| //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This register allocator allocates registers to a basic block at a time, |
| // attempting to keep values in registers and reusing registers as appropriate. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/IndexedMap.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumStores, "Number of stores added"); |
| STATISTIC(NumLoads , "Number of loads added"); |
| STATISTIC(NumCopies, "Number of copies coalesced"); |
| |
| static RegisterRegAlloc |
| fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); |
| |
| namespace { |
| class RAFast : public MachineFunctionPass { |
| public: |
| static char ID; |
| RAFast() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1), |
| isBulkSpilling(false) {} |
| private: |
| const TargetMachine *TM; |
| MachineFunction *MF; |
| MachineRegisterInfo *MRI; |
| const TargetRegisterInfo *TRI; |
| const TargetInstrInfo *TII; |
| |
| // Basic block currently being allocated. |
| MachineBasicBlock *MBB; |
| |
| // StackSlotForVirtReg - Maps virtual regs to the frame index where these |
| // values are spilled. |
| IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; |
| |
| // Everything we know about a live virtual register. |
| struct LiveReg { |
| MachineInstr *LastUse; // Last instr to use reg. |
| unsigned PhysReg; // Currently held here. |
| unsigned short LastOpNum; // OpNum on LastUse. |
| bool Dirty; // Register needs spill. |
| |
| LiveReg(unsigned p=0) : LastUse(0), PhysReg(p), LastOpNum(0), |
| Dirty(false) {} |
| }; |
| |
| typedef DenseMap<unsigned, LiveReg> LiveRegMap; |
| typedef LiveRegMap::value_type LiveRegEntry; |
| |
| // LiveVirtRegs - This map contains entries for each virtual register |
| // that is currently available in a physical register. |
| LiveRegMap LiveVirtRegs; |
| |
| // RegState - Track the state of a physical register. |
| enum RegState { |
| // A disabled register is not available for allocation, but an alias may |
| // be in use. A register can only be moved out of the disabled state if |
| // all aliases are disabled. |
| regDisabled, |
| |
| // A free register is not currently in use and can be allocated |
| // immediately without checking aliases. |
| regFree, |
| |
| // A reserved register has been assigned expolicitly (e.g., setting up a |
| // call parameter), and it remains reserved until it is used. |
| regReserved |
| |
| // A register state may also be a virtual register number, indication that |
| // the physical register is currently allocated to a virtual register. In |
| // that case, LiveVirtRegs contains the inverse mapping. |
| }; |
| |
| // PhysRegState - One of the RegState enums, or a virtreg. |
| std::vector<unsigned> PhysRegState; |
| |
| // UsedInInstr - BitVector of physregs that are used in the current |
| // instruction, and so cannot be allocated. |
| BitVector UsedInInstr; |
| |
| // Allocatable - vector of allocatable physical registers. |
| BitVector Allocatable; |
| |
| // SkippedInstrs - Descriptors of instructions whose clobber list was ignored |
| // because all registers were spilled. It is still necessary to mark all the |
| // clobbered registers as used by the function. |
| SmallPtrSet<const TargetInstrDesc*, 4> SkippedInstrs; |
| |
| // isBulkSpilling - This flag is set when LiveRegMap will be cleared |
| // completely after spilling all live registers. LiveRegMap entries should |
| // not be erased. |
| bool isBulkSpilling; |
| |
| enum { |
| spillClean = 1, |
| spillDirty = 100, |
| spillImpossible = ~0u |
| }; |
| public: |
| virtual const char *getPassName() const { |
| return "Fast Register Allocator"; |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequiredID(PHIEliminationID); |
| AU.addRequiredID(TwoAddressInstructionPassID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| private: |
| bool runOnMachineFunction(MachineFunction &Fn); |
| void AllocateBasicBlock(); |
| void handleThroughOperands(MachineInstr *MI, |
| SmallVectorImpl<unsigned> &VirtDead); |
| int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); |
| bool isLastUseOfLocalReg(MachineOperand&); |
| |
