| //===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// |
| // |
| // This file defines a simple peephole instruction selector for the x86 platform |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "X86InstrBuilder.h" |
| #include "llvm/Function.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iOperators.h" |
| #include "llvm/iOther.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/Type.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Pass.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include <map> |
| |
| using namespace MOTy; // Get Use, Def, UseAndDef |
| |
| |
| /// BMI - A special BuildMI variant that takes an iterator to insert the |
| /// instruction at as well as a basic block. |
| /// this is the version for when you have a destination register in mind. |
| inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator &I, |
| MachineOpCode Opcode, |
| unsigned NumOperands, |
| unsigned DestReg) { |
| MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true); |
| I = ++MBB->insert(I, MI); |
| return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def); |
| } |
| |
| /// BMI - A special BuildMI variant that takes an iterator to insert the |
| /// instruction at as well as a basic block. |
| inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator &I, |
| MachineOpCode Opcode, |
| unsigned NumOperands) { |
| MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true); |
| I = ++MBB->insert(I, MI); |
| return MachineInstrBuilder(MI); |
| } |
| |
| |
| namespace { |
| struct ISel : public FunctionPass, InstVisitor<ISel> { |
| TargetMachine &TM; |
| MachineFunction *F; // The function we are compiling into |
| MachineBasicBlock *BB; // The current MBB we are compiling |
| |
| unsigned CurReg; |
| std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs |
| |
| // MBBMap - Mapping between LLVM BB -> Machine BB |
| std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; |
| |
| ISel(TargetMachine &tm) |
| : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {} |
| |
| /// runOnFunction - Top level implementation of instruction selection for |
| /// the entire function. |
| /// |
| bool runOnFunction(Function &Fn) { |
| F = &MachineFunction::construct(&Fn, TM); |
| |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); |
| |
| // Instruction select everything except PHI nodes |
| visit(Fn); |
| |
| // Select the PHI nodes |
| SelectPHINodes(); |
| |
| RegMap.clear(); |
| MBBMap.clear(); |
| CurReg = MRegisterInfo::FirstVirtualRegister; |
| F = 0; |
| return false; // We never modify the LLVM itself. |
| } |
| |
| /// visitBasicBlock - This method is called when we are visiting a new basic |
| /// block. This simply creates a new MachineBasicBlock to emit code into |
| /// and adds it to the current MachineFunction. Subsequent visit* for |
| /// instructions will be invoked for all instructions in the basic block. |
| /// |
| void visitBasicBlock(BasicBlock &LLVM_BB) { |
| BB = MBBMap[&LLVM_BB]; |
| } |
| |
| |
| /// SelectPHINodes - Insert machine code to generate phis. This is tricky |
| /// because we have to generate our sources into the source basic blocks, |
| /// not the current one. |
| /// |
| void SelectPHINodes(); |
| |
| // Visitation methods for various instructions. These methods simply emit |
| // fixed X86 code for each instruction. |
| // |
| |
| // Control flow operators |
| void visitReturnInst(ReturnInst &RI); |
| void visitBranchInst(BranchInst &BI); |
| void visitCallInst(CallInst &I); |
| |
| // Arithmetic operators |
| void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); |
| void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } |
| void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } |
| void doMultiply(unsigned destReg, const Type *resultType, |
| unsigned op0Reg, unsigned op1Reg, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator &MBBI); |
| void visitMul(BinaryOperator &B); |
| |
| void visitDiv(BinaryOperator &B) { visitDivRem(B); } |
| void visitRem(BinaryOperator &B) { visitDivRem(B); } |
| void visitDivRem(BinaryOperator &B); |
| |
| // Bitwise operators |
| void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } |
| void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } |
| void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } |
| |
| // Binary comparison operators |
| void visitSetCCInst(SetCondInst &I, unsigned OpNum); |
| void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); } |
| void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); } |
| void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); } |
| void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); } |
| void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); } |
| void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); } |
| |
