| //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements routines for folding instructions into simpler forms |
| // that do not require creating new instructions. This does constant folding |
| // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either |
| // returning a constant ("and i32 %x, 0" -> "0") or an already existing value |
| // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been |
| // simplified: This is usually true and assuming it simplifies the logic (if |
| // they have not been simplified then results are correct but maybe suboptimal). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Support/PatternMatch.h" |
| #include "llvm/Support/ValueHandle.h" |
| #include "llvm/Target/TargetData.h" |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define RecursionLimit 3 |
| |
| static Value *SimplifyAndInst(Value *, Value *, const TargetData *, |
| const DominatorTree *, unsigned); |
| static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *, |
| const DominatorTree *, unsigned); |
| static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *, |
| const DominatorTree *, unsigned); |
| static Value *SimplifyOrInst(Value *, Value *, const TargetData *, |
| const DominatorTree *, unsigned); |
| static Value *SimplifyXorInst(Value *, Value *, const TargetData *, |
| const DominatorTree *, unsigned); |
| |
| /// ValueDominatesPHI - Does the given value dominate the specified phi node? |
| static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) |
| // Arguments and constants dominate all instructions. |
| return true; |
| |
| // If we have a DominatorTree then do a precise test. |
| if (DT) |
| return DT->dominates(I, P); |
| |
| // Otherwise, if the instruction is in the entry block, and is not an invoke, |
| // then it obviously dominates all phi nodes. |
| if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && |
| !isa<InvokeInst>(I)) |
| return true; |
| |
| return false; |
| } |
| |
| /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning |
| /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is |
| /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. |
| /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". |
| /// Returns the simplified value, or null if no simplification was performed. |
| static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| unsigned OpcodeToExpand, const TargetData *TD, |
| const DominatorTree *DT, unsigned MaxRecurse) { |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return 0; |
| |
| // Check whether the expression has the form "(A op' B) op C". |
| if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) |
| if (Op0->getOpcode() == OpcodeToExpand) { |
| // It does! Try turning it into "(A op C) op' (B op C)". |
| Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; |
| // Do "A op C" and "B op C" both simplify? |
| if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) |
| if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) { |
| // They do! Return "L op' R" if it simplifies or is already available. |
| // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. |
| if ((L == A && R == B) || |
| (Instruction::isCommutative(OpcodeToExpand) && L == B && R == A)) |
| return LHS; |
| // Otherwise return "L op' R" if it simplifies. |
| if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,MaxRecurse)) |
| return V; |
| } |
| } |
| |
| // Check whether the expression has the form "A op (B op' C)". |
| if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) |
| if (Op1->getOpcode() == OpcodeToExpand) { |
| // It does! Try turning it into "(A op B) op' (A op C)". |
| Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); |
| // Do "A op B" and "A op C" both simplify? |
| if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) |
| if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) { |
| // They do! Return "L op' R" if it simplifies or is already available. |
| // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. |
| if ((L == B && R == C) || |
| (Instruction::isCommutative(OpcodeToExpand) && L == C && R == B)) |
| return RHS; |
| // Otherwise return "L op' R" if it simplifies. |
| if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,MaxRecurse)) |
| return V; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term |
| /// using the operation OpCodeToExtract. For example, when Opcode is Add and |
| /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)". |
| /// Returns the simplified value, or null if no simplification was performed. |
| static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| unsigned OpcodeToExtract, const TargetData *TD, |
| const DominatorTree *DT, unsigned MaxRecurse) { |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return 0; |
| |
| BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); |
| BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); |
| |
| if (!Op0 || Op0->getOpcode() != OpcodeToExtract || |
| !Op1 || Op1->getOpcode() != OpcodeToExtract) |
| return 0; |
| |
| // The expression has the form "(A op' B) op (C op' D)". |
| Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); |
| Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); |
| |
| // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)". |
| // Does the instruction have the form "(A op' B) op (A op' D)" or, in the |
| // commutative case, "(A op' B) op (C op' A)"? |
| if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) { |
| Value *DD = A == C ? D : C; |
| // Form "A op' (B op DD)" if it simplifies completely. |
| // Does "B op DD" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) { |
| // It does! Return "A op' V" if it simplifies or is already available. |
| // If V equals B then "A op' V" is just the LHS. |
| if (V == B) return LHS; |
| // Otherwise return "A op' V" if it simplifies. |
| if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) |
| return W; |
| } |
| } |
| |
| // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)". |
