| //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the TargetInstrInfoImpl class, it just provides default |
| // implementations of various methods. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| using namespace llvm; |
| |
| // commuteInstruction - The default implementation of this method just exchanges |
| // operand 1 and 2. |
| MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI, |
| bool NewMI) const { |
| assert(MI->getOperand(1).isReg() && MI->getOperand(2).isReg() && |
| "This only knows how to commute register operands so far"); |
| unsigned Reg1 = MI->getOperand(1).getReg(); |
| unsigned Reg2 = MI->getOperand(2).getReg(); |
| bool Reg1IsKill = MI->getOperand(1).isKill(); |
| bool Reg2IsKill = MI->getOperand(2).isKill(); |
| bool ChangeReg0 = false; |
| if (MI->getOperand(0).getReg() == Reg1) { |
| // Must be two address instruction! |
| assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) && |
| "Expecting a two-address instruction!"); |
| Reg2IsKill = false; |
| ChangeReg0 = true; |
| } |
| |
| if (NewMI) { |
| // Create a new instruction. |
| unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); |
| bool Reg0IsDead = MI->getOperand(0).isDead(); |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) |
| .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) |
| .addReg(Reg2, getKillRegState(Reg2IsKill)) |
| .addReg(Reg1, getKillRegState(Reg2IsKill)); |
| } |
| |
| if (ChangeReg0) |
| MI->getOperand(0).setReg(Reg2); |
| MI->getOperand(2).setReg(Reg1); |
| MI->getOperand(1).setReg(Reg2); |
| MI->getOperand(2).setIsKill(Reg1IsKill); |
| MI->getOperand(1).setIsKill(Reg2IsKill); |
| return MI; |
| } |
| |
| /// CommuteChangesDestination - Return true if commuting the specified |
| /// instruction will also changes the destination operand. Also return the |
| /// current operand index of the would be new destination register by |
| /// reference. This can happen when the commutable instruction is also a |
| /// two-address instruction. |
| bool TargetInstrInfoImpl::CommuteChangesDestination(MachineInstr *MI, |
| unsigned &OpIdx) const{ |
| assert(MI->getOperand(1).isReg() && MI->getOperand(2).isReg() && |
| "This only knows how to commute register operands so far"); |
| if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { |
| // Must be two address instruction! |
| assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) && |
| "Expecting a two-address instruction!"); |
| OpIdx = 2; |
| return true; |
| } |
| return false; |
| } |
| |
| |
| bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI, |
| const SmallVectorImpl<MachineOperand> &Pred) const { |
| bool MadeChange = false; |
| const TargetInstrDesc &TID = MI->getDesc(); |
| if (!TID.isPredicable()) |
| return false; |
| |
| for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| if (TID.OpInfo[i].isPredicate()) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg()) { |
| MO.setReg(Pred[j].getReg()); |
| MadeChange = true; |
| } else if (MO.isImm()) { |
| MO.setImm(Pred[j].getImm()); |
| MadeChange = true; |
| } else if (MO.isMBB()) { |
| MO.setMBB(Pred[j].getMBB()); |
| MadeChange = true; |
| } |
| ++j; |
| } |
| } |
| return MadeChange; |
| } |
| |
| void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned DestReg, |
| const MachineInstr *Orig) const { |
| MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); |
| MI->getOperand(0).setReg(DestReg); |
| MBB.insert(I, MI); |
| } |
| |
| unsigned |
| TargetInstrInfoImpl::GetFunctionSizeInBytes(const MachineFunction &MF) const { |
| unsigned FnSize = 0; |
| for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end(); |
| MBBI != E; ++MBBI) { |
| const MachineBasicBlock &MBB = *MBBI; |
| for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end(); |
| I != E; ++I) |
| FnSize += GetInstSizeInBytes(I); |
| } |
| return FnSize; |
| } |
| |
| /// foldMemoryOperand - Attempt to fold a load or store of the specified stack |
| /// slot into the specified machine instruction for the specified operand(s). |
| /// If this is possible, a new instruction is returned with the specified |
| /// operand folded, otherwise NULL is returned. The client is responsible for |
| /// removing the old instruction and adding the new one in the instruction |
| /// stream. |
| MachineInstr* |
| TargetInstrInfo::foldMemoryOperand(MachineFunction &MF, |
| MachineInstr* MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| int FrameIndex) const { |
| unsigned Flags = 0; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| if (MI->getOperand(Ops[i]).isDef()) |
| Flags |= MachineMemOperand::MOStore; |
| else |
| Flags |= MachineMemOperand::MOLoad; |
| |
| // Ask the target to do the actual folding. |
| MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FrameIndex); |
| if (!NewMI) return 0; |
| |
| assert((!(Flags & MachineMemOperand::MOStore) || |
| NewMI->getDesc().mayStore()) && |
| "Folded a def to a non-store!"); |
| assert((!(Flags & MachineMemOperand::MOLoad) || |
| NewMI->getDesc().mayLoad()) && |
| "Folded a use to a non-load!"); |
| const MachineFrameInfo &MFI = *MF.getFrameInfo(); |
| assert(MFI.getObjectOffset(FrameIndex) != -1); |
| MachineMemOperand MMO(PseudoSourceValue::getFixedStack(FrameIndex), |
| Flags, |
| MFI.getObjectOffset(FrameIndex), |
| MFI.getObjectSize(FrameIndex), |
| MFI.getObjectAlignment(FrameIndex)); |
| NewMI->addMemOperand(MF, MMO); |
| |
| return NewMI; |
| } |
| |
| /// foldMemoryOperand - Same as the previous version except it allows folding |
| /// of any load and store from / to any address, not just from a specific |
| /// stack slot. |
| MachineInstr* |
| TargetInstrInfo::foldMemoryOperand(MachineFunction &MF, |
| MachineInstr* MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| MachineInstr* LoadMI) const { |
| assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!"); |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); |
| #endif |
| |
| // Ask the target to do the actual folding. |
| MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); |
| if (!NewMI) return 0; |
| |
| // Copy the memoperands from the load to the folded instruction. |
| for (std::list<MachineMemOperand>::iterator I = LoadMI->memoperands_begin(), |
| E = LoadMI->memoperands_end(); I != E; ++I) |
| NewMI->addMemOperand(MF, *I); |
| |
| return NewMI; |
| } |