| // Memory Instructions |
| void visitLoadInst(LoadInst &I); |
| void visitStoreInst(StoreInst &I); |
| void visitGetElementPtrInst(GetElementPtrInst &I); |
| void visitMallocInst(MallocInst &I); |
| void visitFreeInst(FreeInst &I); |
| void visitAllocaInst(AllocaInst &I); |
| |
| // Other operators |
| void visitShiftInst(ShiftInst &I); |
| void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass |
| void visitCastInst(CastInst &I); |
| |
| void visitInstruction(Instruction &I) { |
| std::cerr << "Cannot instruction select: " << I; |
| abort(); |
| } |
| |
| /// promote32 - Make a value 32-bits wide, and put it somewhere. |
| void promote32 (const unsigned targetReg, Value *v); |
| |
| // emitGEPOperation - Common code shared between visitGetElementPtrInst and |
| // constant expression GEP support. |
| // |
| void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP, |
| Value *Src, User::op_iterator IdxBegin, |
| User::op_iterator IdxEnd, unsigned TargetReg); |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void copyConstantToRegister(Constant *C, unsigned Reg, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator &MBBI); |
| |
| /// makeAnotherReg - This method returns the next register number |
| /// we haven't yet used. |
| unsigned makeAnotherReg(const Type *Ty) { |
| // Add the mapping of regnumber => reg class to MachineFunction |
| F->addRegMap(CurReg, TM.getRegisterInfo()->getRegClassForType(Ty)); |
| return CurReg++; |
| } |
| |
| /// getReg - This method turns an LLVM value into a register number. This |
| /// is guaranteed to produce the same register number for a particular value |
| /// every time it is queried. |
| /// |
| unsigned getReg(Value &V) { return getReg(&V); } // Allow references |
| unsigned getReg(Value *V) { |
| // Just append to the end of the current bb. |
| MachineBasicBlock::iterator It = BB->end(); |
| return getReg(V, BB, It); |
| } |
| unsigned getReg(Value *V, MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator &IPt) { |
| unsigned &Reg = RegMap[V]; |
| if (Reg == 0) { |
| Reg = makeAnotherReg(V->getType()); |
| RegMap[V] = Reg; |
| } |
| |
| // If this operand is a constant, emit the code to copy the constant into |
| // the register here... |
| // |
| if (Constant *C = dyn_cast<Constant>(V)) { |
| copyConstantToRegister(C, Reg, BB, IPt); |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // Move the address of the global into the register |
| BMI(MBB, IPt, X86::MOVir32, 1, Reg).addReg(GV); |
| } else if (Argument *A = dyn_cast<Argument>(V)) { |
| // Find the position of the argument in the argument list. |
| const Function *f = F->getFunction (); |
| // The function's arguments look like this: |
| // [EBP] -- copy of old EBP |
| // [EBP + 4] -- return address |
| // [EBP + 8] -- first argument (leftmost lexically) |
| // So we want to start with counter = 2. |
| int counter = 2, argPos = -1; |
| for (Function::const_aiterator ai = f->abegin (), ae = f->aend (); |
| ai != ae; ++ai) { |
| if (&(*ai) == A) { |
| argPos = counter; |
| break; // Only need to find it once. ;-) |
| } |
| ++counter; |
| } |
| assert (argPos != -1 |
| && "Argument not found in current function's argument list"); |
| // Load it out of the stack frame at EBP + 4*argPos. |
| addRegOffset(BMI(MBB, IPt, X86::MOVmr32, 4, Reg), X86::EBP, 4*argPos); |
| } |
| |
| return Reg; |
| } |
| }; |
| } |
| |
| /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86 |
| /// Representation. |
| /// |
| enum TypeClass { |
| cByte, cShort, cInt, cLong, cFloat, cDouble |
| }; |
| |
| /// getClass - Turn a primitive type into a "class" number which is based on the |
| /// size of the type, and whether or not it is floating point. |
| /// |
| static inline TypeClass getClass(const Type *Ty) { |
| switch (Ty->getPrimitiveID()) { |
| case Type::SByteTyID: |
| case Type::UByteTyID: return cByte; // Byte operands are class #0 |
| case Type::ShortTyID: |
| case Type::UShortTyID: return cShort; // Short operands are class #1 |
| case Type::IntTyID: |
| case Type::UIntTyID: |
| case Type::PointerTyID: return cInt; // Int's and pointers are class #2 |
| |
| case Type::LongTyID: |
| case Type::ULongTyID: //return cLong; // Longs are class #3 |
| return cInt; // FIXME: LONGS ARE TREATED AS INTS! |
| |
| case Type::FloatTyID: return cFloat; // Float is class #4 |
| case Type::DoubleTyID: return cDouble; // Doubles are class #5 |
| default: |
| assert(0 && "Invalid type to getClass!"); |
| return cByte; // not reached |
| } |
| } |
| |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void ISel::copyConstantToRegister(Constant *C, unsigned R, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator &IP) { |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| if (CE->getOpcode() == Instruction::GetElementPtr) { |