| // Does the instruction have the form "(A op' B) op (C op' B)" or, in the |
| // commutative case, "(A op' B) op (B op' D)"? |
| if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) { |
| Value *CC = B == D ? C : D; |
| // Form "(A op CC) op' B" if it simplifies completely.. |
| // Does "A op CC" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) { |
| // It does! Return "V op' B" if it simplifies or is already available. |
| // If V equals A then "V op' B" is just the LHS. |
| if (V == B) return LHS; |
| // Otherwise return "V op' B" if it simplifies. |
| if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) |
| return W; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// SimplifyAssociativeBinOp - Generic simplifications for associative binary |
| /// operations. Returns the simpler value, or null if none was found. |
| static Value *SimplifyAssociativeBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| const TargetData *TD, |
| const DominatorTree *DT, |
| unsigned MaxRecurse) { |
| assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); |
| |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return 0; |
| |
| BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); |
| BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); |
| |
| // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. |
| if (Op0 && Op0->getOpcode() == Opcode) { |
| Value *A = Op0->getOperand(0); |
| Value *B = Op0->getOperand(1); |
| Value *C = RHS; |
| |
| // Does "B op C" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) { |
| // It does! Return "A op V" if it simplifies or is already available. |
| // If V equals B then "A op V" is just the LHS. |
| if (V == B) return LHS; |
| // Otherwise return "A op V" if it simplifies. |
| if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) |
| return W; |
| } |
| } |
| |
| // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. |
| if (Op1 && Op1->getOpcode() == Opcode) { |
| Value *A = LHS; |
| Value *B = Op1->getOperand(0); |
| Value *C = Op1->getOperand(1); |
| |
| // Does "A op B" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) { |
| // It does! Return "V op C" if it simplifies or is already available. |
| // If V equals B then "V op C" is just the RHS. |
| if (V == B) return RHS; |
| // Otherwise return "V op C" if it simplifies. |
| if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) |
| return W; |
| } |
| } |
| |
| // The remaining transforms require commutativity as well as associativity. |
| if (!Instruction::isCommutative(Opcode)) |
| return 0; |
| |
| // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. |
| if (Op0 && Op0->getOpcode() == Opcode) { |
| Value *A = Op0->getOperand(0); |
| Value *B = Op0->getOperand(1); |
| Value *C = RHS; |
| |
| // Does "C op A" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) { |
| // It does! Return "V op B" if it simplifies or is already available. |
| // If V equals A then "V op B" is just the LHS. |
| if (V == A) return LHS; |
| // Otherwise return "V op B" if it simplifies. |
| if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) |
| return W; |
| } |
| } |
| |
| // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. |
| if (Op1 && Op1->getOpcode() == Opcode) { |
| Value *A = LHS; |
| Value *B = Op1->getOperand(0); |
| Value *C = Op1->getOperand(1); |
| |
| // Does "C op A" simplify? |
| if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) { |
| // It does! Return "B op V" if it simplifies or is already available. |
| // If V equals C then "B op V" is just the RHS. |
| if (V == C) return RHS; |
| // Otherwise return "B op V" if it simplifies. |
| if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) |
| return W; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// ThreadBinOpOverSelect - In the case of a binary operation with a select |
| /// instruction as an operand, try to simplify the binop by seeing whether |
| /// evaluating it on both branches of the select results in the same value. |
| /// Returns the common value if so, otherwise returns null. |
| static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, |
| const TargetData *TD, |
| const DominatorTree *DT, |
| unsigned MaxRecurse) { |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return 0; |
| |
| SelectInst *SI; |
| if (isa<SelectInst>(LHS)) { |
| SI = cast<SelectInst>(LHS); |
| } else { |
| assert(isa<SelectInst>(RHS) && "No select instruction operand!"); |
| SI = cast<SelectInst>(RHS); |
| } |
| |
| // Evaluate the BinOp on the true and false branches of the select. |
| Value *TV; |
| Value *FV; |
| if (SI == LHS) { |
| TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse); |
| FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse); |
| } else { |
| TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse); |
| FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse); |
| } |
| |
| // If they simplified to the same value, then return the common value. |
| // If they both failed to simplify then return null. |
| if (TV == FV) |
| return TV; |
| |
| // If one branch simplified to undef, return the other one. |
| if (TV && isa<UndefValue>(TV)) |
| return FV; |
| if (FV && isa<UndefValue>(FV)) |
| return TV; |
| |
| // If applying the operation did not change the true and false select values, |
| // then the result of the binop is the select itself. |
| if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) |
| return SI; |
| |
| // If one branch simplified and the other did not, and the simplified |
| // value is equal to the unsimplified one, return the simplified value. |
| // For example, select (cond, X, X & Z) & Z -> X & Z. |
| if ((FV && !TV) || (TV && !FV)) { |
| // Check that the simplified value has the form "X op Y" where "op" is the |
| // same as the original operation. |
| Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); |
| if (Simplified && Simplified->getOpcode() == Opcode) { |
| // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". |
