| //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper ---------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This class wrap target description classes used by the various code |
| // generation TableGen backends. This makes it easier to access the data and |
| // provides a single place that needs to check it for validity. All of these |
| // classes throw exceptions on error conditions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenTarget.h" |
| #include "CodeGenIntrinsics.h" |
| #include "Record.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Streams.h" |
| #include <set> |
| #include <algorithm> |
| using namespace llvm; |
| |
| static cl::opt<unsigned> |
| AsmWriterNum("asmwriternum", cl::init(0), |
| cl::desc("Make -gen-asm-writer emit assembly writer #N")); |
| |
| /// getValueType - Return the MCV::ValueType that the specified TableGen record |
| /// corresponds to. |
| MVT::ValueType llvm::getValueType(Record *Rec) { |
| return (MVT::ValueType)Rec->getValueAsInt("Value"); |
| } |
| |
| std::string llvm::getName(MVT::ValueType T) { |
| switch (T) { |
| case MVT::Other: return "UNKNOWN"; |
| case MVT::i1: return "MVT::i1"; |
| case MVT::i8: return "MVT::i8"; |
| case MVT::i16: return "MVT::i16"; |
| case MVT::i32: return "MVT::i32"; |
| case MVT::i64: return "MVT::i64"; |
| case MVT::i128: return "MVT::i128"; |
| case MVT::iAny: return "MVT::iAny"; |
| case MVT::fAny: return "MVT::fAny"; |
| case MVT::f32: return "MVT::f32"; |
| case MVT::f64: return "MVT::f64"; |
| case MVT::f80: return "MVT::f80"; |
| case MVT::f128: return "MVT::f128"; |
| case MVT::ppcf128: return "MVT::ppcf128"; |
| case MVT::Flag: return "MVT::Flag"; |
| case MVT::isVoid:return "MVT::void"; |
| case MVT::v8i8: return "MVT::v8i8"; |
| case MVT::v4i16: return "MVT::v4i16"; |
| case MVT::v2i32: return "MVT::v2i32"; |
| case MVT::v1i64: return "MVT::v1i64"; |
| case MVT::v16i8: return "MVT::v16i8"; |
| case MVT::v8i16: return "MVT::v8i16"; |
| case MVT::v4i32: return "MVT::v4i32"; |
| case MVT::v2i64: return "MVT::v2i64"; |
| case MVT::v2f32: return "MVT::v2f32"; |
| case MVT::v4f32: return "MVT::v4f32"; |
| case MVT::v2f64: return "MVT::v2f64"; |
| case MVT::v3i32: return "MVT::v3i32"; |
| case MVT::v3f32: return "MVT::v3f32"; |
| case MVT::iPTR: return "TLI.getPointerTy()"; |
| default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; |
| } |
| } |
| |
| std::string llvm::getEnumName(MVT::ValueType T) { |
| switch (T) { |
| case MVT::Other: return "MVT::Other"; |
| case MVT::i1: return "MVT::i1"; |
| case MVT::i8: return "MVT::i8"; |
| case MVT::i16: return "MVT::i16"; |
| case MVT::i32: return "MVT::i32"; |
| case MVT::i64: return "MVT::i64"; |
| case MVT::i128: return "MVT::i128"; |
| case MVT::iAny: return "MVT::iAny"; |
| case MVT::fAny: return "MVT::fAny"; |
| case MVT::f32: return "MVT::f32"; |
| case MVT::f64: return "MVT::f64"; |
| case MVT::f80: return "MVT::f80"; |
| case MVT::f128: return "MVT::f128"; |
| case MVT::ppcf128: return "MVT::ppcf128"; |
| case MVT::Flag: return "MVT::Flag"; |
| case MVT::isVoid:return "MVT::isVoid"; |
| case MVT::v8i8: return "MVT::v8i8"; |
| case MVT::v4i16: return "MVT::v4i16"; |
| case MVT::v2i32: return "MVT::v2i32"; |
| case MVT::v1i64: return "MVT::v1i64"; |
| case MVT::v16i8: return "MVT::v16i8"; |
| case MVT::v8i16: return "MVT::v8i16"; |
| case MVT::v4i32: return "MVT::v4i32"; |
| case MVT::v2i64: return "MVT::v2i64"; |
| case MVT::v2f32: return "MVT::v2f32"; |
| case MVT::v4f32: return "MVT::v4f32"; |
| case MVT::v2f64: return "MVT::v2f64"; |
| case MVT::v3i32: return "MVT::v3i32"; |
| case MVT::v3f32: return "MVT::v3f32"; |
| case MVT::iPTR: return "MVT::iPTR"; |
