 | doxygen info: <a href="/doxygen/classValue.html">Value Class</a><p> | 
 |  | 
 |  | 
 | The <tt>Value</tt> class is the most important class in LLVM Source base.  It | 
 | represents a typed value that may be used (among other things) as an operand to | 
 | an instruction.  There are many different types of <tt>Value</tt>s, such as <a | 
 | href="#Constant"><tt>Constant</tt></a>s, <a | 
 | href="#Argument"><tt>Argument</tt></a>s, and even <a | 
 | href="#Instruction"><tt>Instruction</tt></a>s and <a | 
 | href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.<p> | 
 |  | 
 | A particular <tt>Value</tt> may be used many times in the LLVM representation | 
 | for a program.  For example, an incoming argument to a function (represented | 
 | with an instance of the <a href="#Argument">Argument</a> class) is "used" by | 
 | every instruction in the function that references the argument.  To keep track | 
 | of this relationship, the <tt>Value</tt> class keeps a list of all of the <a | 
 | href="#User"><tt>User</tt></a>s that is using it (the <a | 
 | href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM | 
 | graph that can refer to <tt>Value</tt>s).  This use list is how LLVM represents | 
 | def-use information in the program, and is accessible through the <tt>use_</tt>* | 
 | methods, shown below.<p> | 
 |  | 
 | Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed, and | 
 | this <a href="#Type">Type</a> is available through the <tt>getType()</tt> | 
 | method.  <a name="#nameWarning">In addition, all LLVM values can be named.  The | 
 | "name" of the <tt>Value</tt> is symbolic string printed in the LLVM code:<p> | 
 |  | 
 | <pre> | 
 |    %<b>foo</b> = add int 1, 2 | 
 | </pre> | 
 |  | 
 | The name of this instruction is "foo".  <b>NOTE</b> that the name of any value | 
 | may be missing (an empty string), so names should <b>ONLY</b> be used for | 
 | debugging (making the source code easier to read, debugging printouts), they | 
 | should not be used to keep track of values or map between them.  For this | 
 | purpose, use a <tt>std::map</tt> of pointers to the <tt>Value</tt> itself | 
 | instead.<p> | 
 |  | 
 | One important aspect of LLVM is that there is no distinction between an SSA | 
 | variable and the operation that produces it.  Because of this, any reference to | 
 | the value produced by an instruction (or the value available as an incoming | 
 | argument, for example) is represented as a direct pointer to the class that | 
 | represents this value.  Although this may take some getting used to, it | 
 | simplifies the representation and makes it easier to manipulate.<p> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="m_Value"><hr size=0>Important Public Members of | 
 | the <tt>Value</tt> class</h4><ul> | 
 |  | 
 | <li><tt>Value::use_iterator</tt> - Typedef for iterator over the use-list<br> | 
 |     <tt>Value::use_const_iterator</tt> | 
 |                  - Typedef for const_iterator over the use-list<br> | 
 |     <tt>unsigned use_size()</tt> - Returns the number of users of the value.<br> | 
 |     <tt>bool use_empty()</tt> - Returns true if there are no users.<br> | 
 |     <tt>use_iterator use_begin()</tt> | 
 |                  - Get an iterator to the start of the use-list.<br> | 
 |     <tt>use_iterator use_end()</tt> | 
 |                  - Get an iterator to the end of the use-list.<br> | 
 |     <tt><a href="#User">User</a> *use_back()</tt> | 
 |                  - Returns the last element in the list.<p> | 
 |  | 
 | These methods are the interface to access the def-use information in LLVM.  As with all other iterators in LLVM, the naming conventions follow the conventions defined by the <a href="#stl">STL</a>.<p> | 
 |  | 
 | <li><tt><a href="#Type">Type</a> *getType() const</tt><p> | 
 | This method returns the Type of the Value. | 
 |  | 
 | <li><tt>bool hasName() const</tt><br> | 
 |     <tt>std::string getName() const</tt><br> | 
 |     <tt>void setName(const std::string &Name)</tt><p> | 
 |  | 
 | This family of methods is used to access and assign a name to a <tt>Value</tt>, | 
 | be aware of the <a href="#nameWarning">precaution above</a>.<p> | 
 |  | 
 |  | 
 | <li><tt>void replaceAllUsesWith(Value *V)</tt><p> | 
 |  | 
 | This method traverses the use list of a <tt>Value</tt> changing all <a | 
 | href="#User"><tt>User</tt>s</a> of the current value to refer to "<tt>V</tt>" | 
 | instead.  For example, if you detect that an instruction always produces a | 
 | constant value (for example through constant folding), you can replace all uses | 
 | of the instruction with the constant like this:<p> | 
 |  | 
 | <pre> | 
 |   Inst->replaceAllUsesWith(ConstVal); | 
 | </pre><p> | 
 |  | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="User">The <tt>User</tt> class</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | <tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt></b><br> | 
 | doxygen info: <a href="/doxygen/classUser.html">User Class</a><br> | 