| emitGEPOperation(BB, IP, CE->getOperand(0), |
| CE->op_begin()+1, CE->op_end(), R); |
| return; |
| } |
| |
| std::cerr << "Offending expr: " << C << "\n"; |
| assert (0 && "Constant expressions not yet handled!\n"); |
| } |
| |
| if (C->getType()->isIntegral()) { |
| unsigned Class = getClass(C->getType()); |
| assert(Class != 3 && "Type not handled yet!"); |
| |
| static const unsigned IntegralOpcodeTab[] = { |
| X86::MOVir8, X86::MOVir16, X86::MOVir32 |
| }; |
| |
| if (C->getType()->isSigned()) { |
| ConstantSInt *CSI = cast<ConstantSInt>(C); |
| BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue()); |
| } else { |
| ConstantUInt *CUI = cast<ConstantUInt>(C); |
| BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue()); |
| } |
| } else if (isa<ConstantPointerNull>(C)) { |
| // Copy zero (null pointer) to the register. |
| BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0); |
| } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) { |
| unsigned SrcReg = getReg(CPR->getValue(), BB, IP); |
| BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg); |
| } else { |
| std::cerr << "Offending constant: " << C << "\n"; |
| assert(0 && "Type not handled yet!"); |
| } |
| } |
| |
| /// SelectPHINodes - Insert machine code to generate phis. This is tricky |
| /// because we have to generate our sources into the source basic blocks, not |
| /// the current one. |
| /// |
| void ISel::SelectPHINodes() { |
| const Function &LF = *F->getFunction(); // The LLVM function... |
| for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { |
| const BasicBlock *BB = I; |
| MachineBasicBlock *MBB = MBBMap[I]; |
| |
| // Loop over all of the PHI nodes in the LLVM basic block... |
| unsigned NumPHIs = 0; |
| for (BasicBlock::const_iterator I = BB->begin(); |
| PHINode *PN = (PHINode*)dyn_cast<PHINode>(&*I); ++I) { |
| // Create a new machine instr PHI node, and insert it. |
| MachineInstr *MI = BuildMI(X86::PHI, PN->getNumOperands(), getReg(*PN)); |
| MBB->insert(MBB->begin()+NumPHIs++, MI); // Insert it at the top of the BB |
| |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)]; |
| |
| // Get the incoming value into a virtual register. If it is not already |
| // available in a virtual register, insert the computation code into |
| // PredMBB |
| MachineBasicBlock::iterator PI = PredMBB->end()-1; |
| MI->addRegOperand(getReg(PN->getIncomingValue(i), PredMBB, PI)); |
| |
| |
| // FIXME: Pass in the MachineBasicBlocks instead of the basic blocks... |
| MI->addPCDispOperand(PN->getIncomingBlock(i)); // PredMBB |
| } |
| } |
| } |
| } |
| |
| |
| |
| /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized |
| /// register, then move it to wherever the result should be. |
| /// We handle FP setcc instructions by pushing them, doing a |
| /// compare-and-pop-twice, and then copying the concodes to the main |
| /// processor's concodes (I didn't make this up, it's in the Intel manual) |
| /// |
| void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) { |
| // The arguments are already supposed to be of the same type. |
| const Type *CompTy = I.getOperand(0)->getType(); |
| unsigned reg1 = getReg(I.getOperand(0)); |
| unsigned reg2 = getReg(I.getOperand(1)); |
| |
| unsigned Class = getClass(CompTy); |
| switch (Class) { |
| // Emit: cmp <var1>, <var2> (do the comparison). We can |
| // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with |
| // 32-bit. |
| case cByte: |
| BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2); |
| break; |
| case cShort: |
| BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2); |
| break; |
| case cInt: |
| BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2); |
| break; |
| |
| // Push the variables on the stack with fldl opcodes. |
| // FIXME: assuming var1, var2 are in memory, if not, spill to |
| // stack first |
| case cFloat: // Floats |
| BuildMI (BB, X86::FLDr32, 1).addReg (reg1); |
| BuildMI (BB, X86::FLDr32, 1).addReg (reg2); |
| break; |
| case cDouble: // Doubles |
| BuildMI (BB, X86::FLDr64, 1).addReg (reg1); |
| BuildMI (BB, X86::FLDr64, 1).addReg (reg2); |
| break; |
| case cLong: |
| default: |
| visitInstruction(I); |
| } |
| |
| if (CompTy->isFloatingPoint()) { |
| // (Non-trapping) compare and pop twice. |
| BuildMI (BB, X86::FUCOMPP, 0); |
| // Move fp status word (concodes) to ax. |
| BuildMI (BB, X86::FNSTSWr8, 1, X86::AX); |
| // Load real concodes from ax. |
| BuildMI (BB, X86::SAHF, 1).addReg(X86::AH); |
| } |
| |
| // Emit setOp instruction (extract concode; clobbers ax), |
| // using the following mapping: |
| // LLVM -> X86 signed X86 unsigned |
| // ----- ----- ----- |
| // seteq -> sete sete |
| // setne -> setne setne |
| // setlt -> setl setb |
| // setgt -> setg seta |
| // setle -> setle setbe |
| // setge -> setge setae |
| |
| static const unsigned OpcodeTab[2][6] = { |
