| //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Parallel JIT |
| // |
| // This test program creates two LLVM functions then calls them from three |
| // separate threads. It requires the pthreads library. |
| // The three threads are created and then block waiting on a condition variable. |
| // Once all threads are blocked on the conditional variable, the main thread |
| // wakes them up. This complicated work is performed so that all three threads |
| // call into the JIT at the same time (or the best possible approximation of the |
| // same time). This test had assertion errors until I got the locking right. |
| |
| #include <pthread.h> |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Module.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/ExecutionEngine/JIT.h" |
| #include "llvm/ExecutionEngine/Interpreter.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/Support/TargetSelect.h" |
| #include <iostream> |
| using namespace llvm; |
| |
| static Function* createAdd1(Module *M) { |
| // Create the add1 function entry and insert this entry into module M. The |
| // function will have a return type of "int" and take an argument of "int". |
| // The '0' terminates the list of argument types. |
| Function *Add1F = |
| cast<Function>(M->getOrInsertFunction("add1", |
| Type::getInt32Ty(M->getContext()), |
| Type::getInt32Ty(M->getContext()), |
| (Type *)0)); |
| |
| // Add a basic block to the function. As before, it automatically inserts |
| // because of the last argument. |
| BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F); |
| |
| // Get pointers to the constant `1'. |
| Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1); |
| |
| // Get pointers to the integer argument of the add1 function... |
| assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg |
| Argument *ArgX = Add1F->arg_begin(); // Get the arg |
| ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. |
| |
| // Create the add instruction, inserting it into the end of BB. |
| Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB); |
| |
| // Create the return instruction and add it to the basic block |
| ReturnInst::Create(M->getContext(), Add, BB); |
| |
| // Now, function add1 is ready. |
| return Add1F; |
| } |
| |
| static Function *CreateFibFunction(Module *M) { |
| // Create the fib function and insert it into module M. This function is said |
| // to return an int and take an int parameter. |
| Function *FibF = |
| cast<Function>(M->getOrInsertFunction("fib", |
| Type::getInt32Ty(M->getContext()), |
| Type::getInt32Ty(M->getContext()), |
| (Type *)0)); |
| |
| // Add a basic block to the function. |
| BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF); |
| |
| // Get pointers to the constants. |
| Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1); |
| Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2); |
| |
| // Get pointer to the integer argument of the add1 function... |
| Argument *ArgX = FibF->arg_begin(); // Get the arg. |
| ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. |
| |
| // Create the true_block. |
| BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF); |
| // Create an exit block. |
| BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF); |
| |
| // Create the "if (arg < 2) goto exitbb" |
| Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond"); |
| BranchInst::Create(RetBB, RecurseBB, CondInst, BB); |
| |
| // Create: ret int 1 |
| ReturnInst::Create(M->getContext(), One, RetBB); |
| |
| // create fib(x-1) |
| Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB); |
| Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB); |
| |
| // create fib(x-2) |
| Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB); |
| Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB); |
| |
| // fib(x-1)+fib(x-2) |
| Value *Sum = |
| BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB); |
| |
| // Create the return instruction and add it to the basic block |
| ReturnInst::Create(M->getContext(), Sum, RecurseBB); |
| |
| return FibF; |
| } |
| |
| struct threadParams { |
| ExecutionEngine* EE; |
| Function* F; |
| int value; |
| }; |
| |
| // We block the subthreads just before they begin to execute: |
| // we want all of them to call into the JIT at the same time, |
| // to verify that the locking is working correctly. |
| class WaitForThreads |
| { |
| public: |
| WaitForThreads() |
| { |
| n = 0; |
| waitFor = 0; |
| |
| int result = pthread_cond_init( &condition, NULL ); |
| assert( result == 0 ); |
| |
| result = pthread_mutex_init( &mutex, NULL ); |
| assert( result == 0 ); |
| } |
| |
| ~WaitForThreads() |
| { |
| int result = pthread_cond_destroy( &condition ); |