 | Superclass: <a href="#Value"><tt>Value</tt></a><p> | 
 |  | 
 |  | 
 | The <tt>User</tt> class is the common base class of all LLVM nodes that may | 
 | refer to <a href="#Value"><tt>Value</tt></a>s.  It exposes a list of "Operands" | 
 | that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is | 
 | referring to.  The <tt>User</tt> class itself is a subclass of | 
 | <tt>Value</tt>.<p> | 
 |  | 
 | The operands of a <tt>User</tt> point directly to the LLVM <a | 
 | href="#Value"><tt>Value</tt></a> that it refers to.  Because LLVM uses Static | 
 | Single Assignment (SSA) form, there can only be one definition referred to, | 
 | allowing this direct connection.  This connection provides the use-def | 
 | information in LLVM.<p> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="m_User"><hr size=0>Important Public Members of | 
 | the <tt>User</tt> class</h4><ul> | 
 |  | 
 | The <tt>User</tt> class exposes the operand list in two ways: through an index | 
 | access interface and through an iterator based interface.<p> | 
 |  | 
 | <li><tt>Value *getOperand(unsigned i)</tt><br> | 
 |     <tt>unsigned getNumOperands()</tt><p> | 
 |  | 
 | These two methods expose the operands of the <tt>User</tt> in a convenient form | 
 | for direct access.<p> | 
 |  | 
 | <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand list<br> | 
 |     <tt>User::op_const_iterator</tt> | 
 |     <tt>use_iterator op_begin()</tt> | 
 |                  - Get an iterator to the start of the operand list.<br> | 
 |     <tt>use_iterator op_end()</tt> | 
 |                  - Get an iterator to the end of the operand list.<p> | 
 |  | 
 | Together, these methods make up the iterator based interface to the operands of | 
 | a <tt>User</tt>.<p> | 
 |  | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="Instruction">The <tt>Instruction</tt> class</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | <tt>#include "<a | 
 | href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt></b><br> | 
 | doxygen info: <a href="/doxygen/classInstruction.html">Instruction Class</a><br> | 
 | Superclasses: <a href="#User"><tt>User</tt></a>, <a | 
 | href="#Value"><tt>Value</tt></a><p> | 
 |  | 
 | The <tt>Instruction</tt> class is the common base class for all LLVM | 
 | instructions.  It provides only a few methods, but is a very commonly used | 
 | class.  The primary data tracked by the <tt>Instruction</tt> class itself is the | 
 | opcode (instruction type) and the parent <a | 
 | href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded | 
 | into.  To represent a specific type of instruction, one of many subclasses of | 
 | <tt>Instruction</tt> are used.<p> | 
 |  | 
 | Because the <tt>Instruction</tt> class subclasses the <a | 
 | href="#User"><tt>User</tt></a> class, its operands can be accessed in the same | 
 | way as for other <a href="#User"><tt>User</tt></a>s (with the | 
 | <tt>getOperand()</tt>/<tt>getNumOperands()</tt> and | 
 | <tt>op_begin()</tt>/<tt>op_end()</tt> methods).<p> | 
 |  | 
 | An important file for the <tt>Instruction</tt> class is the | 
 | <tt>llvm/Instruction.def</tt> file.  This file contains some meta-data about the | 
 | various different types of instructions in LLVM.  It describes the enum values | 
 | that are used as opcodes (for example <tt>Instruction::Add</tt> and | 
 | <tt>Instruction::SetLE</tt>), as well as the concrete sub-classes of | 
 | <tt>Instruction</tt> that implement the instruction (for example <tt><a | 
 | href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a | 
 | href="#SetCondInst">SetCondInst</a></tt>).  Unfortunately, the use of macros in | 
 | this file confused doxygen, so these enum values don't show up correctly in the | 
 | <a href="/doxygen/classInstruction.html">doxygen output</a>.<p> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="m_Instruction"><hr size=0>Important Public Members of | 
 | the <tt>Instruction</tt> class</h4><ul> | 
 |  | 
 | <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt><p> | 
 |  | 
 | Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that this | 
 | <tt>Instruction</tt> is embedded into.<p> | 
 |  | 
 | <li><tt>bool hasSideEffects()</tt><p> | 
 |  | 
 | Returns true if the instruction has side effects, i.e. it is a <tt>call</tt>, | 
 | <tt>free</tt>, <tt>invoke</tt>, or <tt>store</tt>.<p> | 
 |  | 
 | <li><tt>unsigned getOpcode()</tt><p> | 
 |  | 
 | Returns the opcode for the <tt>Instruction</tt>.<p> | 
 |  | 
 | <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt><p> | 
 |  | 
 | Returns another instance of the specified instruction, identical in all ways to | 
 | the original except that the instruction has no parent (ie it's not embedded | 
 | into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>), and it has no name.<p> | 
 |  | 
 |  | 
 |  | 
 | <!-- | 
 |  | 
 | \subsection{Subclasses of Instruction :}  | 
 | \begin{itemize} | 
 | <li>BinaryOperator : This subclass of Instruction defines a general interface to the all the instructions involvong  binary operators in LLVM. | 