| {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr}, |
| {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr}, |
| }; |
| |
| BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, X86::AL); |
| |
| // Put it in the result using a move. |
| BuildMI (BB, X86::MOVrr8, 1, getReg(I)).addReg(X86::AL); |
| } |
| |
| /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide |
| /// operand, in the specified target register. |
| void |
| ISel::promote32 (unsigned targetReg, Value *v) |
| { |
| unsigned vReg = getReg (v); |
| unsigned Class = getClass (v->getType ()); |
| bool isUnsigned = v->getType ()->isUnsigned (); |
| assert (((Class == cByte) || (Class == cShort) || (Class == cInt)) |
| && "Unpromotable operand class in promote32"); |
| switch (Class) |
| { |
| case cByte: |
| // Extend value into target register (8->32) |
| if (isUnsigned) |
| BuildMI (BB, X86::MOVZXr32r8, 1, targetReg).addReg (vReg); |
| else |
| BuildMI (BB, X86::MOVSXr32r8, 1, targetReg).addReg (vReg); |
| break; |
| case cShort: |
| // Extend value into target register (16->32) |
| if (isUnsigned) |
| BuildMI (BB, X86::MOVZXr32r16, 1, targetReg).addReg (vReg); |
| else |
| BuildMI (BB, X86::MOVSXr32r16, 1, targetReg).addReg (vReg); |
| break; |
| case cInt: |
| // Move value into target register (32->32) |
| BuildMI (BB, X86::MOVrr32, 1, targetReg).addReg (vReg); |
| break; |
| } |
| } |
| |
| /// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such, |
| /// we have the following possibilities: |
| /// |
| /// ret void: No return value, simply emit a 'ret' instruction |
| /// ret sbyte, ubyte : Extend value into EAX and return |
| /// ret short, ushort: Extend value into EAX and return |
| /// ret int, uint : Move value into EAX and return |
| /// ret pointer : Move value into EAX and return |
| /// ret long, ulong : Move value into EAX/EDX and return |
| /// ret float/double : Top of FP stack |
| /// |
| void |
| ISel::visitReturnInst (ReturnInst &I) |
| { |
| if (I.getNumOperands () == 0) |
| { |
| // Emit a 'ret' instruction |
| BuildMI (BB, X86::RET, 0); |
| return; |
| } |
| Value *rv = I.getOperand (0); |
| unsigned Class = getClass (rv->getType ()); |
| switch (Class) |
| { |
| // integral return values: extend or move into EAX and return. |
| case cByte: |
| case cShort: |
| case cInt: |
| promote32 (X86::EAX, rv); |
| break; |
| // ret float/double: top of FP stack |
| // FLD <val> |
| case cFloat: // Floats |
| BuildMI (BB, X86::FLDr32, 1).addReg (getReg (rv)); |
| break; |
| case cDouble: // Doubles |
| BuildMI (BB, X86::FLDr64, 1).addReg (getReg (rv)); |
| break; |
| case cLong: |
| // ret long: use EAX(least significant 32 bits)/EDX (most |
| // significant 32)...uh, I think so Brain, but how do i call |
| // up the two parts of the value from inside this mouse |
| // cage? *zort* |
| default: |
| visitInstruction (I); |
| } |
| // Emit a 'ret' instruction |
| BuildMI (BB, X86::RET, 0); |
| } |
| |
| /// visitBranchInst - Handle conditional and unconditional branches here. Note |
| /// that since code layout is frozen at this point, that if we are trying to |
| /// jump to a block that is the immediate successor of the current block, we can |
| /// just make a fall-through. (but we don't currently). |
| /// |
| void |
| ISel::visitBranchInst (BranchInst & BI) |
| { |
| if (BI.isConditional ()) |
| { |
| BasicBlock *ifTrue = BI.getSuccessor (0); |
| BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious |
| |
| // simplest thing I can think of: compare condition with zero, |
| // followed by jump-if-equal to ifFalse, and jump-if-nonequal to |
| // ifTrue |
| unsigned int condReg = getReg (BI.getCondition ()); |
| BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0); |
| BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0)); |
| BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1)); |
| } |
| else // unconditional branch |
| { |
| BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0)); |
| } |
| } |
| |
| /// visitCallInst - Push args on stack and do a procedure call instruction. |
| void |
| ISel::visitCallInst (CallInst & CI) |
| { |
| // keep a counter of how many bytes we pushed on the stack |
| unsigned bytesPushed = 0; |
| |
| // Push the arguments on the stack in reverse order, as specified by |
| // the ABI. |
| for (unsigned i = CI.getNumOperands()-1; i >= 1; --i) |
| { |
| Value *v = CI.getOperand (i); |
| switch (getClass (v->getType ())) |
| { |
| case cByte: |
| case cShort: |
| // Promote V to 32 bits wide, and move the result into EAX, |
| // then push EAX. |
| promote32 (X86::EAX, v); |
| BuildMI (BB, X86::PUSHr32, 1).addReg (X86::EAX); |
| bytesPushed += 4; |
| break; |
| case cInt: |
| case cFloat: { |
| unsigned Reg = getReg(v); |
| BuildMI (BB, X86::PUSHr32, 1).addReg(Reg); |