| void addKillFlag(const LiveReg&); |
| void killVirtReg(LiveRegMap::iterator); |
| void killVirtReg(unsigned VirtReg); |
| void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); |
| void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); |
| |
| void usePhysReg(MachineOperand&); |
| void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState); |
| unsigned calcSpillCost(unsigned PhysReg) const; |
| void assignVirtToPhysReg(LiveRegEntry &LRE, unsigned PhysReg); |
| void allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint); |
| LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum, |
| unsigned VirtReg, unsigned Hint); |
| LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum, |
| unsigned VirtReg, unsigned Hint); |
| void spillAll(MachineInstr *MI); |
| bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg); |
| }; |
| char RAFast::ID = 0; |
| } |
| |
| /// getStackSpaceFor - This allocates space for the specified virtual register |
| /// to be held on the stack. |
| int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { |
| // Find the location Reg would belong... |
| int SS = StackSlotForVirtReg[VirtReg]; |
| if (SS != -1) |
| return SS; // Already has space allocated? |
| |
| // Allocate a new stack object for this spill location... |
| int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), |
| RC->getAlignment()); |
| |
| // Assign the slot. |
| StackSlotForVirtReg[VirtReg] = FrameIdx; |
| return FrameIdx; |
| } |
| |
| /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to |
| /// its virtual register, and it is guaranteed to be a block-local register. |
| /// |
| bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { |
| // Check for non-debug uses or defs following MO. |
| // This is the most likely way to fail - fast path it. |
| MachineOperand *Next = &MO; |
| while ((Next = Next->getNextOperandForReg())) |
| if (!Next->isDebug()) |
| return false; |
| |
| // If the register has ever been spilled or reloaded, we conservatively assume |
| // it is a global register used in multiple blocks. |
| if (StackSlotForVirtReg[MO.getReg()] != -1) |
| return false; |
| |
| // Check that the use/def chain has exactly one operand - MO. |
| return &MRI->reg_nodbg_begin(MO.getReg()).getOperand() == &MO; |
| } |
| |
| /// addKillFlag - Set kill flags on last use of a virtual register. |
| void RAFast::addKillFlag(const LiveReg &LR) { |
| if (!LR.LastUse) return; |
| MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); |
| if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { |
| if (MO.getReg() == LR.PhysReg) |
| MO.setIsKill(); |
| else |
| LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true); |
| } |
| } |
| |
| /// killVirtReg - Mark virtreg as no longer available. |
| void RAFast::killVirtReg(LiveRegMap::iterator LRI) { |
| addKillFlag(LRI->second); |
| const LiveReg &LR = LRI->second; |
| assert(PhysRegState[LR.PhysReg] == LRI->first && "Broken RegState mapping"); |
| PhysRegState[LR.PhysReg] = regFree; |
| // Erase from LiveVirtRegs unless we're spilling in bulk. |
| if (!isBulkSpilling) |
| LiveVirtRegs.erase(LRI); |
| } |
| |
| /// killVirtReg - Mark virtreg as no longer available. |
| void RAFast::killVirtReg(unsigned VirtReg) { |
| assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && |
| "killVirtReg needs a virtual register"); |
| LiveRegMap::iterator LRI = LiveVirtRegs.find(VirtReg); |
| if (LRI != LiveVirtRegs.end()) |
| killVirtReg(LRI); |
| } |
| |
| /// spillVirtReg - This method spills the value specified by VirtReg into the |
| /// corresponding stack slot if needed. If isKill is set, the register is also |
| /// killed. |
| void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { |
| assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && |
| "Spilling a physical register is illegal!"); |
| LiveRegMap::iterator LRI = LiveVirtRegs.find(VirtReg); |
| assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); |
| spillVirtReg(MI, LRI); |
| } |
| |
| /// spillVirtReg - Do the actual work of spilling. |
| void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, |
| LiveRegMap::iterator LRI) { |