 | 	\begin{itemize} | 
 | 	<li><tt>bool swapOperands()</tt>: Exchange the two operands to this instruction. If the instruction cannot be reversed (i.e. if it's a Div), it returns true.  | 
 | 	\end{itemize} | 
 | <li>TerminatorInst : This subclass of Instructions defines an interface for all instructions that can terminate a BasicBlock. | 
 | 	\begin{itemize} | 
 | 	 <li> <tt>unsigned getNumSuccessors()</tt>: Returns the number of successors for this terminator instruction. | 
 | 	<li><tt>BasicBlock *getSuccessor(unsigned i)</tt>: As the name suggests returns the ith successor BasicBlock. | 
 | 	<li><tt>void setSuccessor(unsigned i, BasicBlock *B)</tt>: sets BasicBlock B as the ith succesor to this terminator instruction. | 
 | 	\end{itemize} | 
 |  | 
 | <li>PHINode : This represents the PHI instructions in the SSA form.  | 
 | 	\begin{itemize} | 
 | 	<li><tt> unsigned getNumIncomingValues()</tt>: Returns the number of incoming edges to this PHI node. | 
 | 	<li><tt> Value *getIncomingValue(unsigned i)</tt>: Returns the ith incoming Value. | 
 | 	<li><tt>void setIncomingValue(unsigned i, Value *V)</tt>: Sets the ith incoming Value as V  | 
 | 	<li><tt>BasicBlock *getIncomingBlock(unsigned i)</tt>: Returns the Basic Block corresponding to the ith incoming Value. | 
 | 	<li><tt> void addIncoming(Value *D, BasicBlock *BB)</tt>:  | 
 | 	Add an incoming value to the end of the PHI list | 
 | 	<li><tt> int getBasicBlockIndex(const BasicBlock *BB) const</tt>:  | 
 | 	Returns the first index of the specified basic block in the value list for this PHI.  Returns -1 if no instance. | 
 | 	\end{itemize} | 
 | <li>CastInst : In LLVM all casts have to be done through explicit cast instructions. CastInst defines the interface to the cast instructions. | 
 | <li>CallInst : This defines an interface to the call instruction in LLVM. ARguments to the function are nothing but operands of the instruction. | 
 | 	\begin{itemize} | 
 | 	<li>: <tt>Function *getCalledFunction()</tt>: Returns a handle to the function that is being called by this Function.  | 
 | 	\end{itemize} | 
 | <li>LoadInst, StoreInst, GetElemPtrInst : These subclasses represent load, store and getelementptr instructions in LLVM. | 
 | 	\begin{itemize} | 
 | 	<li><tt>Value * getPointerOperand()</tt>: Returns the Pointer Operand which is typically the 0th operand. | 
 | 	\end{itemize} | 
 | <li>BranchInst : This is a subclass of TerminatorInst and defines the interface for conditional and unconditional branches in LLVM. | 
 | 	\begin{itemize} | 
 | 	<li><tt>bool isConditional()</tt>: Returns true if the branch is a conditional branch else returns false | 
 | 	<li> <tt>Value *getCondition()</tt>: Returns the condition if it is a conditional branch else returns null. | 
 | 	<li> <tt>void setUnconditionalDest(BasicBlock *Dest)</tt>: Changes the current branch to an unconditional one targetting the specified block. | 
 | 	\end{itemize} | 
 |  | 
 | \end{itemize} | 
 |  | 
 | --> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="BasicBlock">The <tt>BasicBlock</tt> class</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | <tt>#include "<a | 
 | href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt></b><br> | 
 | doxygen info: <a href="/doxygen/classBasicBlock.html">BasicBlock Class</a><br> | 
 | Superclass: <a href="#Value"><tt>Value</tt></a><p> | 
 |  | 
 |  | 
 | This class represents a single entry multiple exit section of the code, commonly | 
 | known as a basic block by the compiler community.  The <tt>BasicBlock</tt> class | 
 | maintains a list of <a href="#Instruction"><tt>Instruction</tt></a>s, which form | 
 | the body of the block.  Matching the language definition, the last element of | 
 | this list of instructions is always a terminator instruction (a subclass of the | 
 | <a href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).<p> | 
 |  | 
 | In addition to tracking the list of instructions that make up the block, the | 
 | <tt>BasicBlock</tt> class also keeps track of the <a | 
 | href="#Function"><tt>Function</tt></a> that it is embedded into.<p> | 
 |  | 
 | Note that <tt>BasicBlock</tt>s themselves are <a | 
 | href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions | 
 | like branches and can go in the switch tables.  <tt>BasicBlock</tt>s have type | 
 | <tt>label</tt>.<p> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="m_BasicBlock"><hr size=0>Important Public Members of | 
 | the <tt>BasicBlock</tt> class</h4><ul> | 
 |  | 
 | <li><tt>BasicBlock(const std::string &Name = "", <a  | 
 | href="#Function">Function</a> *Parent = 0)</tt><p> | 
 |  | 
 | The <tt>BasicBlock</tt> constructor is used to create new basic blocks for | 
 | insertion into a function.  The constructor simply takes a name for the new | 
 | block, and optionally a <a href="#Function"><tt>Function</tt></a> to insert it | 
 | into.  If the <tt>Parent</tt> parameter is specified, the new | 