| default: assert(0 && "ILLEGAL VALUE TYPE!"); return ""; |
| } |
| } |
| |
| |
| /// getTarget - Return the current instance of the Target class. |
| /// |
| CodeGenTarget::CodeGenTarget() { |
| std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); |
| if (Targets.size() == 0) |
| throw std::string("ERROR: No 'Target' subclasses defined!"); |
| if (Targets.size() != 1) |
| throw std::string("ERROR: Multiple subclasses of Target defined!"); |
| TargetRec = Targets[0]; |
| } |
| |
| |
| const std::string &CodeGenTarget::getName() const { |
| return TargetRec->getName(); |
| } |
| |
| Record *CodeGenTarget::getInstructionSet() const { |
| return TargetRec->getValueAsDef("InstructionSet"); |
| } |
| |
| /// getAsmWriter - Return the AssemblyWriter definition for this target. |
| /// |
| Record *CodeGenTarget::getAsmWriter() const { |
| std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); |
| if (AsmWriterNum >= LI.size()) |
| throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!"; |
| return LI[AsmWriterNum]; |
| } |
| |
| void CodeGenTarget::ReadRegisters() const { |
| std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); |
| if (Regs.empty()) |
| throw std::string("No 'Register' subclasses defined!"); |
| |
| Registers.reserve(Regs.size()); |
| Registers.assign(Regs.begin(), Regs.end()); |
| } |
| |
| CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) { |
| DeclaredSpillSize = R->getValueAsInt("SpillSize"); |
| DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment"); |
| } |
| |
| const std::string &CodeGenRegister::getName() const { |
| return TheDef->getName(); |
| } |
| |
| void CodeGenTarget::ReadRegisterClasses() const { |
| std::vector<Record*> RegClasses = |
| Records.getAllDerivedDefinitions("RegisterClass"); |
| if (RegClasses.empty()) |
| throw std::string("No 'RegisterClass' subclasses defined!"); |
| |
| RegisterClasses.reserve(RegClasses.size()); |
| RegisterClasses.assign(RegClasses.begin(), RegClasses.end()); |
| } |
| |
| std::vector<unsigned char> CodeGenTarget::getRegisterVTs(Record *R) const { |
| std::vector<unsigned char> Result; |
| const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); |
| for (unsigned i = 0, e = RCs.size(); i != e; ++i) { |
| const CodeGenRegisterClass &RC = RegisterClasses[i]; |
| for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) { |
| if (R == RC.Elements[ei]) { |
| const std::vector<MVT::ValueType> &InVTs = RC.getValueTypes(); |
| for (unsigned i = 0, e = InVTs.size(); i != e; ++i) |
| Result.push_back(InVTs[i]); |
| } |
| } |
| } |
| return Result; |
| } |
| |
| |
| CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) { |
| // Rename anonymous register classes. |
| if (R->getName().size() > 9 && R->getName()[9] == '.') { |
| static unsigned AnonCounter = 0; |
| R->setName("AnonRegClass_"+utostr(AnonCounter++)); |
| } |
| |
| std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); |
| for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { |
| Record *Type = TypeList[i]; |
| if (!Type->isSubClassOf("ValueType")) |
| throw "RegTypes list member '" + Type->getName() + |
| "' does not derive from the ValueType class!"; |
| VTs.push_back(getValueType(Type)); |
| } |
| assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); |
| |
| std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList"); |
| for (unsigned i = 0, e = RegList.size(); i != e; ++i) { |
| Record *Reg = RegList[i]; |
| if (!Reg->isSubClassOf("Register")) |
| throw "Register Class member '" + Reg->getName() + |
| "' does not derive from the Register class!"; |
| Elements.push_back(Reg); |
| } |
| |
| std::vector<Record*> SubRegClassList = |