| LiveReg &LR = LRI->second; |
| assert(PhysRegState[LR.PhysReg] == LRI->first && "Broken RegState mapping"); |
| |
| if (LR.Dirty) { |
| // If this physreg is used by the instruction, we want to kill it on the |
| // instruction, not on the spill. |
| bool SpillKill = LR.LastUse != MI; |
| LR.Dirty = false; |
| DEBUG(dbgs() << "Spilling %reg" << LRI->first |
| << " in " << TRI->getName(LR.PhysReg)); |
| const TargetRegisterClass *RC = MRI->getRegClass(LRI->first); |
| int FI = getStackSpaceFor(LRI->first, RC); |
| DEBUG(dbgs() << " to stack slot #" << FI << "\n"); |
| TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI); |
| ++NumStores; // Update statistics |
| |
| if (SpillKill) |
| LR.LastUse = 0; // Don't kill register again |
| } |
| killVirtReg(LRI); |
| } |
| |
| /// spillAll - Spill all dirty virtregs without killing them. |
| void RAFast::spillAll(MachineInstr *MI) { |
| if (LiveVirtRegs.empty()) return; |
| isBulkSpilling = true; |
| // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order |
| // of spilling here is deterministic, if arbitrary. |
| for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); |
| i != e; ++i) |
| spillVirtReg(MI, i); |
| LiveVirtRegs.clear(); |
| isBulkSpilling = false; |
| } |
| |
| /// usePhysReg - Handle the direct use of a physical register. |
| /// Check that the register is not used by a virtreg. |
| /// Kill the physreg, marking it free. |
| /// This may add implicit kills to MO->getParent() and invalidate MO. |
| void RAFast::usePhysReg(MachineOperand &MO) { |
| unsigned PhysReg = MO.getReg(); |
| assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && |
| "Bad usePhysReg operand"); |
| |
| switch (PhysRegState[PhysReg]) { |
| case regDisabled: |
| break; |
| case regReserved: |
| PhysRegState[PhysReg] = regFree; |
| // Fall through |
| case regFree: |
| UsedInInstr.set(PhysReg); |
| MO.setIsKill(); |
| return; |
| default: |
| // The physreg was allocated to a virtual register. That means to value we |
| // wanted has been clobbered. |
| llvm_unreachable("Instruction uses an allocated register"); |
| } |
| |
| // Maybe a superregister is reserved? |
| for (const unsigned *AS = TRI->getAliasSet(PhysReg); |
| unsigned Alias = *AS; ++AS) { |
| switch (PhysRegState[Alias]) { |
| case regDisabled: |
| break; |
| case regReserved: |
| assert(TRI->isSuperRegister(PhysReg, Alias) && |
| "Instruction is not using a subregister of a reserved register"); |
| // Leave the superregister in the working set. |
| PhysRegState[Alias] = regFree; |
| UsedInInstr.set(Alias); |
| MO.getParent()->addRegisterKilled(Alias, TRI, true); |
| return; |
| case regFree: |
| if (TRI->isSuperRegister(PhysReg, Alias)) { |
| // Leave the superregister in the working set. |
| UsedInInstr.set(Alias); |
| MO.getParent()->addRegisterKilled(Alias, TRI, true); |
| return; |
| } |
| // Some other alias was in the working set - clear it. |
| PhysRegState[Alias] = regDisabled; |
| break; |
| default: |
| llvm_unreachable("Instruction uses an alias of an allocated register"); |
| } |
| } |
| |
| // All aliases are disabled, bring register into working set. |
| PhysRegState[PhysReg] = regFree; |
| UsedInInstr.set(PhysReg); |
| MO.setIsKill(); |
| } |
| |
| /// definePhysReg - Mark PhysReg as reserved or free after spilling any |
| /// virtregs. This is very similar to defineVirtReg except the physreg is |
| /// reserved instead of allocated. |
| void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg, |
| RegState NewState) { |
| UsedInInstr.set(PhysReg); |
| switch (unsigned VirtReg = PhysRegState[PhysReg]) { |
| case regDisabled: |
| break; |
| default: |
| spillVirtReg(MI, VirtReg); |
| // Fall through. |
| case regFree: |
| case regReserved: |
| PhysRegState[PhysReg] = NewState; |
| return; |
| } |
| |
| // This is a disabled register, disable all aliases. |
| PhysRegState[PhysReg] = NewState; |
| for (const unsigned *AS = TRI->getAliasSet(PhysReg); |
| unsigned Alias = *AS; ++AS) { |
| UsedInInstr.set(Alias); |
| switch (unsigned VirtReg = PhysRegState[Alias]) { |
| case regDisabled: |
| break; |
| default: |
| spillVirtReg(MI, VirtReg); |