| // We already know that "op" is the same as for the simplified value. See |
| // if the operands match too. If so, return the simplified value. |
| Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); |
| Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; |
| Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; |
| if (Simplified->getOperand(0) == UnsimplifiedLHS && |
| Simplified->getOperand(1) == UnsimplifiedRHS) |
| return Simplified; |
| if (Simplified->isCommutative() && |
| Simplified->getOperand(1) == UnsimplifiedLHS && |
| Simplified->getOperand(0) == UnsimplifiedRHS) |
| return Simplified; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// ThreadCmpOverSelect - In the case of a comparison with a select instruction, |
| /// try to simplify the comparison by seeing whether both branches of the select |
| /// result in the same value. Returns the common value if so, otherwise returns |
| /// null. |
| static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, |
| Value *RHS, const TargetData *TD, |
| const DominatorTree *DT, |
| unsigned MaxRecurse) { |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return 0; |
| |
| // Make sure the select is on the LHS. |
| if (!isa<SelectInst>(LHS)) { |
| std::swap(LHS, RHS); |
| Pred = CmpInst::getSwappedPredicate(Pred); |
| } |
| assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); |
| SelectInst *SI = cast<SelectInst>(LHS); |
| |
| // Now that we have "cmp select(cond, TV, FV), RHS", analyse it. |
| // Does "cmp TV, RHS" simplify? |
| if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT, |
| MaxRecurse)) |
| // It does! Does "cmp FV, RHS" simplify? |
| if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT, |
| MaxRecurse)) |
| // It does! If they simplified to the same value, then use it as the |
| // result of the original comparison. |
| if (TCmp == FCmp) |
| return TCmp; |
| return 0; |
| } |
| |
| /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that |
| /// is a PHI instruction, try to simplify the binop by seeing whether evaluating |
| /// it on the incoming phi values yields the same result for every value. If so |
| /// returns the common value, otherwise returns null. |
| static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, |
| const TargetData *TD, const DominatorTree *DT, |
| unsigned MaxRecurse) { |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return 0; |
| |
| PHINode *PI; |
| if (isa<PHINode>(LHS)) { |
| PI = cast<PHINode>(LHS); |
| // Bail out if RHS and the phi may be mutually interdependent due to a loop. |
| if (!ValueDominatesPHI(RHS, PI, DT)) |
| return 0; |
| } else { |
| assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); |
| PI = cast<PHINode>(RHS); |
| // Bail out if LHS and the phi may be mutually interdependent due to a loop. |
| if (!ValueDominatesPHI(LHS, PI, DT)) |
| return 0; |
| } |
| |
| // Evaluate the BinOp on the incoming phi values. |
| Value *CommonValue = 0; |
| for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { |
| Value *Incoming = PI->getIncomingValue(i); |
| // If the incoming value is the phi node itself, it can safely be skipped. |
| if (Incoming == PI) continue; |
| Value *V = PI == LHS ? |
| SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) : |
| SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse); |
| // If the operation failed to simplify, or simplified to a different value |
| // to previously, then give up. |
| if (!V || (CommonValue && V != CommonValue)) |
| return 0; |
| CommonValue = V; |
| } |
| |
| return CommonValue; |
| } |
| |
| /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try |
| /// try to simplify the comparison by seeing whether comparing with all of the |
| /// incoming phi values yields the same result every time. If so returns the |
| /// common result, otherwise returns null. |
| static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, |
| const TargetData *TD, const DominatorTree *DT, |
| unsigned MaxRecurse) { |
| // Recursion is always used, so bail out at once if we already hit the limit. |
| if (!MaxRecurse--) |
| return 0; |
| |
| // Make sure the phi is on the LHS. |
| if (!isa<PHINode>(LHS)) { |
| std::swap(LHS, RHS); |
| Pred = CmpInst::getSwappedPredicate(Pred); |
| } |
| assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); |
| PHINode *PI = cast<PHINode>(LHS); |
| |
| // Bail out if RHS and the phi may be mutually interdependent due to a loop. |
| if (!ValueDominatesPHI(RHS, PI, DT)) |
| return 0; |
| |
| // Evaluate the BinOp on the incoming phi values. |
| Value *CommonValue = 0; |
| for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { |
| Value *Incoming = PI->getIncomingValue(i); |
| // If the incoming value is the phi node itself, it can safely be skipped. |
| if (Incoming == PI) continue; |
| Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse); |
| // If the operation failed to simplify, or simplified to a different value |
| // to previously, then give up. |
| if (!V || (CommonValue && V != CommonValue)) |
| return 0; |
| CommonValue = V; |
| } |
| |
| return CommonValue; |
| } |
| |
| /// SimplifyAddInst - Given operands for an Add, see if we can |
| /// fold the result. If not, this returns null. |
| static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, |
| const TargetData *TD, const DominatorTree *DT, |
| unsigned MaxRecurse) { |
| if (Constant *CLHS = dyn_cast<Constant>(Op0)) { |
| if (Constant *CRHS = dyn_cast<Constant>(Op1)) { |
| Constant *Ops[] = { CLHS, CRHS }; |
| return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), |
| Ops, 2, TD); |
| } |
| |
| // Canonicalize the constant to the RHS. |
| std::swap(Op0, Op1); |
| } |
| |
| // X + undef -> undef |
| if (isa<UndefValue>(Op1)) |
| return Op1; |
| |
| // X + 0 -> X |
| if (match(Op1, m_Zero())) |
| return Op0; |
| |
| // X + (Y - X) -> Y |
| // (Y - X) + X -> Y |
| // Eg: X + -X -> 0 |
| Value *Y = 0; |
| if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || |
| match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) |
| return Y; |
| |
| // X + ~X -> -1 since ~X = -X-1 |
| if (match(Op0, m_Not(m_Specific(Op1))) || |
| match(Op1, m_Not(m_Specific(Op0)))) |
| return Constant::getAllOnesValue(Op0->getType()); |
| |
| /// i1 add -> xor. |
| if (MaxRecurse && Op0->getType()->isIntegerTy(1)) |
| return SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1); |
| |
| // Try some generic simplifications for associative operations. |
| if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| // Mul distributes over Add. Try some generic simplifications based on this. |
| if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul, |
| TD, DT, MaxRecurse)) |
| return V; |
| |
| // Threading Add over selects and phi nodes is pointless, so don't bother. |
| // Threading over the select in "A + select(cond, B, C)" means evaluating |
| // "A+B" and "A+C" and seeing if they are equal; but they are equal if and |
| // only if B and C are equal. If B and C are equal then (since we assume |
| // that operands have already been simplified) "select(cond, B, C)" should |
| // have been simplified to the common value of B and C already. Analysing |
| // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly |
| // for threading over phi nodes. |
| |
| return 0; |
| } |
| |
| Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, |
| const TargetData *TD, const DominatorTree *DT) { |
| return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit); |
| } |
| |
| /// SimplifySubInst - Given operands for a Sub, see if we can |
| /// fold the result. If not, this returns null. |
| static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, |
| const TargetData *TD, const DominatorTree *DT, |
| unsigned MaxRecurse) { |
| if (Constant *CLHS = dyn_cast<Constant>(Op0)) |
| if (Constant *CRHS = dyn_cast<Constant>(Op1)) { |
| Constant *Ops[] = { CLHS, CRHS }; |
| return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(), |
| Ops, 2, TD); |
| } |
| |
| // X - undef -> undef |
| // undef - X -> undef |
| if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) |
| return UndefValue::get(Op0->getType()); |
| |
| // X - 0 -> X |
| if (match(Op1, m_Zero())) |
| return Op0; |
| |
| // X - X -> 0 |
| if (Op0 == Op1) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // (X + Y) - Y -> X |
| // (Y + X) - Y -> X |
| Value *X = 0; |
| if (match(Op0, m_Add(m_Value(X), m_Specific(Op1))) || |
| match(Op0, m_Add(m_Specific(Op1), m_Value(X)))) |
| return X; |
| |
| /// i1 sub -> xor. |
| if (MaxRecurse && Op0->getType()->isIntegerTy(1)) |
| return SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1); |
| |
| // Mul distributes over Sub. Try some generic simplifications based on this. |
| if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul, |
| TD, DT, MaxRecurse)) |
| return V; |
| |
| // Threading Sub over selects and phi nodes is pointless, so don't bother. |
| // Threading over the select in "A - select(cond, B, C)" means evaluating |
| // "A-B" and "A-C" and seeing if they are equal; but they are equal if and |
| // only if B and C are equal. If B and C are equal then (since we assume |
| // that operands have already been simplified) "select(cond, B, C)" should |
| // have been simplified to the common value of B and C already. Analysing |
| // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly |
| // for threading over phi nodes. |
| |
| return 0; |
| } |
| |
| Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, |
| const TargetData *TD, const DominatorTree *DT) { |
| return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit); |
| } |
| |
| /// SimplifyMulInst - Given operands for a Mul, see if we can |
| /// fold the result. If not, this returns null. |
| static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, |
| const DominatorTree *DT, unsigned MaxRecurse) { |
| if (Constant *CLHS = dyn_cast<Constant>(Op0)) { |
| if (Constant *CRHS = dyn_cast<Constant>(Op1)) { |
| Constant *Ops[] = { CLHS, CRHS }; |
| return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(), |
| Ops, 2, TD); |
| } |
| |
| // Canonicalize the constant to the RHS. |
| std::swap(Op0, Op1); |
| } |
| |
| // X * undef -> 0 |
| if (isa<UndefValue>(Op1)) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // X * 0 -> 0 |
| if (match(Op1, m_Zero())) |
| return Op1; |
| |
| // X * 1 -> X |
| if (match(Op1, m_One())) |
| return Op0; |
| |
| /// i1 mul -> and. |
| if (MaxRecurse && Op0->getType()->isIntegerTy(1)) |
| return SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1); |
| |
| // Try some generic simplifications for associative operations. |
| if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| // Mul distributes over Add. Try some generic simplifications based on this. |
| if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, |
| TD, DT, MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a select instruction, check whether |
| // operating on either branch of the select always yields the same value. |
| if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) |
| if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a phi instruction, check whether |
| // operating on all incoming values of the phi always yields the same value. |
| if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) |
| if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| return 0; |
| } |
| |
| Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD, |
| const DominatorTree *DT) { |
| return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit); |
| } |
| |
| /// SimplifyAndInst - Given operands for an And, see if we can |
| /// fold the result. If not, this returns null. |
| static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, |
| const DominatorTree *DT, unsigned MaxRecurse) { |
| if (Constant *CLHS = dyn_cast<Constant>(Op0)) { |
| if (Constant *CRHS = dyn_cast<Constant>(Op1)) { |
| Constant *Ops[] = { CLHS, CRHS }; |
| return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), |
| Ops, 2, TD); |