| R->getValueAsListOfDefs("SubRegClassList"); |
| for (unsigned i = 0, e = SubRegClassList.size(); i != e; ++i) { |
| Record *SubRegClass = SubRegClassList[i]; |
| if (!SubRegClass->isSubClassOf("RegisterClass")) |
| throw "Register Class member '" + SubRegClass->getName() + |
| "' does not derive from the RegisterClass class!"; |
| SubRegClasses.push_back(SubRegClass); |
| } |
| |
| // Allow targets to override the size in bits of the RegisterClass. |
| unsigned Size = R->getValueAsInt("Size"); |
| |
| Namespace = R->getValueAsString("Namespace"); |
| SpillSize = Size ? Size : MVT::getSizeInBits(VTs[0]); |
| SpillAlignment = R->getValueAsInt("Alignment"); |
| CopyCost = R->getValueAsInt("CopyCost"); |
| MethodBodies = R->getValueAsCode("MethodBodies"); |
| MethodProtos = R->getValueAsCode("MethodProtos"); |
| } |
| |
| const std::string &CodeGenRegisterClass::getName() const { |
| return TheDef->getName(); |
| } |
| |
| void CodeGenTarget::ReadLegalValueTypes() const { |
| const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses(); |
| for (unsigned i = 0, e = RCs.size(); i != e; ++i) |
| for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri) |
| LegalValueTypes.push_back(RCs[i].VTs[ri]); |
| |
| // Remove duplicates. |
| std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); |
| LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), |
| LegalValueTypes.end()), |
| LegalValueTypes.end()); |
| } |
| |
| |
| void CodeGenTarget::ReadInstructions() const { |
| std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); |
| if (Insts.size() <= 2) |
| throw std::string("No 'Instruction' subclasses defined!"); |
| |
| // Parse the instructions defined in the .td file. |
| std::string InstFormatName = |
| getAsmWriter()->getValueAsString("InstFormatName"); |
| |
| for (unsigned i = 0, e = Insts.size(); i != e; ++i) { |
| std::string AsmStr = Insts[i]->getValueAsString(InstFormatName); |
| Instructions.insert(std::make_pair(Insts[i]->getName(), |
| CodeGenInstruction(Insts[i], AsmStr))); |
| } |
| } |
| |
| /// getInstructionsByEnumValue - Return all of the instructions defined by the |
| /// target, ordered by their enum value. |
| void CodeGenTarget:: |
| getInstructionsByEnumValue(std::vector<const CodeGenInstruction*> |
| &NumberedInstructions) { |
| std::map<std::string, CodeGenInstruction>::const_iterator I; |
| I = getInstructions().find("PHI"); |
| if (I == Instructions.end()) throw "Could not find 'PHI' instruction!"; |
| const CodeGenInstruction *PHI = &I->second; |
| |
| I = getInstructions().find("INLINEASM"); |
| if (I == Instructions.end()) throw "Could not find 'INLINEASM' instruction!"; |
| const CodeGenInstruction *INLINEASM = &I->second; |
| |
| I = getInstructions().find("LABEL"); |
| if (I == Instructions.end()) throw "Could not find 'LABEL' instruction!"; |
| const CodeGenInstruction *LABEL = &I->second; |
| |
| I = getInstructions().find("EXTRACT_SUBREG"); |
| if (I == Instructions.end()) |
| throw "Could not find 'EXTRACT_SUBREG' instruction!"; |
| const CodeGenInstruction *EXTRACT_SUBREG = &I->second; |
| |
| I = getInstructions().find("INSERT_SUBREG"); |
| if (I == Instructions.end()) |
| throw "Could not find 'INSERT_SUBREG' instruction!"; |
| const CodeGenInstruction *INSERT_SUBREG = &I->second; |
| |
| // Print out the rest of the instructions now. |
| NumberedInstructions.push_back(PHI); |
| NumberedInstructions.push_back(INLINEASM); |
| NumberedInstructions.push_back(LABEL); |
| NumberedInstructions.push_back(EXTRACT_SUBREG); |
| NumberedInstructions.push_back(INSERT_SUBREG); |
| for (inst_iterator II = inst_begin(), E = inst_end(); II != E; ++II) |
| if (&II->second != PHI && |
| &II->second != INLINEASM && |