| // Fall through. |
| case regFree: |
| case regReserved: |
| PhysRegState[Alias] = regDisabled; |
| if (TRI->isSuperRegister(PhysReg, Alias)) |
| return; |
| break; |
| } |
| } |
| } |
| |
| |
| // calcSpillCost - Return the cost of spilling clearing out PhysReg and |
| // aliases so it is free for allocation. |
| // Returns 0 when PhysReg is free or disabled with all aliases disabled - it |
| // can be allocated directly. |
| // Returns spillImpossible when PhysReg or an alias can't be spilled. |
| unsigned RAFast::calcSpillCost(unsigned PhysReg) const { |
| if (UsedInInstr.test(PhysReg)) |
| return spillImpossible; |
| switch (unsigned VirtReg = PhysRegState[PhysReg]) { |
| case regDisabled: |
| break; |
| case regFree: |
| return 0; |
| case regReserved: |
| return spillImpossible; |
| default: |
| return LiveVirtRegs.lookup(VirtReg).Dirty ? spillDirty : spillClean; |
| } |
| |
| // This is a disabled register, add up const of aliases. |
| unsigned Cost = 0; |
| for (const unsigned *AS = TRI->getAliasSet(PhysReg); |
| unsigned Alias = *AS; ++AS) { |
| if (UsedInInstr.test(Alias)) |
| return spillImpossible; |
| switch (unsigned VirtReg = PhysRegState[Alias]) { |
| case regDisabled: |
| break; |
| case regFree: |
| ++Cost; |
| break; |
| case regReserved: |
| return spillImpossible; |
| default: |
| Cost += LiveVirtRegs.lookup(VirtReg).Dirty ? spillDirty : spillClean; |
| break; |
| } |
| } |
| return Cost; |
| } |
| |
| |
| /// assignVirtToPhysReg - This method updates local state so that we know |
| /// that PhysReg is the proper container for VirtReg now. The physical |
| /// register must not be used for anything else when this is called. |
| /// |
| void RAFast::assignVirtToPhysReg(LiveRegEntry &LRE, unsigned PhysReg) { |
| DEBUG(dbgs() << "Assigning %reg" << LRE.first << " to " |
| << TRI->getName(PhysReg) << "\n"); |
| PhysRegState[PhysReg] = LRE.first; |
| assert(!LRE.second.PhysReg && "Already assigned a physreg"); |
| LRE.second.PhysReg = PhysReg; |
| } |
| |
| /// allocVirtReg - Allocate a physical register for VirtReg. |
| void RAFast::allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint) { |
| const unsigned VirtReg = LRE.first; |
| |
| assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && |
| "Can only allocate virtual registers"); |
| |
| const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); |
| |
| // Ignore invalid hints. |
| if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || |
| !RC->contains(Hint) || !Allocatable.test(Hint))) |
| Hint = 0; |
| |
| // Take hint when possible. |
| if (Hint) { |
| switch(calcSpillCost(Hint)) { |
| default: |
| definePhysReg(MI, Hint, regFree); |
| // Fall through. |
| case 0: |
| return assignVirtToPhysReg(LRE, Hint); |
| case spillImpossible: |
| break; |
| } |
| } |
| |
| TargetRegisterClass::iterator AOB = RC->allocation_order_begin(*MF); |
| TargetRegisterClass::iterator AOE = RC->allocation_order_end(*MF); |
| |
| // First try to find a completely free register. |
| for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) { |
| unsigned PhysReg = *I; |
| if (PhysRegState[PhysReg] == regFree && !UsedInInstr.test(PhysReg)) |
| return assignVirtToPhysReg(LRE, PhysReg); |
| } |
| |
| DEBUG(dbgs() << "Allocating %reg" << VirtReg << " from " << RC->getName() |
| << "\n"); |
| |
| unsigned BestReg = 0, BestCost = spillImpossible; |
| for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) { |
| unsigned Cost = calcSpillCost(*I); |
| // Cost is 0 when all aliases are already disabled. |
| if (Cost == 0) |
| return assignVirtToPhysReg(LRE, *I); |
| if (Cost < BestCost) |
| BestReg = *I, BestCost = Cost; |
| } |
| |
| if (BestReg) { |
| definePhysReg(MI, BestReg, regFree); |
| return assignVirtToPhysReg(LRE, BestReg); |
| } |
| |
| // Nothing we can do. |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "Ran out of registers during register allocation!"; |
| if (MI->isInlineAsm()) { |
| Msg << "\nPlease check your inline asm statement for " |
| << "invalid constraints:\n"; |
| MI->print(Msg, TM); |
| } |
| report_fatal_error(Msg.str()); |
| } |
| |