| } |
| |
| // Canonicalize the constant to the RHS. |
| std::swap(Op0, Op1); |
| } |
| |
| // X & undef -> 0 |
| if (isa<UndefValue>(Op1)) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // X & X = X |
| if (Op0 == Op1) |
| return Op0; |
| |
| // X & 0 = 0 |
| if (match(Op1, m_Zero())) |
| return Op1; |
| |
| // X & -1 = X |
| if (match(Op1, m_AllOnes())) |
| return Op0; |
| |
| // A & ~A = ~A & A = 0 |
| Value *A = 0, *B = 0; |
| if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || |
| (match(Op1, m_Not(m_Value(A))) && A == Op0)) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // (A | ?) & A = A |
| if (match(Op0, m_Or(m_Value(A), m_Value(B))) && |
| (A == Op1 || B == Op1)) |
| return Op1; |
| |
| // A & (A | ?) = A |
| if (match(Op1, m_Or(m_Value(A), m_Value(B))) && |
| (A == Op0 || B == Op0)) |
| return Op0; |
| |
| // Try some generic simplifications for associative operations. |
| if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| // And distributes over Or. Try some generic simplifications based on this. |
| if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, |
| TD, DT, MaxRecurse)) |
| return V; |
| |
| // And distributes over Xor. Try some generic simplifications based on this. |
| if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, |
| TD, DT, MaxRecurse)) |
| return V; |
| |
| // Or distributes over And. Try some generic simplifications based on this. |
| if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or, |
| TD, DT, MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a select instruction, check whether |
| // operating on either branch of the select always yields the same value. |
| if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) |
| if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a phi instruction, check whether |
| // operating on all incoming values of the phi always yields the same value. |
| if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) |
| if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| return 0; |
| } |
| |
| Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, |
| const DominatorTree *DT) { |
| return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit); |
| } |
| |
| /// SimplifyOrInst - Given operands for an Or, see if we can |
| /// fold the result. If not, this returns null. |
| static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, |
| const DominatorTree *DT, unsigned MaxRecurse) { |
| if (Constant *CLHS = dyn_cast<Constant>(Op0)) { |
| if (Constant *CRHS = dyn_cast<Constant>(Op1)) { |
| Constant *Ops[] = { CLHS, CRHS }; |
| return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), |
| Ops, 2, TD); |
| } |
| |
| // Canonicalize the constant to the RHS. |
| std::swap(Op0, Op1); |
| } |
| |
| // X | undef -> -1 |
| if (isa<UndefValue>(Op1)) |
| return Constant::getAllOnesValue(Op0->getType()); |
| |
| // X | X = X |
| if (Op0 == Op1) |
| return Op0; |
| |
| // X | 0 = X |
| if (match(Op1, m_Zero())) |
| return Op0; |
| |
| // X | -1 = -1 |
| if (match(Op1, m_AllOnes())) |
| return Op1; |
| |
| // A | ~A = ~A | A = -1 |
| Value *A = 0, *B = 0; |
| if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || |
| (match(Op1, m_Not(m_Value(A))) && A == Op0)) |
| return Constant::getAllOnesValue(Op0->getType()); |
| |
| // (A & ?) | A = A |
| if (match(Op0, m_And(m_Value(A), m_Value(B))) && |
| (A == Op1 || B == Op1)) |
| return Op1; |
| |
| // A | (A & ?) = A |
| if (match(Op1, m_And(m_Value(A), m_Value(B))) && |
| (A == Op0 || B == Op0)) |
| return Op0; |
| |
| // Try some generic simplifications for associative operations. |
| if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| // Or distributes over And. Try some generic simplifications based on this. |
| if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, |
| TD, DT, MaxRecurse)) |
| return V; |
| |
| // And distributes over Or. Try some generic simplifications based on this. |
| if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And, |
| TD, DT, MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a select instruction, check whether |
| // operating on either branch of the select always yields the same value. |
| if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) |
| if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a phi instruction, check whether |
| // operating on all incoming values of the phi always yields the same value. |
| if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) |
| if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| return 0; |
| } |
| |
| Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, |
| const DominatorTree *DT) { |
| return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit); |
| } |
| |
| /// SimplifyXorInst - Given operands for a Xor, see if we can |
| /// fold the result. If not, this returns null. |
| static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, |
| const DominatorTree *DT, unsigned MaxRecurse) { |
| if (Constant *CLHS = dyn_cast<Constant>(Op0)) { |
| if (Constant *CRHS = dyn_cast<Constant>(Op1)) { |
| Constant *Ops[] = { CLHS, CRHS }; |
| return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(), |
| Ops, 2, TD); |
| } |
| |
| // Canonicalize the constant to the RHS. |
| std::swap(Op0, Op1); |
| } |
| |
| // A ^ undef -> undef |
| if (isa<UndefValue>(Op1)) |
| return Op1; |
| |
| // A ^ 0 = A |
| if (match(Op1, m_Zero())) |
| return Op0; |
| |
| // A ^ A = 0 |
| if (Op0 == Op1) |
| return Constant::getNullValue(Op0->getType()); |
| |
| // A ^ ~A = ~A ^ A = -1 |
| Value *A = 0; |
| if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || |
| (match(Op1, m_Not(m_Value(A))) && A == Op0)) |
| return Constant::getAllOnesValue(Op0->getType()); |
| |
| // Try some generic simplifications for associative operations. |
| if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| // And distributes over Xor. Try some generic simplifications based on this. |
| if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And, |
| TD, DT, MaxRecurse)) |