 | <tt>BasicBlock</tt> is automatically inserted at the end of the specified <a | 
 | href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be | 
 | manually inserted into the <a href="#Function"><tt>Function</tt></a>.<p> | 
 |  | 
 | <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br> | 
 |     <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br> | 
 |     <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>, | 
 |     <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p> | 
 |  | 
 | These methods and typedefs are forwarding functions that have the same semantics | 
 | as the standard library methods of the same names.  These methods expose the | 
 | underlying instruction list of a basic block in a way that is easy to | 
 | manipulate.  To get the full complement of container operations (including | 
 | operations to update the list), you must use the <tt>getInstList()</tt> | 
 | method.<p> | 
 |  | 
 | <li><tt>BasicBlock::InstListType &getInstList()</tt><p> | 
 |  | 
 | This method is used to get access to the underlying container that actually | 
 | holds the Instructions.  This method must be used when there isn't a forwarding | 
 | function in the <tt>BasicBlock</tt> class for the operation that you would like | 
 | to perform.  Because there are no forwarding functions for "updating" | 
 | operations, you need to use this if you want to update the contents of a | 
 | <tt>BasicBlock</tt>.<p> | 
 |  | 
 | <li><tt><A href="#Function">Function</a> *getParent()</tt><p> | 
 |  | 
 | Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is | 
 | embedded into, or a null pointer if it is homeless.<p> | 
 |  | 
 | <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt><p> | 
 |  | 
 | Returns a pointer to the terminator instruction that appears at the end of the | 
 | <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last | 
 | instruction in the block is not a terminator, then a null pointer is | 
 | returned.<p> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="GlobalValue">The <tt>GlobalValue</tt> class</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | <tt>#include "<a | 
 | href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt></b><br> | 
 | doxygen info: <a href="/doxygen/classGlobalValue.html">GlobalValue Class</a><br> | 
 | Superclasses: <a href="#User"><tt>User</tt></a>, <a | 
 | href="#Value"><tt>Value</tt></a><p> | 
 |  | 
 | Global values (<A href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a | 
 | href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are | 
 | visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s. | 
 | Because they are visible at global scope, they are also subject to linking with | 
 | other globals defined in different translation units.  To control the linking | 
 | process, <tt>GlobalValue</tt>s know their linkage rules.  Specifically, | 
 | <tt>GlobalValue</tt>s know whether they have internal or external linkage.<p> | 
 |  | 
 | If a <tt>GlobalValue</tt> has internal linkage (equivalent to being | 
 | <tt>static</tt> in C), it is not visible to code outside the current translation | 
 | unit, and does not participate in linking.  If it has external linkage, it is | 
 | visible to external code, and does participate in linking.  In addition to | 
 | linkage information, <tt>GlobalValue</tt>s keep track of which <a | 
 | href="#Module"><tt>Module</tt></a> they are currently part of.<p> | 
 |  | 
 | Because <tt>GlobalValue</tt>s are memory objects, they are always referred to by | 
 | their address.  As such, the <a href="#Type"><tt>Type</tt></a> of a global is | 
 | always a pointer to its contents.  This is explained in the LLVM Language | 
 | Reference Manual.<p> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="m_GlobalValue"><hr size=0>Important Public Members of | 
 | the <tt>GlobalValue</tt> class</h4><ul> | 
 |  | 
 | <li><tt>bool hasInternalLinkage() const</tt><br> | 
 |     <tt>bool hasExternalLinkage() const</tt><br> | 
 |     <tt>void setInternalLinkage(bool HasInternalLinkage)</tt><p> | 
 |  | 
 | These methods manipulate the linkage characteristics of the | 
 | <tt>GlobalValue</tt>.<p> | 
 |  | 
 | <li><tt><a href="#Module">Module</a> *getParent()</tt><p> | 
 |  | 
 | This returns the <a href="#Module"><tt>Module</tt></a> that the GlobalValue is | 
 | currently embedded into.<p> | 
 |  | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="Function">The <tt>Function</tt> class</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | <tt>#include "<a | 
 | href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt></b><br> | 
 | doxygen info: <a href="/doxygen/classFunction.html">Function Class</a><br> | 
 | Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a | 
 | href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p> | 
 |  | 
 | The <tt>Function</tt> class represents a single procedure in LLVM.  It is | 
 | actually one of the more complex classes in the LLVM heirarchy because it must | 
 | keep track of a large amount of data.  The <tt>Function</tt> class keeps track | 