| /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. |
| RAFast::LiveRegMap::iterator |
| RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum, |
| unsigned VirtReg, unsigned Hint) { |
| assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && |
| "Not a virtual register"); |
| LiveRegMap::iterator LRI; |
| bool New; |
| tie(LRI, New) = LiveVirtRegs.insert(std::make_pair(VirtReg, LiveReg())); |
| LiveReg &LR = LRI->second; |
| if (New) { |
| // If there is no hint, peek at the only use of this register. |
| if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && |
| MRI->hasOneNonDBGUse(VirtReg)) { |
| const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg); |
| unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; |
| // It's a copy, use the destination register as a hint. |
| if (UseMI.isCopyLike()) |
| Hint = UseMI.getOperand(0).getReg(); |
| else if (TII->isMoveInstr(UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) |
| Hint = DstReg; |
| } |
| allocVirtReg(MI, *LRI, Hint); |
| } else if (LR.LastUse) { |
| // Redefining a live register - kill at the last use, unless it is this |
| // instruction defining VirtReg multiple times. |
| if (LR.LastUse != MI || LR.LastUse->getOperand(LR.LastOpNum).isUse()) |
| addKillFlag(LR); |
| } |
| assert(LR.PhysReg && "Register not assigned"); |
| LR.LastUse = MI; |
| LR.LastOpNum = OpNum; |
| LR.Dirty = true; |
| UsedInInstr.set(LR.PhysReg); |
| return LRI; |
| } |
| |
| /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. |
| RAFast::LiveRegMap::iterator |
| RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum, |
| unsigned VirtReg, unsigned Hint) { |
| assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && |
| "Not a virtual register"); |
| LiveRegMap::iterator LRI; |
| bool New; |
| tie(LRI, New) = LiveVirtRegs.insert(std::make_pair(VirtReg, LiveReg())); |
| LiveReg &LR = LRI->second; |
| MachineOperand &MO = MI->getOperand(OpNum); |
| if (New) { |
| allocVirtReg(MI, *LRI, Hint); |
| const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); |
| int FrameIndex = getStackSpaceFor(VirtReg, RC); |
| DEBUG(dbgs() << "Reloading %reg" << VirtReg << " into " |
| << TRI->getName(LR.PhysReg) << "\n"); |
| TII->loadRegFromStackSlot(*MBB, MI, LR.PhysReg, FrameIndex, RC, TRI); |
| ++NumLoads; |
| } else if (LR.Dirty) { |
| if (isLastUseOfLocalReg(MO)) { |
| DEBUG(dbgs() << "Killing last use: " << MO << "\n"); |
| if (MO.isUse()) |
| MO.setIsKill(); |
| else |
| MO.setIsDead(); |
| } else if (MO.isKill()) { |
| DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); |
| MO.setIsKill(false); |
| } else if (MO.isDead()) { |
| DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); |
| MO.setIsDead(false); |
| } |
| } else if (MO.isKill()) { |
| // We must remove kill flags from uses of reloaded registers because the |
| // register would be killed immediately, and there might be a second use: |
| // %foo = OR %x<kill>, %x |
| // This would cause a second reload of %x into a different register. |
| DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); |
| MO.setIsKill(false); |
| } else if (MO.isDead()) { |
| DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); |
| MO.setIsDead(false); |
| } |
| assert(LR.PhysReg && "Register not assigned"); |
| LR.LastUse = MI; |
| LR.LastOpNum = OpNum; |
| UsedInInstr.set(LR.PhysReg); |
| return LRI; |
| } |
| |
| // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering |
| // subregs. This may invalidate any operand pointers. |
| // Return true if the operand kills its register. |
| bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) { |
| MachineOperand &MO = MI->getOperand(OpNum); |
| if (!MO.getSubReg()) { |
| MO.setReg(PhysReg); |
| return MO.isKill() || MO.isDead(); |
| } |
| |
| // Handle subregister index. |
| MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); |
| MO.setSubReg(0); |
| |
| // A kill flag implies killing the full register. Add corresponding super |
| // register kill. |
| if (MO.isKill()) { |
| MI->addRegisterKilled(PhysReg, TRI, true); |
| return true; |
| } |
| return MO.isDead(); |
| } |
| |
| // Handle special instruction operand like early clobbers and tied ops when |