| &II->second != LABEL && |
| &II->second != EXTRACT_SUBREG && |
| &II->second != INSERT_SUBREG) |
| NumberedInstructions.push_back(&II->second); |
| } |
| |
| |
| /// isLittleEndianEncoding - Return whether this target encodes its instruction |
| /// in little-endian format, i.e. bits laid out in the order [0..n] |
| /// |
| bool CodeGenTarget::isLittleEndianEncoding() const { |
| return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); |
| } |
| |
| |
| |
| static void ParseConstraint(const std::string &CStr, CodeGenInstruction *I) { |
| // FIXME: Only supports TIED_TO for now. |
| std::string::size_type pos = CStr.find_first_of('='); |
| assert(pos != std::string::npos && "Unrecognized constraint"); |
| std::string Name = CStr.substr(0, pos); |
| |
| // TIED_TO: $src1 = $dst |
| std::string::size_type wpos = Name.find_first_of(" \t"); |
| if (wpos == std::string::npos) |
| throw "Illegal format for tied-to constraint: '" + CStr + "'"; |
| std::string DestOpName = Name.substr(0, wpos); |
| std::pair<unsigned,unsigned> DestOp = I->ParseOperandName(DestOpName, false); |
| |
| Name = CStr.substr(pos+1); |
| wpos = Name.find_first_not_of(" \t"); |
| if (wpos == std::string::npos) |
| throw "Illegal format for tied-to constraint: '" + CStr + "'"; |
| |
| std::pair<unsigned,unsigned> SrcOp = |
| I->ParseOperandName(Name.substr(wpos), false); |
| if (SrcOp > DestOp) |
| throw "Illegal tied-to operand constraint '" + CStr + "'"; |
| |
| |
| unsigned FlatOpNo = I->getFlattenedOperandNumber(SrcOp); |
| // Build the string for the operand. |
| std::string OpConstraint = |
| "((" + utostr(FlatOpNo) + " << 16) | (1 << TOI::TIED_TO))"; |
| |
| |
| if (!I->OperandList[DestOp.first].Constraints[DestOp.second].empty()) |
| throw "Operand '" + DestOpName + "' cannot have multiple constraints!"; |
| I->OperandList[DestOp.first].Constraints[DestOp.second] = OpConstraint; |
| } |
| |
| static void ParseConstraints(const std::string &CStr, CodeGenInstruction *I) { |
| // Make sure the constraints list for each operand is large enough to hold |
| // constraint info, even if none is present. |
| for (unsigned i = 0, e = I->OperandList.size(); i != e; ++i) |
| I->OperandList[i].Constraints.resize(I->OperandList[i].MINumOperands); |
| |
| if (CStr.empty()) return; |
| |
| const std::string delims(","); |
| std::string::size_type bidx, eidx; |
| |
| bidx = CStr.find_first_not_of(delims); |
| while (bidx != std::string::npos) { |
| eidx = CStr.find_first_of(delims, bidx); |
| if (eidx == std::string::npos) |
| eidx = CStr.length(); |
| |
| ParseConstraint(CStr.substr(bidx, eidx), I); |
| bidx = CStr.find_first_not_of(delims, eidx); |
| } |
| } |
| |
| CodeGenInstruction::CodeGenInstruction(Record *R, const std::string &AsmStr) |
| : TheDef(R), AsmString(AsmStr) { |
| Name = R->getValueAsString("Name"); |
| Namespace = R->getValueAsString("Namespace"); |
| |
| isReturn = R->getValueAsBit("isReturn"); |
| isBranch = R->getValueAsBit("isBranch"); |
| isIndirectBranch = R->getValueAsBit("isIndirectBranch"); |
| isBarrier = R->getValueAsBit("isBarrier"); |
| isCall = R->getValueAsBit("isCall"); |
| isLoad = R->getValueAsBit("isLoad"); |
| isStore = R->getValueAsBit("isStore"); |
| isImplicitDef= R->getValueAsBit("isImplicitDef"); |
| bool isTwoAddress = R->getValueAsBit("isTwoAddress"); |
| isPredicable = R->getValueAsBit("isPredicable"); |
| isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress"); |
| isCommutable = R->getValueAsBit("isCommutable"); |
| isTerminator = R->getValueAsBit("isTerminator"); |
| isReMaterializable = R->getValueAsBit("isReMaterializable"); |
| hasDelaySlot = R->getValueAsBit("hasDelaySlot"); |