 | of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a | 
 | href="#Argument"><tt>Argument</tt></a>s, and a <a | 
 | href="#SymbolTable"><tt>SymbolTable</tt></a>.<p> | 
 |  | 
 | The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most commonly | 
 | used part of <tt>Function</tt> objects.  The list imposes an implicit ordering | 
 | of the blocks in the function, which indicate how the code will be layed out by | 
 | the backend.  Additionally, the first <a | 
 | href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the | 
 | <tt>Function</tt>.  It is not legal in LLVM explicitly branch to this initial | 
 | block.  There are no implicit exit nodes, and in fact there may be multiple exit | 
 | nodes from a single <tt>Function</tt>.  If the <a | 
 | href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that | 
 | the <tt>Function</tt> is actually a function declaration: the actual body of the | 
 | function hasn't been linked in yet.<p> | 
 |  | 
 | In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the | 
 | <tt>Function</tt> class also keeps track of the list of formal <a | 
 | href="#Argument"><tt>Argument</tt></a>s that the function receives.  This | 
 | container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a> | 
 | nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for | 
 | the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.<p> | 
 |  | 
 | The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used LLVM | 
 | feature that is only used when you have to look up a value by name.  Aside from | 
 | that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used internally to | 
 | make sure that there are not conflicts between the names of <a | 
 | href="#Instruction"><tt>Instruction</tt></a>s, <a | 
 | href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a | 
 | href="#Argument"><tt>Argument</tt></a>s in the function body.<p> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="m_Function"><hr size=0>Important Public Members of | 
 | the <tt>Function</tt> class</h4><ul> | 
 |  | 
 | <li><tt>Function(const <a href="#FunctionType">FunctionType</a> *Ty, bool isInternal, const std::string &N = "")</tt><p> | 
 |  | 
 | Constructor used when you need to create new <tt>Function</tt>s to add the the | 
 | program.  The constructor must specify the type of the function to create and | 
 | whether or not it should start out with internal or external linkage.<p> | 
 |  | 
 | <li><tt>bool isExternal()</tt><p> | 
 |  | 
 | Return whether or not the <tt>Function</tt> has a body defined.  If the function | 
 | is "external", it does not have a body, and thus must be resolved by linking | 
 | with a function defined in a different translation unit.<p> | 
 |  | 
 |  | 
 | <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br> | 
 |     <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br> | 
 |     <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>, | 
 |     <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p> | 
 |  | 
 | These are forwarding methods that make it easy to access the contents of a | 
 | <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a> | 
 | list.<p> | 
 |  | 
 | <li><tt>Function::BasicBlockListType &getBasicBlockList()</tt><p> | 
 |  | 
 | Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.  This is | 
 | neccesary to use when you need to update the list or perform a complex action | 
 | that doesn't have a forwarding method.<p> | 
 |  | 
 |  | 
 | <li><tt>Function::aiterator</tt> - Typedef for the argument list iterator<br> | 
 |     <tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br> | 
 |     <tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>, | 
 |     <tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt><p> | 
 |  | 
 | These are forwarding methods that make it easy to access the contents of a | 
 | <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a> list.<p> | 
 |  | 
 | <li><tt>Function::ArgumentListType &getArgumentList()</tt><p> | 
 |  | 
 | Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.  This is | 
 | neccesary to use when you need to update the list or perform a complex action | 
 | that doesn't have a forwarding method.<p> | 
 |  | 
 |  | 
 |  | 
 | <li><tt><a href="#BasicBlock">BasicBlock</a> &getEntryNode()</tt><p> | 
 |  | 
 | Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the | 
 | function.  Because the entry block for the function is always the first block, | 
 | this returns the first block of the <tt>Function</tt>.<p> | 
 |  | 
 | <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br> | 
 |     <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt><p> | 
 |  | 
 | This traverses the <a href="#Type"><tt>Type</tt></a> of the <tt>Function</tt> | 
 | and returns the return type of the function, or the <a | 
 | href="#FunctionType"><tt>FunctionType</tt></a> of the actual function.<p> | 
 |  | 
 |  | 
 | <li><tt>bool hasSymbolTable() const</tt><p> | 
 |  | 