| bytesPushed += 4; |
| break; |
| } |
| default: |
| // FIXME: long/ulong/double args not handled. |
| visitInstruction (CI); |
| break; |
| } |
| } |
| // Emit a CALL instruction with PC-relative displacement. |
| BuildMI (BB, X86::CALLpcrel32, 1).addPCDisp (CI.getCalledValue ()); |
| |
| // Adjust the stack by `bytesPushed' amount if non-zero |
| if (bytesPushed > 0) |
| BuildMI (BB, X86::ADDri32, 2).addReg(X86::ESP).addZImm(bytesPushed); |
| |
| // If there is a return value, scavenge the result from the location the call |
| // leaves it in... |
| // |
| if (CI.getType() != Type::VoidTy) { |
| unsigned resultTypeClass = getClass (CI.getType ()); |
| switch (resultTypeClass) { |
| case cByte: |
| case cShort: |
| case cInt: { |
| // Integral results are in %eax, or the appropriate portion |
| // thereof. |
| static const unsigned regRegMove[] = { |
| X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 |
| }; |
| static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX }; |
| BuildMI (BB, regRegMove[resultTypeClass], 1, |
| getReg (CI)).addReg (AReg[resultTypeClass]); |
| break; |
| } |
| case cFloat: |
| // Floating-point return values live in %st(0) (i.e., the top of |
| // the FP stack.) The general way to approach this is to do a |
| // FSTP to save the top of the FP stack on the real stack, then |
| // do a MOV to load the top of the real stack into the target |
| // register. |
| visitInstruction (CI); // FIXME: add the right args for the calls below |
| // BuildMI (BB, X86::FSTPm32, 0); |
| // BuildMI (BB, X86::MOVmr32, 0); |
| break; |
| default: |
| std::cerr << "Cannot get return value for call of type '" |
| << *CI.getType() << "'\n"; |
| visitInstruction(CI); |
| } |
| } |
| } |
| |
| /// visitSimpleBinary - Implement simple binary operators for integral types... |
| /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, |
| /// 4 for Xor. |
| /// |
| void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { |
| if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals |
| visitInstruction(B); |
| |
| unsigned Class = getClass(B.getType()); |
| if (Class > 2) // FIXME: Handle longs |
| visitInstruction(B); |
| |
| static const unsigned OpcodeTab[][4] = { |
| // Arithmetic operators |
| { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD |
| { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB |
| |
| // Bitwise operators |
| { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND |
| { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR |
| { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR |
| }; |
| |
| unsigned Opcode = OpcodeTab[OperatorClass][Class]; |
| unsigned Op0r = getReg(B.getOperand(0)); |
| unsigned Op1r = getReg(B.getOperand(1)); |
| BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r); |
| } |
| |
| /// doMultiply - Emit appropriate instructions to multiply together |
| /// the registers op0Reg and op1Reg, and put the result in destReg. |
| /// The type of the result should be given as resultType. |
| void |
| ISel::doMultiply(unsigned destReg, const Type *resultType, |
| unsigned op0Reg, unsigned op1Reg, |
| MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI) |
| { |
| unsigned Class = getClass (resultType); |
| |
| // FIXME: |
| assert (Class <= 2 && "Someday, we will learn how to multiply" |
| "longs and floating-point numbers. This is not that day."); |
| |
| static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX }; |
| static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 }; |
| static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 }; |
| unsigned Reg = Regs[Class]; |
| |
| // Emit a MOV to put the first operand into the appropriately-sized |
| // subreg of EAX. |
| BMI(MBB, MBBI, MovOpcode[Class], 1, Reg).addReg (op0Reg); |
| |
| // Emit the appropriate multiply instruction. |
| BMI(MBB, MBBI, MulOpcode[Class], 1).addReg (op1Reg); |
| |
| // Emit another MOV to put the result into the destination register. |
| BMI(MBB, MBBI, MovOpcode[Class], 1, destReg).addReg (Reg); |
| } |
| |
| /// visitMul - Multiplies are not simple binary operators because they must deal |
| /// with the EAX register explicitly. |
| /// |
| void ISel::visitMul(BinaryOperator &I) { |
| MachineBasicBlock::iterator MBBI = BB->end(); |
| doMultiply (getReg (I), I.getType (), |
| getReg (I.getOperand (0)), getReg (I.getOperand (1)), |
| BB, MBBI); |
| } |
| |
| |
| /// visitDivRem - Handle division and remainder instructions... these |
| /// instruction both require the same instructions to be generated, they just |
| /// select the result from a different register. Note that both of these |
| /// instructions work differently for signed and unsigned operands. |
| /// |
| void ISel::visitDivRem(BinaryOperator &I) { |
| unsigned Class = getClass(I.getType()); |