| return V; |
| |
| // Threading Xor over selects and phi nodes is pointless, so don't bother. |
| // Threading over the select in "A ^ select(cond, B, C)" means evaluating |
| // "A^B" and "A^C" and seeing if they are equal; but they are equal if and |
| // only if B and C are equal. If B and C are equal then (since we assume |
| // that operands have already been simplified) "select(cond, B, C)" should |
| // have been simplified to the common value of B and C already. Analysing |
| // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly |
| // for threading over phi nodes. |
| |
| return 0; |
| } |
| |
| Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, |
| const DominatorTree *DT) { |
| return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit); |
| } |
| |
| static const Type *GetCompareTy(Value *Op) { |
| return CmpInst::makeCmpResultType(Op->getType()); |
| } |
| |
| /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can |
| /// fold the result. If not, this returns null. |
| static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const TargetData *TD, const DominatorTree *DT, |
| unsigned MaxRecurse) { |
| CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; |
| assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); |
| |
| if (Constant *CLHS = dyn_cast<Constant>(LHS)) { |
| if (Constant *CRHS = dyn_cast<Constant>(RHS)) |
| return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); |
| |
| // If we have a constant, make sure it is on the RHS. |
| std::swap(LHS, RHS); |
| Pred = CmpInst::getSwappedPredicate(Pred); |
| } |
| |
| // ITy - This is the return type of the compare we're considering. |
| const Type *ITy = GetCompareTy(LHS); |
| |
| // icmp X, X -> true/false |
| // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false |
| // because X could be 0. |
| if (LHS == RHS || isa<UndefValue>(RHS)) |
| return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); |
| |
| // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value |
| // addresses never equal each other! We already know that Op0 != Op1. |
| if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) || |
| isa<ConstantPointerNull>(LHS)) && |
| (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) || |
| isa<ConstantPointerNull>(RHS))) |
| return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred)); |
| |
| // See if we are doing a comparison with a constant. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { |
| // If we have an icmp le or icmp ge instruction, turn it into the |
| // appropriate icmp lt or icmp gt instruction. This allows us to rely on |
| // them being folded in the code below. |
| switch (Pred) { |
| default: break; |
| case ICmpInst::ICMP_ULE: |
| if (CI->isMaxValue(false)) // A <=u MAX -> TRUE |
| return ConstantInt::getTrue(CI->getContext()); |
| break; |
| case ICmpInst::ICMP_SLE: |
| if (CI->isMaxValue(true)) // A <=s MAX -> TRUE |
| return ConstantInt::getTrue(CI->getContext()); |
| break; |
| case ICmpInst::ICMP_UGE: |
| if (CI->isMinValue(false)) // A >=u MIN -> TRUE |
| return ConstantInt::getTrue(CI->getContext()); |
| break; |
| case ICmpInst::ICMP_SGE: |
| if (CI->isMinValue(true)) // A >=s MIN -> TRUE |
| return ConstantInt::getTrue(CI->getContext()); |
| break; |
| } |
| } |
| |
| // If the comparison is with the result of a select instruction, check whether |
| // comparing with either branch of the select always yields the same value. |
| if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) |
| if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse)) |
| return V; |
| |
| // If the comparison is with the result of a phi instruction, check whether |
| // doing the compare with each incoming phi value yields a common result. |
| if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) |
| if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse)) |
| return V; |
| |
| return 0; |
| } |
| |
| Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const TargetData *TD, const DominatorTree *DT) { |
| return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); |
| } |
| |
| /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can |
| /// fold the result. If not, this returns null. |
| static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const TargetData *TD, const DominatorTree *DT, |
| unsigned MaxRecurse) { |
| CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; |
| assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); |
| |
| if (Constant *CLHS = dyn_cast<Constant>(LHS)) { |
| if (Constant *CRHS = dyn_cast<Constant>(RHS)) |
| return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); |
| |
| // If we have a constant, make sure it is on the RHS. |
| std::swap(LHS, RHS); |
| Pred = CmpInst::getSwappedPredicate(Pred); |
| } |
| |
| // Fold trivial predicates. |
| if (Pred == FCmpInst::FCMP_FALSE) |
| return ConstantInt::get(GetCompareTy(LHS), 0); |
| if (Pred == FCmpInst::FCMP_TRUE) |
| return ConstantInt::get(GetCompareTy(LHS), 1); |
| |
| if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef |
| return UndefValue::get(GetCompareTy(LHS)); |
| |
| // fcmp x,x -> true/false. Not all compares are foldable. |
| if (LHS == RHS) { |
| if (CmpInst::isTrueWhenEqual(Pred)) |
| return ConstantInt::get(GetCompareTy(LHS), 1); |
| if (CmpInst::isFalseWhenEqual(Pred)) |
| return ConstantInt::get(GetCompareTy(LHS), 0); |
| } |
| |
| // Handle fcmp with constant RHS |
| if (Constant *RHSC = dyn_cast<Constant>(RHS)) { |
| // If the constant is a nan, see if we can fold the comparison based on it. |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { |
| if (CFP->getValueAPF().isNaN()) { |
| if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" |
| return ConstantInt::getFalse(CFP->getContext()); |
| assert(FCmpInst::isUnordered(Pred) && |
| "Comparison must be either ordered or unordered!"); |
| // True if unordered. |
| return ConstantInt::getTrue(CFP->getContext()); |
| } |
| // Check whether the constant is an infinity. |