 | Return true if the <tt>Function</tt> has a symbol table allocated to it and if | 
 | there is at least one entry in it.<p> | 
 |  | 
 | <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p> | 
 |  | 
 | Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this | 
 | <tt>Function</tt> or a null pointer if one has not been allocated (because there | 
 | are no named values in the function).<p> | 
 |  | 
 | <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTableSure()</tt><p> | 
 |  | 
 | Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this | 
 | <tt>Function</tt> or allocate a new <a | 
 | href="#SymbolTable"><tt>SymbolTable</tt></a> if one is not already around.  This | 
 | should only be used when adding elements to the <a | 
 | href="#SymbolTable"><tt>SymbolTable</tt></a>, so that empty symbol tables are | 
 | not left laying around.<p> | 
 |  | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | <tt>#include "<a | 
 | href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt></b><br> | 
 | doxygen info: <a href="/doxygen/classGlobalVariable.html">GlobalVariable Class</a><br> | 
 | Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a | 
 | href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p> | 
 |  | 
 | Global variables are represented with the (suprise suprise) | 
 | <tt>GlobalVariable</tt> class.  Like functions, <tt>GlobalVariable</tt>s are | 
 | also subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such | 
 | are always referenced by their address (global values must live in memory, so | 
 | their "name" refers to their address).  Global variables may have an initial | 
 | value (which must be a <a href="#Constant"><tt>Constant</tt></a>), and if they | 
 | have an initializer, they may be marked as "constant" themselves (indicating | 
 | that their contents never change at runtime).<p> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="m_GlobalVariable"><hr size=0>Important Public Members of the | 
 | <tt>GlobalVariable</tt> class</h4><ul> | 
 |  | 
 | <li><tt>GlobalVariable(const <a href="#Type">Type</a> *Ty, bool isConstant, bool | 
 | isInternal, <a href="#Constant">Constant</a> *Initializer = 0, const std::string | 
 | &Name = "")</tt><p> | 
 |  | 
 | Create a new global variable of the specified type.  If <tt>isConstant</tt> is | 
 | true then the global variable will be marked as unchanging for the program, and | 
 | if <tt>isInternal</tt> is true the resultant global variable will have internal | 
 | linkage.  Optionally an initializer and name may be specified for the global variable as well.<p> | 
 |  | 
 |  | 
 | <li><tt>bool isConstant() const</tt><p> | 
 |  | 
 | Returns true if this is a global variable is known not to be modified at | 
 | runtime.<p> | 
 |  | 
 |  | 
 | <li><tt>bool hasInitializer()</tt><p> | 
 |  | 
 | Returns true if this <tt>GlobalVariable</tt> has an intializer.<p> | 
 |  | 
 |  | 
 | <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt><p> | 
 |  | 
 | Returns the intial value for a <tt>GlobalVariable</tt>.  It is not legal to call | 
 | this method if there is no initializer.<p> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="Module">The <tt>Module</tt> class</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | <tt>#include "<a | 
 | href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt></b><br> | 
 | doxygen info: <a href="/doxygen/classModule.html">Module Class</a><p> | 
 |  | 
 | The <tt>Module</tt> class represents the top level structure present in LLVM | 
 | programs.  An LLVM module is effectively either a translation unit of the | 
 | original program or a combination of several translation units merged by the | 
 | linker.  The <tt>Module</tt> class keeps track of a list of <a | 
 | href="#Function"><tt>Function</tt></a>s, a list of <a | 
 | href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a | 
 | href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few | 
 | helpful member functions that try to make common operations easy.<p> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="m_Module"><hr size=0>Important Public Members of the | 
 | <tt>Module</tt> class</h4><ul> | 
 |  | 
 | <li><tt>Module::iterator</tt> - Typedef for function list iterator<br> | 
 |     <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br> | 
 |     <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>, | 
 |     <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p> | 
 |  | 
 | These are forwarding methods that make it easy to access the contents of a | 
 | <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a> | 
 | list.<p> | 
 |  | 
 | <li><tt>Module::FunctionListType &getFunctionList()</tt><p> | 
 |  | 
 | Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is | 
 | neccesary to use when you need to update the list or perform a complex action | 
 | that doesn't have a forwarding method.<p> | 
 |  | 
 | <!--  Global Variable --> | 
 | <hr size=0> | 
 |  | 
 | <li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br> | 