| assert( result == 0 ); |
| |
| result = pthread_mutex_destroy( &mutex ); |
| assert( result == 0 ); |
| } |
| |
| // All threads will stop here until another thread calls releaseThreads |
| void block() |
| { |
| int result = pthread_mutex_lock( &mutex ); |
| assert( result == 0 ); |
| n ++; |
| //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl; |
| |
| assert( waitFor == 0 || n <= waitFor ); |
| if ( waitFor > 0 && n == waitFor ) |
| { |
| // There are enough threads blocked that we can release all of them |
| std::cout << "Unblocking threads from block()" << std::endl; |
| unblockThreads(); |
| } |
| else |
| { |
| // We just need to wait until someone unblocks us |
| result = pthread_cond_wait( &condition, &mutex ); |
| assert( result == 0 ); |
| } |
| |
| // unlock the mutex before returning |
| result = pthread_mutex_unlock( &mutex ); |
| assert( result == 0 ); |
| } |
| |
| // If there are num or more threads blocked, it will signal them all |
| // Otherwise, this thread blocks until there are enough OTHER threads |
| // blocked |
| void releaseThreads( size_t num ) |
| { |
| int result = pthread_mutex_lock( &mutex ); |
| assert( result == 0 ); |
| |
| if ( n >= num ) { |
| std::cout << "Unblocking threads from releaseThreads()" << std::endl; |
| unblockThreads(); |
| } |
| else |
| { |
| waitFor = num; |
| pthread_cond_wait( &condition, &mutex ); |
| } |
| |
| // unlock the mutex before returning |
| result = pthread_mutex_unlock( &mutex ); |
| assert( result == 0 ); |
| } |
| |
| private: |
| void unblockThreads() |
| { |
| // Reset the counters to zero: this way, if any new threads |
| // enter while threads are exiting, they will block instead |
| // of triggering a new release of threads |
| n = 0; |
| |
| // Reset waitFor to zero: this way, if waitFor threads enter |
| // while threads are exiting, they will block instead of |
| // triggering a new release of threads |
| waitFor = 0; |
| |
| int result = pthread_cond_broadcast( &condition ); |
| assert(result == 0); result=result; |
| } |
| |
| size_t n; |
| size_t waitFor; |
| pthread_cond_t condition; |
| pthread_mutex_t mutex; |
| }; |
| |
| static WaitForThreads synchronize; |
| |
| void* callFunc( void* param ) |
| { |
| struct threadParams* p = (struct threadParams*) param; |
| |
| // Call the `foo' function with no arguments: |
| std::vector<GenericValue> Args(1); |
| Args[0].IntVal = APInt(32, p->value); |
| |
| synchronize.block(); // wait until other threads are at this point |
| GenericValue gv = p->EE->runFunction(p->F, Args); |
| |
| return (void*)(intptr_t)gv.IntVal.getZExtValue(); |
| } |
| |
| int main() { |
| InitializeNativeTarget(); |
| LLVMContext Context; |
| |
| // Create some module to put our function into it. |
| Module *M = new Module("test", Context); |
| |
| Function* add1F = createAdd1( M ); |
| Function* fibF = CreateFibFunction( M ); |
| |
| // Now we create the JIT. |
| ExecutionEngine* EE = EngineBuilder(M).create(); |
| |
| //~ std::cout << "We just constructed this LLVM module:\n\n" << *M; |
| //~ std::cout << "\n\nRunning foo: " << std::flush; |
| |
| // Create one thread for add1 and two threads for fib |
| struct threadParams add1 = { EE, add1F, 1000 }; |
| struct threadParams fib1 = { EE, fibF, 39 }; |
| struct threadParams fib2 = { EE, fibF, 42 }; |
| |
| pthread_t add1Thread; |
| int result = pthread_create( &add1Thread, NULL, callFunc, &add1 ); |
| if ( result != 0 ) { |
| std::cerr << "Could not create thread" << std::endl; |
| return 1; |
| } |
| |
| pthread_t fibThread1; |
| result = pthread_create( &fibThread1, NULL, callFunc, &fib1 ); |
| if ( result != 0 ) { |
| std::cerr << "Could not create thread" << std::endl; |
| return 1; |
| } |
| |
| pthread_t fibThread2; |
| result = pthread_create( &fibThread2, NULL, callFunc, &fib2 ); |
| if ( result != 0 ) { |
| std::cerr << "Could not create thread" << std::endl; |
| return 1; |
| } |
| |
| synchronize.releaseThreads(3); // wait until other threads are at this point |
| |
| void* returnValue; |
| result = pthread_join( add1Thread, &returnValue ); |
| if ( result != 0 ) { |
| std::cerr << "Could not join thread" << std::endl; |
| return 1; |
| } |
| std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl; |
| |
| result = pthread_join( fibThread1, &returnValue ); |
| if ( result != 0 ) { |
| std::cerr << "Could not join thread" << std::endl; |
| return 1; |
| } |
| std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl; |
| |
| result = pthread_join( fibThread2, &returnValue ); |
| if ( result != 0 ) { |
| std::cerr << "Could not join thread" << std::endl; |
| return 1; |
| } |
| std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl; |
| |
| return 0; |
| } |