| // there are additional physreg defines. |
| void RAFast::handleThroughOperands(MachineInstr *MI, |
| SmallVectorImpl<unsigned> &VirtDead) { |
| DEBUG(dbgs() << "Scanning for through registers:"); |
| SmallSet<unsigned, 8> ThroughRegs; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; |
| if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) || |
| (MO.getSubReg() && MI->readsVirtualRegister(Reg))) { |
| if (ThroughRegs.insert(Reg)) |
| DEBUG(dbgs() << " %reg" << Reg); |
| } |
| } |
| |
| // If any physreg defines collide with preallocated through registers, |
| // we must spill and reallocate. |
| DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef()) continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; |
| UsedInInstr.set(Reg); |
| if (ThroughRegs.count(PhysRegState[Reg])) |
| definePhysReg(MI, Reg, regFree); |
| for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) { |
| UsedInInstr.set(*AS); |
| if (ThroughRegs.count(PhysRegState[*AS])) |
| definePhysReg(MI, *AS, regFree); |
| } |
| } |
| |
| SmallVector<unsigned, 8> PartialDefs; |
| DEBUG(dbgs() << "Allocating tied uses and early clobbers.\n"); |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; |
| if (MO.isUse()) { |
| unsigned DefIdx = 0; |
| if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue; |
| DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand " |
| << DefIdx << ".\n"); |
| LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); |
| unsigned PhysReg = LRI->second.PhysReg; |
| setPhysReg(MI, i, PhysReg); |
| // Note: we don't update the def operand yet. That would cause the normal |
| // def-scan to attempt spilling. |
| } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) { |
| DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); |
| // Reload the register, but don't assign to the operand just yet. |
| // That would confuse the later phys-def processing pass. |
| LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); |
| PartialDefs.push_back(LRI->second.PhysReg); |
| } else if (MO.isEarlyClobber()) { |
| // Note: defineVirtReg may invalidate MO. |
| LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0); |
| unsigned PhysReg = LRI->second.PhysReg; |
| if (setPhysReg(MI, i, PhysReg)) |
| VirtDead.push_back(Reg); |
| } |
| } |
| |
| // Restore UsedInInstr to a state usable for allocating normal virtual uses. |
| UsedInInstr.reset(); |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; |
| UsedInInstr.set(Reg); |
| for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) |
| UsedInInstr.set(*AS); |
| } |
| |
| // Also mark PartialDefs as used to avoid reallocation. |
| for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i) |
| UsedInInstr.set(PartialDefs[i]); |
| } |
| |
| void RAFast::AllocateBasicBlock() { |
| DEBUG(dbgs() << "\nAllocating " << *MBB); |
| |
| PhysRegState.assign(TRI->getNumRegs(), regDisabled); |
| assert(LiveVirtRegs.empty() && "Mapping not cleared form last block?"); |
| |
| MachineBasicBlock::iterator MII = MBB->begin(); |
| |
| // Add live-in registers as live. |
| for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), |
| E = MBB->livein_end(); I != E; ++I) |
| definePhysReg(MII, *I, regReserved); |
| |
| SmallVector<unsigned, 8> VirtDead; |
| SmallVector<MachineInstr*, 32> Coalesced; |
| |
| // Otherwise, sequentially allocate each instruction in the MBB. |
| while (MII != MBB->end()) { |
| MachineInstr *MI = MII++; |
| const TargetInstrDesc &TID = MI->getDesc(); |
| DEBUG({ |
| dbgs() << "\n>> " << *MI << "Regs:"; |
| for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { |
| if (PhysRegState[Reg] == regDisabled) continue; |
| dbgs() << " " << TRI->getName(Reg); |
| switch(PhysRegState[Reg]) { |
| case regFree: |
| break; |
| case regReserved: |
| dbgs() << "*"; |
| break; |
| default: |
| dbgs() << "=%reg" << PhysRegState[Reg]; |
| if (LiveVirtRegs[PhysRegState[Reg]].Dirty) |
| dbgs() << "*"; |
| assert(LiveVirtRegs[PhysRegState[Reg]].PhysReg == Reg && |
| "Bad inverse map"); |
| break; |
| } |
| } |
| dbgs() << '\n'; |
| // Check that LiveVirtRegs is the inverse. |