| usesCustomDAGSchedInserter = R->getValueAsBit("usesCustomDAGSchedInserter"); |
| hasCtrlDep = R->getValueAsBit("hasCtrlDep"); |
| isNotDuplicable = R->getValueAsBit("isNotDuplicable"); |
| mayHaveSideEffects = R->getValueAsBit("mayHaveSideEffects"); |
| neverHasSideEffects = R->getValueAsBit("neverHasSideEffects"); |
| hasOptionalDef = false; |
| hasVariableNumberOfOperands = false; |
| |
| if (mayHaveSideEffects && neverHasSideEffects) |
| throw R->getName() + |
| ": cannot have both 'mayHaveSideEffects' and 'neverHasSideEffects' set!"; |
| |
| DagInit *DI; |
| try { |
| DI = R->getValueAsDag("OutOperandList"); |
| } catch (...) { |
| // Error getting operand list, just ignore it (sparcv9). |
| AsmString.clear(); |
| OperandList.clear(); |
| return; |
| } |
| NumDefs = DI->getNumArgs(); |
| |
| DagInit *IDI; |
| try { |
| IDI = R->getValueAsDag("InOperandList"); |
| } catch (...) { |
| // Error getting operand list, just ignore it (sparcv9). |
| AsmString.clear(); |
| OperandList.clear(); |
| return; |
| } |
| DI = (DagInit*)(new BinOpInit(BinOpInit::CONCAT, DI, IDI))->Fold(); |
| |
| unsigned MIOperandNo = 0; |
| std::set<std::string> OperandNames; |
| for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { |
| DefInit *Arg = dynamic_cast<DefInit*>(DI->getArg(i)); |
| if (!Arg) |
| throw "Illegal operand for the '" + R->getName() + "' instruction!"; |
| |
| Record *Rec = Arg->getDef(); |
| std::string PrintMethod = "printOperand"; |
| unsigned NumOps = 1; |
| DagInit *MIOpInfo = 0; |
| if (Rec->isSubClassOf("Operand")) { |
| PrintMethod = Rec->getValueAsString("PrintMethod"); |
| MIOpInfo = Rec->getValueAsDag("MIOperandInfo"); |
| |
| // Verify that MIOpInfo has an 'ops' root value. |
| if (!dynamic_cast<DefInit*>(MIOpInfo->getOperator()) || |
| dynamic_cast<DefInit*>(MIOpInfo->getOperator()) |
| ->getDef()->getName() != "ops") |
| throw "Bad value for MIOperandInfo in operand '" + Rec->getName() + |
| "'\n"; |
| |
| // If we have MIOpInfo, then we have #operands equal to number of entries |
| // in MIOperandInfo. |
| if (unsigned NumArgs = MIOpInfo->getNumArgs()) |
| NumOps = NumArgs; |
| |
| if (Rec->isSubClassOf("PredicateOperand")) |
| isPredicable = true; |
| else if (Rec->isSubClassOf("OptionalDefOperand")) |
| hasOptionalDef = true; |
| } else if (Rec->getName() == "variable_ops") { |
| hasVariableNumberOfOperands = true; |
| continue; |
| } else if (!Rec->isSubClassOf("RegisterClass") && |
| Rec->getName() != "ptr_rc") |
| throw "Unknown operand class '" + Rec->getName() + |
| "' in instruction '" + R->getName() + "' instruction!"; |
| |
| // Check that the operand has a name and that it's unique. |
| if (DI->getArgName(i).empty()) |
| throw "In instruction '" + R->getName() + "', operand #" + utostr(i) + |
| " has no name!"; |
| if (!OperandNames.insert(DI->getArgName(i)).second) |
| throw "In instruction '" + R->getName() + "', operand #" + utostr(i) + |
| " has the same name as a previous operand!"; |
| |
| OperandList.push_back(OperandInfo(Rec, DI->getArgName(i), PrintMethod, |
| MIOperandNo, NumOps, MIOpInfo)); |
| MIOperandNo += NumOps; |
| } |
| |
| // Parse Constraints. |
| ParseConstraints(R->getValueAsString("Constraints"), this); |
| |
| // For backward compatibility: isTwoAddress means operand 1 is tied to |
| // operand 0. |
| if (isTwoAddress) { |
| if (!OperandList[1].Constraints[0].empty()) |
| throw R->getName() + ": cannot use isTwoAddress property: instruction " |
| "already has constraint set!"; |
| OperandList[1].Constraints[0] = "((0 << 16) | (1 << TOI::TIED_TO))"; |
| } |
| |
| // Any operands with unset constraints get 0 as their constraint. |
| for (unsigned op = 0, e = OperandList.size(); op != e; ++op) |