| if (Class > 2) // FIXME: Handle longs |
| visitInstruction(I); |
| |
| static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX }; |
| static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 }; |
| static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ }; |
| static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 }; |
| static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX }; |
| |
| static const unsigned DivOpcode[][4] = { |
| { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division |
| { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division |
| }; |
| |
| bool isSigned = I.getType()->isSigned(); |
| unsigned Reg = Regs[Class]; |
| unsigned ExtReg = ExtRegs[Class]; |
| unsigned Op0Reg = getReg(I.getOperand(0)); |
| unsigned Op1Reg = getReg(I.getOperand(1)); |
| |
| // Put the first operand into one of the A registers... |
| BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg); |
| |
| if (isSigned) { |
| // Emit a sign extension instruction... |
| BuildMI(BB, ExtOpcode[Class], 0); |
| } else { |
| // If unsigned, emit a zeroing instruction... (reg = xor reg, reg) |
| BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg); |
| } |
| |
| // Emit the appropriate divide or remainder instruction... |
| BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg); |
| |
| // Figure out which register we want to pick the result out of... |
| unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg; |
| |
| // Put the result into the destination register... |
| BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg); |
| } |
| |
| |
| /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here |
| /// for constant immediate shift values, and for constant immediate |
| /// shift values equal to 1. Even the general case is sort of special, |
| /// because the shift amount has to be in CL, not just any old register. |
| /// |
| void ISel::visitShiftInst (ShiftInst &I) { |
| unsigned Op0r = getReg (I.getOperand(0)); |
| unsigned DestReg = getReg(I); |
| bool isLeftShift = I.getOpcode() == Instruction::Shl; |
| bool isOperandSigned = I.getType()->isUnsigned(); |
| unsigned OperandClass = getClass(I.getType()); |
| |
| if (OperandClass > 2) |
| visitInstruction(I); // Can't handle longs yet! |
| |
| if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1))) |
| { |
| // The shift amount is constant, guaranteed to be a ubyte. Get its value. |
| assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); |
| unsigned char shAmt = CUI->getValue(); |
| |
| static const unsigned ConstantOperand[][4] = { |
| { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR |
| { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR |
| { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL |
| { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL |
| }; |
| |
| const unsigned *OpTab = // Figure out the operand table to use |
| ConstantOperand[isLeftShift*2+isOperandSigned]; |
| |
| // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.) |
| BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt); |
| } |
| else |
| { |
| // The shift amount is non-constant. |
| // |
| // In fact, you can only shift with a variable shift amount if |
| // that amount is already in the CL register, so we have to put it |
| // there first. |
| // |
| |
| // Emit: move cl, shiftAmount (put the shift amount in CL.) |
| BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1))); |
| |
| // This is a shift right (SHR). |
| static const unsigned NonConstantOperand[][4] = { |
| { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR |
| { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR |
| { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL |
| { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL |
| }; |
| |
| const unsigned *OpTab = // Figure out the operand table to use |
| NonConstantOperand[isLeftShift*2+isOperandSigned]; |
| |
| BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r); |
| } |
| } |
| |
| |
| /// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov' |
| /// instruction. |
| /// |
| void ISel::visitLoadInst(LoadInst &I) { |
| unsigned Class = getClass(I.getType()); |
| if (Class > 2) // FIXME: Handle longs and others... |
| visitInstruction(I); |
| |
| static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 }; |
| |
| unsigned AddressReg = getReg(I.getOperand(0)); |
| addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg); |
| } |
| |
| |
| /// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov' |
| /// instruction. |
| /// |
| void ISel::visitStoreInst(StoreInst &I) { |
| unsigned Class = getClass(I.getOperand(0)->getType()); |
| if (Class > 2) // FIXME: Handle longs and others... |
| visitInstruction(I); |
| |
| static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 }; |
| |