| for (LiveRegMap::iterator i = LiveVirtRegs.begin(), |
| e = LiveVirtRegs.end(); i != e; ++i) { |
| assert(TargetRegisterInfo::isVirtualRegister(i->first) && |
| "Bad map key"); |
| assert(TargetRegisterInfo::isPhysicalRegister(i->second.PhysReg) && |
| "Bad map value"); |
| assert(PhysRegState[i->second.PhysReg] == i->first && |
| "Bad inverse map"); |
| } |
| }); |
| |
| // Debug values are not allowed to change codegen in any way. |
| if (MI->isDebugValue()) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; |
| LiveRegMap::iterator LRI = LiveVirtRegs.find(Reg); |
| if (LRI != LiveVirtRegs.end()) |
| setPhysReg(MI, i, LRI->second.PhysReg); |
| else { |
| int SS = StackSlotForVirtReg[Reg]; |
| if (SS == -1) |
| MO.setReg(0); // We can't allocate a physreg for a DebugValue, sorry! |
| else { |
| // Modify DBG_VALUE now that the value is in a spill slot. |
| uint64_t Offset = MI->getOperand(1).getImm(); |
| const MDNode *MDPtr = |
| MI->getOperand(MI->getNumOperands()-1).getMetadata(); |
| DebugLoc DL = MI->getDebugLoc(); |
| if (MachineInstr *NewDV = |
| TII->emitFrameIndexDebugValue(*MF, SS, Offset, MDPtr, DL)) { |
| DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); |
| MachineBasicBlock *MBB = MI->getParent(); |
| MBB->insert(MBB->erase(MI), NewDV); |
| } else |
| MO.setReg(0); // We can't allocate a physreg for a DebugValue, sorry! |
| } |
| } |
| } |
| // Next instruction. |
| continue; |
| } |
| |
| // If this is a copy, we may be able to coalesce. |
| unsigned CopySrc, CopyDst, CopySrcSub, CopyDstSub; |
| if (MI->isCopy()) { |
| CopyDst = MI->getOperand(0).getReg(); |
| CopySrc = MI->getOperand(1).getReg(); |
| CopyDstSub = MI->getOperand(0).getSubReg(); |
| CopySrcSub = MI->getOperand(1).getSubReg(); |
| } else if (!TII->isMoveInstr(*MI, CopySrc, CopyDst, CopySrcSub, CopyDstSub)) |
| CopySrc = CopyDst = 0; |
| |
| // Track registers used by instruction. |
| UsedInInstr.reset(); |
| |
| // First scan. |
| // Mark physreg uses and early clobbers as used. |
| // Find the end of the virtreg operands |
| unsigned VirtOpEnd = 0; |
| bool hasTiedOps = false; |
| bool hasEarlyClobbers = false; |
| bool hasPartialRedefs = false; |
| bool hasPhysDefs = false; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) continue; |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| VirtOpEnd = i+1; |
| if (MO.isUse()) { |
| hasTiedOps = hasTiedOps || |
| TID.getOperandConstraint(i, TOI::TIED_TO) != -1; |
| } else { |
| if (MO.isEarlyClobber()) |
| hasEarlyClobbers = true; |
| if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) |
| hasPartialRedefs = true; |
| } |
| continue; |
| } |
| if (!Allocatable.test(Reg)) continue; |
| if (MO.isUse()) { |
| usePhysReg(MO); |
| } else if (MO.isEarlyClobber()) { |
| definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? |
| regFree : regReserved); |
| hasEarlyClobbers = true; |
| } else |
| hasPhysDefs = true; |
| } |
| |
| // The instruction may have virtual register operands that must be allocated |
| // the same register at use-time and def-time: early clobbers and tied |
| // operands. If there are also physical defs, these registers must avoid |
| // both physical defs and uses, making them more constrained than normal |
| // operands. |
| // We didn't detect inline asm tied operands above, so just make this extra |
| // pass for all inline asm. |
| if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || |
| (hasTiedOps && hasPhysDefs)) { |
| handleThroughOperands(MI, VirtDead); |
| // Don't attempt coalescing when we have funny stuff going on. |
| CopyDst = 0; |
| } |
| |
| // Second scan. |
| // Allocate virtreg uses. |
| for (unsigned i = 0; i != VirtOpEnd; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; |
| if (MO.isUse()) { |
| LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst); |
| unsigned PhysReg = LRI->second.PhysReg; |
| CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; |
| if (setPhysReg(MI, i, PhysReg)) |
| killVirtReg(LRI); |
| } |
| } |
| |
| MRI->addPhysRegsUsed(UsedInInstr); |
| |
| // Track registers defined by instruction - early clobbers at this point. |
| UsedInInstr.reset(); |