| for (unsigned j = 0, e = OperandList[op].MINumOperands; j != e; ++j) |
| if (OperandList[op].Constraints[j].empty()) |
| OperandList[op].Constraints[j] = "0"; |
| |
| // Parse the DisableEncoding field. |
| std::string DisableEncoding = R->getValueAsString("DisableEncoding"); |
| while (1) { |
| std::string OpName = getToken(DisableEncoding, " ,\t"); |
| if (OpName.empty()) break; |
| |
| // Figure out which operand this is. |
| std::pair<unsigned,unsigned> Op = ParseOperandName(OpName, false); |
| |
| // Mark the operand as not-to-be encoded. |
| if (Op.second >= OperandList[Op.first].DoNotEncode.size()) |
| OperandList[Op.first].DoNotEncode.resize(Op.second+1); |
| OperandList[Op.first].DoNotEncode[Op.second] = true; |
| } |
| } |
| |
| |
| |
| /// getOperandNamed - Return the index of the operand with the specified |
| /// non-empty name. If the instruction does not have an operand with the |
| /// specified name, throw an exception. |
| /// |
| unsigned CodeGenInstruction::getOperandNamed(const std::string &Name) const { |
| assert(!Name.empty() && "Cannot search for operand with no name!"); |
| for (unsigned i = 0, e = OperandList.size(); i != e; ++i) |
| if (OperandList[i].Name == Name) return i; |
| throw "Instruction '" + TheDef->getName() + |
| "' does not have an operand named '$" + Name + "'!"; |
| } |
| |
| std::pair<unsigned,unsigned> |
| CodeGenInstruction::ParseOperandName(const std::string &Op, |
| bool AllowWholeOp) { |
| if (Op.empty() || Op[0] != '$') |
| throw TheDef->getName() + ": Illegal operand name: '" + Op + "'"; |
| |
| std::string OpName = Op.substr(1); |
| std::string SubOpName; |
| |
| // Check to see if this is $foo.bar. |
| std::string::size_type DotIdx = OpName.find_first_of("."); |
| if (DotIdx != std::string::npos) { |
| SubOpName = OpName.substr(DotIdx+1); |
| if (SubOpName.empty()) |
| throw TheDef->getName() + ": illegal empty suboperand name in '" +Op +"'"; |
| OpName = OpName.substr(0, DotIdx); |
| } |
| |
| unsigned OpIdx = getOperandNamed(OpName); |
| |
| if (SubOpName.empty()) { // If no suboperand name was specified: |
| // If one was needed, throw. |
| if (OperandList[OpIdx].MINumOperands > 1 && !AllowWholeOp && |
| SubOpName.empty()) |
| throw TheDef->getName() + ": Illegal to refer to" |
| " whole operand part of complex operand '" + Op + "'"; |
| |
| // Otherwise, return the operand. |
| return std::make_pair(OpIdx, 0U); |
| } |
| |
| // Find the suboperand number involved. |
| DagInit *MIOpInfo = OperandList[OpIdx].MIOperandInfo; |
| if (MIOpInfo == 0) |
| throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'"; |
| |
| // Find the operand with the right name. |
| for (unsigned i = 0, e = MIOpInfo->getNumArgs(); i != e; ++i) |
| if (MIOpInfo->getArgName(i) == SubOpName) |
| return std::make_pair(OpIdx, i); |
| |
| // Otherwise, didn't find it! |
| throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'"; |
| } |
| |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ComplexPattern implementation |
| // |
| ComplexPattern::ComplexPattern(Record *R) { |
| Ty = ::getValueType(R->getValueAsDef("Ty")); |
| NumOperands = R->getValueAsInt("NumOperands"); |
| SelectFunc = R->getValueAsString("SelectFunc"); |
| RootNodes = R->getValueAsListOfDefs("RootNodes"); |
| |
| // Parse the properties. |
| Properties = 0; |
| std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); |
| for (unsigned i = 0, e = PropList.size(); i != e; ++i) |
| if (PropList[i]->getName() == "SDNPHasChain") { |
| Properties |= 1 << SDNPHasChain; |
| } else if (PropList[i]->getName() == "SDNPOptInFlag") { |
| Properties |= 1 << SDNPOptInFlag; |
| } else { |