| if (CFP->getValueAPF().isInfinity()) { |
| if (CFP->getValueAPF().isNegative()) { |
| switch (Pred) { |
| case FCmpInst::FCMP_OLT: |
| // No value is ordered and less than negative infinity. |
| return ConstantInt::getFalse(CFP->getContext()); |
| case FCmpInst::FCMP_UGE: |
| // All values are unordered with or at least negative infinity. |
| return ConstantInt::getTrue(CFP->getContext()); |
| default: |
| break; |
| } |
| } else { |
| switch (Pred) { |
| case FCmpInst::FCMP_OGT: |
| // No value is ordered and greater than infinity. |
| return ConstantInt::getFalse(CFP->getContext()); |
| case FCmpInst::FCMP_ULE: |
| // All values are unordered with and at most infinity. |
| return ConstantInt::getTrue(CFP->getContext()); |
| default: |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| // If the comparison is with the result of a select instruction, check whether |
| // comparing with either branch of the select always yields the same value. |
| if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) |
| if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse)) |
| return V; |
| |
| // If the comparison is with the result of a phi instruction, check whether |
| // doing the compare with each incoming phi value yields a common result. |
| if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) |
| if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse)) |
| return V; |
| |
| return 0; |
| } |
| |
| Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const TargetData *TD, const DominatorTree *DT) { |
| return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); |
| } |
| |
| /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold |
| /// the result. If not, this returns null. |
| Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal, |
| const TargetData *TD, const DominatorTree *) { |
| // select true, X, Y -> X |
| // select false, X, Y -> Y |
| if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal)) |
| return CB->getZExtValue() ? TrueVal : FalseVal; |
| |
| // select C, X, X -> X |
| if (TrueVal == FalseVal) |
| return TrueVal; |
| |
| if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X |
| return FalseVal; |
| if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X |
| return TrueVal; |
| if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y |
| if (isa<Constant>(TrueVal)) |
| return TrueVal; |
| return FalseVal; |
| } |
| |
| return 0; |
| } |
| |
| /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can |
| /// fold the result. If not, this returns null. |
| Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps, |
| const TargetData *TD, const DominatorTree *) { |
| // The type of the GEP pointer operand. |
| const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()); |
| |
| // getelementptr P -> P. |
| if (NumOps == 1) |
| return Ops[0]; |
| |
| if (isa<UndefValue>(Ops[0])) { |
| // Compute the (pointer) type returned by the GEP instruction. |
| const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1], |
| NumOps-1); |
| const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace()); |
| return UndefValue::get(GEPTy); |
| } |
| |
| if (NumOps == 2) { |
| // getelementptr P, 0 -> P. |
| if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1])) |
| if (C->isZero()) |
| return Ops[0]; |
| // getelementptr P, N -> P if P points to a type of zero size. |
| if (TD) { |
| const Type *Ty = PtrTy->getElementType(); |
| if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0) |
| return Ops[0]; |
| } |
| } |
| |
| // Check to see if this is constant foldable. |
| for (unsigned i = 0; i != NumOps; ++i) |
| if (!isa<Constant>(Ops[i])) |
| return 0; |
| |
| return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), |
| (Constant *const*)Ops+1, NumOps-1); |
| } |
| |
| /// SimplifyPHINode - See if we can fold the given phi. If not, returns null. |
| static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) { |
| // If all of the PHI's incoming values are the same then replace the PHI node |
| // with the common value. |
| Value *CommonValue = 0; |
| bool HasUndefInput = false; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| Value *Incoming = PN->getIncomingValue(i); |
| // If the incoming value is the phi node itself, it can safely be skipped. |
| if (Incoming == PN) continue; |
| if (isa<UndefValue>(Incoming)) { |
| // Remember that we saw an undef value, but otherwise ignore them. |
| HasUndefInput = true; |
| continue; |
| } |
| if (CommonValue && Incoming != CommonValue) |
| return 0; // Not the same, bail out. |
| CommonValue = Incoming; |
| } |
| |
| // If CommonValue is null then all of the incoming values were either undef or |
| // equal to the phi node itself. |
| if (!CommonValue) |
| return UndefValue::get(PN->getType()); |
| |
| // If we have a PHI node like phi(X, undef, X), where X is defined by some |
| // instruction, we cannot return X as the result of the PHI node unless it |
| // dominates the PHI block. |
| if (HasUndefInput) |
| return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0; |
| |
| return CommonValue; |
| } |
| |
| |
| //=== Helper functions for higher up the class hierarchy. |
| |
| /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can |
| /// fold the result. If not, this returns null. |
| static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| const TargetData *TD, const DominatorTree *DT, |
| unsigned MaxRecurse) { |
| switch (Opcode) { |
| case Instruction::Add: return SimplifyAddInst(LHS, RHS, /* isNSW */ false, |
| /* isNUW */ false, TD, DT, |
| MaxRecurse); |
| case Instruction::Sub: return SimplifySubInst(LHS, RHS, /* isNSW */ false, |
| /* isNUW */ false, TD, DT, |
| MaxRecurse); |
| case Instruction::Mul: return SimplifyMulInst(LHS, RHS, TD, DT, MaxRecurse); |
| case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse); |
| case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse); |
| case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse); |