| unsigned ValReg = getReg(I.getOperand(0)); |
| unsigned AddressReg = getReg(I.getOperand(1)); |
| addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg); |
| } |
| |
| |
| /// visitCastInst - Here we have various kinds of copying with or without |
| /// sign extension going on. |
| void |
| ISel::visitCastInst (CastInst &CI) |
| { |
| const Type *targetType = CI.getType (); |
| Value *operand = CI.getOperand (0); |
| unsigned int operandReg = getReg (operand); |
| const Type *sourceType = operand->getType (); |
| unsigned int destReg = getReg (CI); |
| // |
| // Currently we handle: |
| // |
| // 1) cast * to bool |
| // |
| // 2) cast {sbyte, ubyte} to {sbyte, ubyte} |
| // cast {short, ushort} to {ushort, short} |
| // cast {int, uint, ptr} to {int, uint, ptr} |
| // |
| // 3) cast {sbyte, ubyte} to {ushort, short} |
| // cast {sbyte, ubyte} to {int, uint, ptr} |
| // cast {short, ushort} to {int, uint, ptr} |
| // |
| // 4) cast {int, uint, ptr} to {short, ushort} |
| // cast {int, uint, ptr} to {sbyte, ubyte} |
| // cast {short, ushort} to {sbyte, ubyte} |
| // |
| // 1) Implement casts to bool by using compare on the operand followed |
| // by set if not zero on the result. |
| if (targetType == Type::BoolTy) |
| { |
| BuildMI (BB, X86::CMPri8, 2).addReg (operandReg).addZImm (0); |
| BuildMI (BB, X86::SETNEr, 1, destReg); |
| return; |
| } |
| // 2) Implement casts between values of the same type class (as determined |
| // by getClass) by using a register-to-register move. |
| unsigned int srcClass = getClass (sourceType); |
| unsigned int targClass = getClass (targetType); |
| static const unsigned regRegMove[] = { |
| X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 |
| }; |
| if ((srcClass < 3) && (targClass < 3) && (srcClass == targClass)) |
| { |
| BuildMI (BB, regRegMove[srcClass], 1, destReg).addReg (operandReg); |
| return; |
| } |
| // 3) Handle cast of SMALLER int to LARGER int using a move with sign |
| // extension or zero extension, depending on whether the source type |
| // was signed. |
| if ((srcClass < 3) && (targClass < 3) && (srcClass < targClass)) |
| { |
| static const unsigned ops[] = { |
| X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, |
| X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16 |
| }; |
| unsigned srcSigned = sourceType->isSigned (); |
| BuildMI (BB, ops[3 * srcSigned + srcClass + targClass - 1], 1, |
| destReg).addReg (operandReg); |
| return; |
| } |
| // 4) Handle cast of LARGER int to SMALLER int using a move to EAX |
| // followed by a move out of AX or AL. |
| if ((srcClass < 3) && (targClass < 3) && (srcClass > targClass)) |
| { |
| static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX }; |
| BuildMI (BB, regRegMove[srcClass], 1, |
| AReg[srcClass]).addReg (operandReg); |
| BuildMI (BB, regRegMove[targClass], 1, destReg).addReg (AReg[srcClass]); |
| return; |
| } |
| // Anything we haven't handled already, we can't (yet) handle at all. |
| // |
| // FP to integral casts can be handled with FISTP to store onto the |
| // stack while converting to integer, followed by a MOV to load from |
| // the stack into the result register. Integral to FP casts can be |
| // handled with MOV to store onto the stack, followed by a FILD to |
| // load from the stack while converting to FP. For the moment, I |
| // can't quite get straight in my head how to borrow myself some |
| // stack space and write on it. Otherwise, this would be trivial. |
| visitInstruction (CI); |
| } |
| |
| /// visitGetElementPtrInst - I don't know, most programs don't have |
| /// getelementptr instructions, right? That means we can put off |
| /// implementing this, right? Right. This method emits machine |
| /// instructions to perform type-safe pointer arithmetic. I am |
| /// guessing this could be cleaned up somewhat to use fewer temporary |
| /// registers. |
| void |
| ISel::visitGetElementPtrInst (GetElementPtrInst &I) |
| { |
| MachineBasicBlock::iterator MI = BB->end(); |
| emitGEPOperation(BB, MI, I.getOperand(0), |
| I.op_begin()+1, I.op_end(), getReg(I)); |
| } |
| |
| void ISel::emitGEPOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator &IP, |
| Value *Src, User::op_iterator IdxBegin, |
| User::op_iterator IdxEnd, unsigned TargetReg) { |
| const TargetData &TD = TM.getTargetData(); |
| const Type *Ty = Src->getType(); |
| unsigned basePtrReg = getReg(Src, BB, IP); |
| |
| // GEPs have zero or more indices; we must perform a struct access |
| // or array access for each one. |
| for (GetElementPtrInst::op_iterator oi = IdxBegin, |
| oe = IdxEnd; oi != oe; ++oi) { |
| Value *idx = *oi; |
| unsigned nextBasePtrReg = makeAnotherReg(Type::UIntTy); |
| if (const StructType *StTy = dyn_cast <StructType> (Ty)) { |
| // It's a struct access. idx is the index into the structure, |