| if (hasEarlyClobbers) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef()) continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; |
| UsedInInstr.set(Reg); |
| for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) |
| UsedInInstr.set(*AS); |
| } |
| } |
| |
| unsigned DefOpEnd = MI->getNumOperands(); |
| if (TID.isCall()) { |
| // Spill all virtregs before a call. This serves two purposes: 1. If an |
| // exception is thrown, the landing pad is going to expect to find registers |
| // in their spill slots, and 2. we don't have to wade through all the |
| // <imp-def> operands on the call instruction. |
| DefOpEnd = VirtOpEnd; |
| DEBUG(dbgs() << " Spilling remaining registers before call.\n"); |
| spillAll(MI); |
| |
| // The imp-defs are skipped below, but we still need to mark those |
| // registers as used by the function. |
| SkippedInstrs.insert(&TID); |
| } |
| |
| // Third scan. |
| // Allocate defs and collect dead defs. |
| for (unsigned i = 0; i != DefOpEnd; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| if (!Allocatable.test(Reg)) continue; |
| definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? |
| regFree : regReserved); |
| continue; |
| } |
| LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc); |
| unsigned PhysReg = LRI->second.PhysReg; |
| if (setPhysReg(MI, i, PhysReg)) { |
| VirtDead.push_back(Reg); |
| CopyDst = 0; // cancel coalescing; |
| } else |
| CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; |
| } |
| |
| // Kill dead defs after the scan to ensure that multiple defs of the same |
| // register are allocated identically. We didn't need to do this for uses |
| // because we are crerating our own kill flags, and they are always at the |
| // last use. |
| for (unsigned i = 0, e = VirtDead.size(); i != e; ++i) |
| killVirtReg(VirtDead[i]); |
| VirtDead.clear(); |
| |
| MRI->addPhysRegsUsed(UsedInInstr); |
| |
| if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { |
| DEBUG(dbgs() << "-- coalescing: " << *MI); |
| Coalesced.push_back(MI); |
| } else { |
| DEBUG(dbgs() << "<< " << *MI); |
| } |
| } |
| |
| // Spill all physical registers holding virtual registers now. |
| DEBUG(dbgs() << "Spilling live registers at end of block.\n"); |
| spillAll(MBB->getFirstTerminator()); |
| |
| // Erase all the coalesced copies. We are delaying it until now because |
| // LiveVirtRegs might refer to the instrs. |
| for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) |
| MBB->erase(Coalesced[i]); |
| NumCopies += Coalesced.size(); |
| |
| DEBUG(MBB->dump()); |
| } |
| |
| /// runOnMachineFunction - Register allocate the whole function |
| /// |
| bool RAFast::runOnMachineFunction(MachineFunction &Fn) { |
| DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" |
| << "********** Function: " |
| << ((Value*)Fn.getFunction())->getName() << '\n'); |
| MF = &Fn; |
| MRI = &MF->getRegInfo(); |
| TM = &Fn.getTarget(); |
| TRI = TM->getRegisterInfo(); |
| TII = TM->getInstrInfo(); |
| |
| UsedInInstr.resize(TRI->getNumRegs()); |
| Allocatable = TRI->getAllocatableSet(*MF); |
| |
| // initialize the virtual->physical register map to have a 'null' |
| // mapping for all virtual registers |
| unsigned LastVirtReg = MRI->getLastVirtReg(); |
| StackSlotForVirtReg.grow(LastVirtReg); |
| |
| // Loop over all of the basic blocks, eliminating virtual register references |
| for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); |
| MBBi != MBBe; ++MBBi) { |
| MBB = &*MBBi; |
| AllocateBasicBlock(); |
| } |
| |
| // Make sure the set of used physregs is closed under subreg operations. |
| MRI->closePhysRegsUsed(*TRI); |
| |
| // Add the clobber lists for all the instructions we skipped earlier. |
| for (SmallPtrSet<const TargetInstrDesc*, 4>::const_iterator |
| I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I) |
| if (const unsigned *Defs = (*I)->getImplicitDefs()) |
| while (*Defs) |
| MRI->setPhysRegUsed(*Defs++); |
| |
| SkippedInstrs.clear(); |
| StackSlotForVirtReg.clear(); |
| return true; |
| } |
| |
| FunctionPass *llvm::createFastRegisterAllocator() { |
| return new RAFast(); |
| } |