 |     <tt>Module::const_giterator</tt> - Typedef for const_iterator.<br> | 
 |     <tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>, | 
 |     <tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt><p> | 
 |  | 
 | These are forwarding methods that make it easy to access the contents of a | 
 | <tt>Module</tt> object's <a href="#GlobalVariable"><tt>GlobalVariable</tt></a> | 
 | list.<p> | 
 |  | 
 | <li><tt>Module::GlobalListType &getGlobalList()</tt><p> | 
 |  | 
 | Returns the list of <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. | 
 | This is neccesary to use when you need to update the list or perform a complex | 
 | action that doesn't have a forwarding method.<p> | 
 |  | 
 |  | 
 | <!--  Symbol table stuff --> | 
 | <hr size=0> | 
 |  | 
 | <li><tt>bool hasSymbolTable() const</tt><p> | 
 |  | 
 | Return true if the <tt>Module</tt> has a symbol table allocated to it and if | 
 | there is at least one entry in it.<p> | 
 |  | 
 | <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p> | 
 |  | 
 | Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this | 
 | <tt>Module</tt> or a null pointer if one has not been allocated (because there | 
 | are no named values in the function).<p> | 
 |  | 
 | <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTableSure()</tt><p> | 
 |  | 
 | Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this | 
 | <tt>Module</tt> or allocate a new <a | 
 | href="#SymbolTable"><tt>SymbolTable</tt></a> if one is not already around.  This | 
 | should only be used when adding elements to the <a | 
 | href="#SymbolTable"><tt>SymbolTable</tt></a>, so that empty symbol tables are | 
 | not left laying around.<p> | 
 |  | 
 |  | 
 | <!--  Convenience methods --> | 
 | <hr size=0> | 
 |  | 
 | <li><tt><a href="#Function">Function</a> *getFunction(const std::string &Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt><p> | 
 |  | 
 | Look up the specified function in the <tt>Module</tt> <a | 
 | href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return | 
 | <tt>null</tt>.<p> | 
 |  | 
 |  | 
 | <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const std::string | 
 |          &Name, const <a href="#FunctionType">FunctionType</a> *T)</tt><p> | 
 |  | 
 | Look up the specified function in the <tt>Module</tt> <a | 
 | href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an | 
 | external declaration for the function and return it.<p> | 
 |  | 
 |  | 
 | <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt><p> | 
 |  | 
 | If there is at least one entry in the <a | 
 | href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a | 
 | href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty | 
 | string.<p> | 
 |  | 
 |  | 
 | <li><tt>bool addTypeName(const std::string &Name, const <a href="#Type">Type</a> | 
 | *Ty)</tt><p> | 
 |  | 
 | Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a> mapping | 
 | <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this name, true | 
 | is returned and the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is not | 
 | modified.<p> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="Constant">The <tt>Constant</tt> class and subclasses</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | Constant represents a base class for different types of constants. It is | 
 | subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt, | 
 | ConstantArray etc for representing the various types of Constants.<p> | 
 |  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul> | 
 |  | 
 | <li><tt>bool isConstantExpr()</tt>: Returns true if it is a ConstantExpr | 
 |  | 
 |  | 
 | <hr> | 
 | Important Subclasses of Constant<p> | 
 |  | 
 | <ul> | 
 | <li>ConstantSInt : This subclass of Constant represents a signed integer constant. | 
 | <ul> | 
 | 	<li><tt>int64_t getValue() const</tt>: Returns the underlying value of this constant. | 
 | </ul> | 
 | <li>ConstantUInt : This class represents an unsigned integer. | 
 | <ul> | 
 | 	<li><tt>uint64_t getValue() const</tt>: Returns the underlying value of this constant. | 
 | </ul> | 
 | <li>ConstantFP : This class represents a floating point constant. | 
 | <ul> | 
 | 	<li><tt>double getValue() const</tt>: Returns the underlying value of this constant. | 
 | </ul> | 
 | <li>ConstantBool : This represents a boolean constant. | 
 | <ul> | 
 | 	<li><tt>bool getValue() const</tt>: Returns the underlying value of this constant. | 
 | </ul> | 
 | <li>ConstantArray : This represents a constant array. | 
 | <ul> | 
 | 	<li><tt>const std::vector<Use> &getValues() const</tt>: Returns a Vecotr of component constants that makeup this array. | 
 | </ul> | 
 | <li>ConstantStruct : This represents a constant struct. | 
 | <ul> | 
 | 	<li><tt>const std::vector<Use> &getValues() const</tt>: Returns a Vecotr of component constants that makeup this array. | 
 | </ul> | 
 | <li>ConstantPointerRef : This represents a constant pointer value that is initialized to point to a global value, which lies at a constant fixed address. | 
 | <ul> | 