| // which names the field. This index must have ubyte type. |
| const ConstantUInt *CUI = cast <ConstantUInt> (idx); |
| assert (CUI->getType () == Type::UByteTy |
| && "Funny-looking structure index in GEP"); |
| // Use the TargetData structure to pick out what the layout of |
| // the structure is in memory. Since the structure index must |
| // be constant, we can get its value and use it to find the |
| // right byte offset from the StructLayout class's list of |
| // structure member offsets. |
| unsigned idxValue = CUI->getValue (); |
| unsigned memberOffset = |
| TD.getStructLayout (StTy)->MemberOffsets[idxValue]; |
| // Emit an ADD to add memberOffset to the basePtr. |
| BMI(MBB, IP, X86::ADDri32, 2, |
| nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset); |
| // The next type is the member of the structure selected by the |
| // index. |
| Ty = StTy->getElementTypes ()[idxValue]; |
| } else if (const SequentialType *SqTy = cast <SequentialType> (Ty)) { |
| // It's an array or pointer access: [ArraySize x ElementType]. |
| const Type *typeOfSequentialTypeIndex = SqTy->getIndexType (); |
| // idx is the index into the array. Unlike with structure |
| // indices, we may not know its actual value at code-generation |
| // time. |
| assert (idx->getType () == typeOfSequentialTypeIndex |
| && "Funny-looking array index in GEP"); |
| // We want to add basePtrReg to (idxReg * sizeof |
| // ElementType). First, we must find the size of the pointed-to |
| // type. (Not coincidentally, the next type is the type of the |
| // elements in the array.) |
| Ty = SqTy->getElementType (); |
| unsigned elementSize = TD.getTypeSize (Ty); |
| unsigned elementSizeReg = makeAnotherReg(typeOfSequentialTypeIndex); |
| copyConstantToRegister(ConstantSInt::get(typeOfSequentialTypeIndex, |
| elementSize), elementSizeReg, |
| BB, IP); |
| |
| unsigned idxReg = getReg(idx, BB, IP); |
| // Emit a MUL to multiply the register holding the index by |
| // elementSize, putting the result in memberOffsetReg. |
| unsigned memberOffsetReg = makeAnotherReg(Type::UIntTy); |
| doMultiply (memberOffsetReg, typeOfSequentialTypeIndex, |
| elementSizeReg, idxReg, BB, IP); |
| // Emit an ADD to add memberOffsetReg to the basePtr. |
| BMI(MBB, IP, X86::ADDrr32, 2, |
| nextBasePtrReg).addReg (basePtrReg).addReg (memberOffsetReg); |
| } |
| // Now that we are here, further indices refer to subtypes of this |
| // one, so we don't need to worry about basePtrReg itself, anymore. |
| basePtrReg = nextBasePtrReg; |
| } |
| // After we have processed all the indices, the result is left in |
| // basePtrReg. Move it to the register where we were expected to |
| // put the answer. A 32-bit move should do it, because we are in |
| // ILP32 land. |
| BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg (basePtrReg); |
| } |
| |
| |
| /// visitMallocInst - I know that personally, whenever I want to remember |
| /// something, I have to clear off some space in my brain. |
| void |
| ISel::visitMallocInst (MallocInst &I) |
| { |
| // We assume that by this point, malloc instructions have been |
| // lowered to calls, and dlsym will magically find malloc for us. |
| // So we do not want to see malloc instructions here. |
| visitInstruction (I); |
| } |
| |
| |
| /// visitFreeInst - same story as MallocInst |
| void |
| ISel::visitFreeInst (FreeInst &I) |
| { |
| // We assume that by this point, free instructions have been |
| // lowered to calls, and dlsym will magically find free for us. |
| // So we do not want to see free instructions here. |
| visitInstruction (I); |
| } |
| |
| |
| /// visitAllocaInst - I want some stack space. Come on, man, I said I |
| /// want some freakin' stack space. |
| void |
| ISel::visitAllocaInst (AllocaInst &I) |
| { |
| // Find the data size of the alloca inst's getAllocatedType. |
| const Type *allocatedType = I.getAllocatedType (); |
| const TargetData &TD = TM.DataLayout; |
| unsigned allocatedTypeSize = TD.getTypeSize (allocatedType); |
| // Keep stack 32-bit aligned. |
| unsigned int allocatedTypeWords = allocatedTypeSize / 4; |
| if (allocatedTypeSize % 4 != 0) { allocatedTypeWords++; } |
| // Subtract size from stack pointer, thereby allocating some space. |
| BuildMI (BB, X86::SUBri32, 1, X86::ESP).addZImm (allocatedTypeWords * 4); |
| // Put a pointer to the space into the result register, by copying |
| // the stack pointer. |
| BuildMI (BB, X86::MOVrr32, 1, getReg (I)).addReg (X86::ESP); |
| } |
| |
| |
| /// createSimpleX86InstructionSelector - This pass converts an LLVM function |
| /// into a machine code representation is a very simple peep-hole fashion. The |
| /// generated code sucks but the implementation is nice and simple. |
| /// |
| Pass *createSimpleX86InstructionSelector(TargetMachine &TM) { |
| return new ISel(TM); |
| } |