| cerr << "Unsupported SD Node property '" << PropList[i]->getName() |
| << "' on ComplexPattern '" << R->getName() << "'!\n"; |
| exit(1); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CodeGenIntrinsic Implementation |
| //===----------------------------------------------------------------------===// |
| |
| std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC) { |
| std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); |
| |
| std::vector<CodeGenIntrinsic> Result; |
| |
| // If we are in the context of a target .td file, get the target info so that |
| // we can decode the current intptr_t. |
| CodeGenTarget *CGT = 0; |
| if (Records.getClass("Target") && |
| Records.getAllDerivedDefinitions("Target").size() == 1) |
| CGT = new CodeGenTarget(); |
| |
| for (unsigned i = 0, e = I.size(); i != e; ++i) |
| Result.push_back(CodeGenIntrinsic(I[i], CGT)); |
| delete CGT; |
| return Result; |
| } |
| |
| CodeGenIntrinsic::CodeGenIntrinsic(Record *R, CodeGenTarget *CGT) { |
| TheDef = R; |
| std::string DefName = R->getName(); |
| ModRef = WriteMem; |
| isOverloaded = false; |
| |
| if (DefName.size() <= 4 || |
| std::string(DefName.begin(), DefName.begin()+4) != "int_") |
| throw "Intrinsic '" + DefName + "' does not start with 'int_'!"; |
| EnumName = std::string(DefName.begin()+4, DefName.end()); |
| if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. |
| GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); |
| TargetPrefix = R->getValueAsString("TargetPrefix"); |
| Name = R->getValueAsString("LLVMName"); |
| if (Name == "") { |
| // If an explicit name isn't specified, derive one from the DefName. |
| Name = "llvm."; |
| for (unsigned i = 0, e = EnumName.size(); i != e; ++i) |
| if (EnumName[i] == '_') |
| Name += '.'; |
| else |
| Name += EnumName[i]; |
| } else { |
| // Verify it starts with "llvm.". |
| if (Name.size() <= 5 || |
| std::string(Name.begin(), Name.begin()+5) != "llvm.") |
| throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"; |
| } |
| |
| // If TargetPrefix is specified, make sure that Name starts with |
| // "llvm.<targetprefix>.". |
| if (!TargetPrefix.empty()) { |
| if (Name.size() < 6+TargetPrefix.size() || |
| std::string(Name.begin()+5, Name.begin()+6+TargetPrefix.size()) |
| != (TargetPrefix+".")) |
| throw "Intrinsic '" + DefName + "' does not start with 'llvm." + |
| TargetPrefix + ".'!"; |
| } |
| |
| // Parse the list of argument types. |
| ListInit *TypeList = R->getValueAsListInit("Types"); |
| for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { |
| Record *TyEl = TypeList->getElementAsRecord(i); |
| assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); |
| MVT::ValueType VT = getValueType(TyEl->getValueAsDef("VT")); |
| isOverloaded |= VT == MVT::iAny || VT == MVT::fAny; |
| ArgVTs.push_back(VT); |
| ArgTypeDefs.push_back(TyEl); |
| } |
| if (ArgVTs.size() == 0) |
| throw "Intrinsic '"+DefName+"' needs at least a type for the ret value!"; |
| |
| |
| // Parse the intrinsic properties. |
| ListInit *PropList = R->getValueAsListInit("Properties"); |
| for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { |
| Record *Property = PropList->getElementAsRecord(i); |
| assert(Property->isSubClassOf("IntrinsicProperty") && |
| "Expected a property!"); |
| |
| if (Property->getName() == "IntrNoMem") |
| ModRef = NoMem; |
| else if (Property->getName() == "IntrReadArgMem") |
| ModRef = ReadArgMem; |
| else if (Property->getName() == "IntrReadMem") |
| ModRef = ReadMem; |
| else if (Property->getName() == "IntrWriteArgMem") |
| ModRef = WriteArgMem; |
| else if (Property->getName() == "IntrWriteMem") |
| ModRef = WriteMem; |
| else |
| assert(0 && "Unknown property!"); |
| } |
| } |