 | <li><tt>GlobalValue *getValue()</tt>: Returns the global value to which this pointer is pointing to. | 
 | </ul> | 
 | </ul> | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="Type">The <tt>Type</tt> class and Derived Types</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | Type as noted earlier is also a subclass of a Value class.  Any primitive | 
 | type (like int, short etc) in LLVM is an instance of Type Class.  All | 
 | other types are instances of subclasses of type like FunctionType, | 
 | ArrayType etc. DerivedType is the interface for all such dervied types | 
 | including FunctionType, ArrayType, PointerType, StructType. Types can have | 
 | names. They can be recursive (StructType). There exists exactly one instance  | 
 | of any type structure at a time. This allows using pointer equality of Type *s for comparing types.  | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | </ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul> | 
 |  | 
 | <li><tt>PrimitiveID getPrimitiveID() const</tt>: Returns the base type of the type. | 
 | <li><tt> bool isSigned() const</tt>: Returns whether an integral numeric type is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for Float and Double. | 
 | <li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is unsigned. This is not quite the complement of isSigned... nonnumeric types return false as they do with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and ULongTy.  | 
 | <li><tt> bool isInteger() const</tt>: Equilivent to isSigned() || isUnsigned(), but with only a single virtual function invocation.  | 
 | <li><tt>bool isIntegral() const</tt>: Returns true if this is an integral type, which is either Bool type or one of the Integer types. | 
 |  | 
 | <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two floating point types. | 
 | <li><tt>bool isRecursive() const</tt>: Returns rue if the type graph contains a cycle. | 
 | <li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if this type can be converted to 'Ty' without any reinterpretation of bits. For example, uint to int. | 
 | <li><tt>bool isPrimitiveType() const</tt>: Returns true if it is a primitive type. | 
 | <li><tt>bool isDerivedType() const</tt>: Returns true if it is a derived type. | 
 | <li><tt>const Type * getContainedType (unsigned i) const</tt>:  | 
 | This method is used to implement the type iterator. For derived types, this returns the types 'contained' in the derived type, returning 0 when 'i' becomes invalid. This allows the user to iterate over the types in a struct, for example, really easily. | 
 | <li><tt>unsigned getNumContainedTypes() const</tt>: Return the number of types in the derived type.  | 
 |  | 
 | <p> | 
 |  | 
 | <hr> | 
 | Derived Types<p> | 
 |  | 
 | <ul> | 
 | <li>SequentialType : This is subclassed by ArrayType and PointerType  | 
 | <ul> | 
 | 	<li><tt>const Type * getElementType() const</tt>: Returns the type of each of the elements in the sequential type. | 
 | </ul> | 
 | <li>ArrayType : This is a subclass of SequentialType and defines interface for array types. | 
 | <ul> | 
 | 	<li><tt>unsigned getNumElements() const</tt>: Returns the number of elements in the array. | 
 | </ul> | 
 | <li>PointerType : Subclass of SequentialType for  pointer types. | 
 | <li>StructType : subclass of DerivedTypes for struct types | 
 | <li>FunctionType : subclass of DerivedTypes for function types. | 
 |  | 
 | <ul> | 
 | 	 | 
 | 	<li><tt>bool isVarArg() const</tt>: Returns true if its a vararg function | 
 | 	<li><tt> const Type * getReturnType() const</tt>: Returns the return type of the function. | 
 | 	<li><tt> const ParamTypes &getParamTypes() const</tt>: Returns a vector of parameter types. | 
 | 	<li><tt>const Type * getParamType (unsigned i)</tt>: Returns the type of the ith parameter. | 
 | 	<li><tt> const unsigned getNumParams() const</tt>: Returns the number of formal parameters. | 
 | </ul> | 
 | </ul> | 
 |  | 
 |  | 
 |  | 
 |  | 
 | <!-- ======================================================================= --> | 
 | </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0> | 
 | <tr><td> </td><td width="100%">   | 
 | <font color="#EEEEFF" face="Georgia,Palatino"><b> | 
 | <a name="Argument">The <tt>Argument</tt> class</a> | 
 | </b></font></td></tr></table><ul> | 
 |  | 
 | This subclass of Value defines the interface for incoming formal arguments to a | 
 | function. A Function maitanis a list of its formal arguments. An argument has a | 
 | pointer to the parent Function. | 
 |  | 
 |  | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | </ul> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <hr><font size-1> | 
 | <address>By: <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and | 
 | <a href="mailto:sabre@nondot.org">Chris Lattner</a></address> | 
 | <!-- Created: Tue Aug  6 15:00:33 CDT 2002 --> | 
 | <!-- hhmts start --> | 
 | Last modified: Tue Oct  1 18:15:43 CDT 2002 | 
 | <!-- hhmts end --> | 
 | </font></body></html> |