| default: |
| if (Constant *CLHS = dyn_cast<Constant>(LHS)) |
| if (Constant *CRHS = dyn_cast<Constant>(RHS)) { |
| Constant *COps[] = {CLHS, CRHS}; |
| return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD); |
| } |
| |
| // If the operation is associative, try some generic simplifications. |
| if (Instruction::isAssociative(Opcode)) |
| if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a select instruction, check whether |
| // operating on either branch of the select always yields the same value. |
| if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) |
| if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT, |
| MaxRecurse)) |
| return V; |
| |
| // If the operation is with the result of a phi instruction, check whether |
| // operating on all incoming values of the phi always yields the same value. |
| if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) |
| if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse)) |
| return V; |
| |
| return 0; |
| } |
| } |
| |
| Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| const TargetData *TD, const DominatorTree *DT) { |
| return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit); |
| } |
| |
| /// SimplifyCmpInst - Given operands for a CmpInst, see if we can |
| /// fold the result. |
| static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const TargetData *TD, const DominatorTree *DT, |
| unsigned MaxRecurse) { |
| if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) |
| return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse); |
| return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse); |
| } |
| |
| Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, |
| const TargetData *TD, const DominatorTree *DT) { |
| return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit); |
| } |
| |
| /// SimplifyInstruction - See if we can compute a simplified version of this |
| /// instruction. If not, this returns null. |
| Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD, |
| const DominatorTree *DT) { |
| Value *Result; |
| |
| switch (I->getOpcode()) { |
| default: |
| Result = ConstantFoldInstruction(I, TD); |
| break; |
| case Instruction::Add: |
| Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), |
| cast<BinaryOperator>(I)->hasNoSignedWrap(), |
| cast<BinaryOperator>(I)->hasNoUnsignedWrap(), |
| TD, DT); |
| break; |
| case Instruction::Sub: |
| Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), |
| cast<BinaryOperator>(I)->hasNoSignedWrap(), |
| cast<BinaryOperator>(I)->hasNoUnsignedWrap(), |
| TD, DT); |
| break; |
| case Instruction::Mul: |
| Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT); |
| break; |
| case Instruction::And: |
| Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT); |
| break; |
| case Instruction::Or: |
| Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT); |
| break; |
| case Instruction::Xor: |
| Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT); |
| break; |
| case Instruction::ICmp: |
| Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), |
| I->getOperand(0), I->getOperand(1), TD, DT); |
| break; |
| case Instruction::FCmp: |
| Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), |
| I->getOperand(0), I->getOperand(1), TD, DT); |
| break; |
| case Instruction::Select: |
| Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), |
| I->getOperand(2), TD, DT); |
| break; |
| case Instruction::GetElementPtr: { |
| SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); |
| Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT); |
| break; |
| } |
| case Instruction::PHI: |
| Result = SimplifyPHINode(cast<PHINode>(I), DT); |
| break; |
| } |
| |
| /// If called on unreachable code, the above logic may report that the |
| /// instruction simplified to itself. Make life easier for users by |
| /// detecting that case here, returning a safe value instead. |
| return Result == I ? UndefValue::get(I->getType()) : Result; |
| } |
| |
| /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then |
| /// delete the From instruction. In addition to a basic RAUW, this does a |
| /// recursive simplification of the newly formed instructions. This catches |
| /// things where one simplification exposes other opportunities. This only |
| /// simplifies and deletes scalar operations, it does not change the CFG. |
| /// |
| void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To, |
| const TargetData *TD, |
| const DominatorTree *DT) { |
| assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!"); |
| |
| // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that |
| // we can know if it gets deleted out from under us or replaced in a |
| // recursive simplification. |
| WeakVH FromHandle(From); |
| WeakVH ToHandle(To); |
| |
| while (!From->use_empty()) { |
| // Update the instruction to use the new value. |
| Use &TheUse = From->use_begin().getUse(); |
| Instruction *User = cast<Instruction>(TheUse.getUser()); |
| TheUse = To; |
| |
| // Check to see if the instruction can be folded due to the operand |
| // replacement. For example changing (or X, Y) into (or X, -1) can replace |
| // the 'or' with -1. |
| Value *SimplifiedVal; |
| { |
| // Sanity check to make sure 'User' doesn't dangle across |
| // SimplifyInstruction. |
| AssertingVH<> UserHandle(User); |
| |
| SimplifiedVal = SimplifyInstruction(User, TD, DT); |
| if (SimplifiedVal == 0) continue; |
| } |
| |
| // Recursively simplify this user to the new value. |
| ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT); |
| From = dyn_cast_or_null<Instruction>((Value*)FromHandle); |
| To = ToHandle; |
| |
| assert(ToHandle && "To value deleted by recursive simplification?"); |
| |
| // If the recursive simplification ended up revisiting and deleting |
| // 'From' then we're done. |
| if (From == 0) |
| return; |
| } |
| |
| // If 'From' has value handles referring to it, do a real RAUW to update them. |
| From->replaceAllUsesWith(To); |
| |
| From->eraseFromParent(); |
| } |