| //===- TailDuplication.cpp - Simplify CFG through tail duplication --------===// |
| // |
| // This pass performs a limited form of tail duplication, intended to simplify |
| // CFGs by removing some unconditional branches. This pass is necessary to |
| // straighten out loops created by the C front-end, but also is capable of |
| // making other code nicer. After this pass is run, the CFG simplify pass |
| // should be run to clean up the mess. |
| // |
| // This pass could be enhanced in the future to use profile information to be |
| // more aggressive. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Function.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Type.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "Support/Statistic.h" |
| |
| namespace { |
| Statistic<> NumEliminated("tailduplicate", |
| "Number of unconditional branches eliminated"); |
| Statistic<> NumPHINodes("tailduplicate", "Number of phi nodes inserted"); |
| |
| class TailDup : public FunctionPass { |
| bool runOnFunction(Function &F); |
| private: |
| inline bool shouldEliminateUnconditionalBranch(TerminatorInst *TI); |
| inline void eliminateUnconditionalBranch(BranchInst *BI); |
| inline void InsertPHINodesIfNecessary(Instruction *OrigInst, Value *NewInst, |
| BasicBlock *NewBlock); |
| inline Value *GetValueInBlock(BasicBlock *BB, Value *OrigVal, |
| std::map<BasicBlock*, Value*> &ValueMap, |
| std::map<BasicBlock*, Value*> &OutValueMap); |
| inline Value *GetValueOutBlock(BasicBlock *BB, Value *OrigVal, |
| std::map<BasicBlock*, Value*> &ValueMap, |
| std::map<BasicBlock*, Value*> &OutValueMap); |
| }; |
| RegisterOpt<TailDup> X("tailduplicate", "Tail Duplication"); |
| } |
| |
| Pass *createTailDuplicationPass() { return new TailDup(); } |
| |
| /// runOnFunction - Top level algorithm - Loop over each unconditional branch in |
| /// the function, eliminating it if it looks attractive enough. |
| /// |
| bool TailDup::runOnFunction(Function &F) { |
| bool Changed = false; |
| for (Function::iterator I = F.begin(), E = F.end(); I != E; ) |
| if (shouldEliminateUnconditionalBranch(I->getTerminator())) { |
| eliminateUnconditionalBranch(cast<BranchInst>(I->getTerminator())); |
| Changed = true; |
| } else { |
| ++I; |
| } |
| return Changed; |
| } |
| |
| /// shouldEliminateUnconditionalBranch - Return true if this branch looks |
| /// attractive to eliminate. We eliminate the branch if the destination basic |
| /// block has <= 5 instructions in it, not counting PHI nodes. In practice, |
| /// since one of these is a terminator instruction, this means that we will add |
| /// up to 4 instructions to the new block. |
| /// |
| /// We don't count PHI nodes in the count since they will be removed when the |
| /// contents of the block are copied over. |
| /// |
| bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI) { |
| BranchInst *BI = dyn_cast<BranchInst>(TI); |
| if (!BI || !BI->isUnconditional()) return false; // Not an uncond branch! |
| |
| BasicBlock *Dest = BI->getSuccessor(0); |
| if (Dest == BI->getParent()) return false; // Do not loop infinitely! |
| |
| // Do not bother working on dead blocks... |
| pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest); |
| if (PI == PE && Dest != Dest->getParent()->begin()) |
| return false; // It's just a dead block, ignore it... |
| |
| // Also, do not bother with blocks with only a single predecessor: simplify |
| // CFG will fold these two blocks together! |
| ++PI; |
| if (PI == PE) return false; // Exactly one predecessor! |
| |
| BasicBlock::iterator I = Dest->begin(); |
| while (isa<PHINode>(*I)) ++I; |
| |
| for (unsigned Size = 0; I != Dest->end(); ++Size, ++I) |
| if (Size == 6) return false; // The block is too large... |
| return true; |
| } |
| |
| |
| /// eliminateUnconditionalBranch - Clone the instructions from the destination |
| /// block into the source block, eliminating the specified unconditional branch. |
| /// If the destination block defines values used by successors of the dest |
| /// block, we may need to insert PHI nodes. |
| /// |
| void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) { |
| BasicBlock *SourceBlock = Branch->getParent(); |
| BasicBlock *DestBlock = Branch->getSuccessor(0); |
| assert(SourceBlock != DestBlock && "Our predicate is broken!"); |
| |
| DEBUG(std::cerr << "TailDuplication[" << SourceBlock->getParent()->getName() |
| << "]: Eliminating branch: " << *Branch); |
| |
| // We are going to have to map operands from the original block B to the new |
| // copy of the block B'. If there are PHI nodes in the DestBlock, these PHI |
| // nodes also define part of this mapping. Loop over these PHI nodes, adding |
| // them to our mapping. |
| std::map<Value*, Value*> ValueMapping; |
| |
| BasicBlock::iterator BI = DestBlock->begin(); |
| bool HadPHINodes = isa<PHINode>(BI); |
| for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) |
| ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock); |
| |
| // Clone the non-phi instructions of the dest block into the source block, |
| // keeping track of the mapping... |
| // |
| for (; BI != DestBlock->end(); ++BI) { |
| Instruction *New = BI->clone(); |
| New->setName(BI->getName()); |
| SourceBlock->getInstList().push_back(New); |
| ValueMapping[BI] = New; |
| } |
| |
| // Now that we have built the mapping information and cloned all of the |
| // instructions (giving us a new terminator, among other things), walk the new |
| // instructions, rewriting references of old instructions to use new |
| // instructions. |
| // |
| BI = Branch; ++BI; // Get an iterator to the first new instruction |
| for (; BI != SourceBlock->end(); ++BI) |
| for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) |
| if (Value *Remapped = ValueMapping[BI->getOperand(i)]) |
| BI->setOperand(i, Remapped); |
| |
| // Next we check to see if any of the successors of DestBlock had PHI nodes. |
| // If so, we need to add entries to the PHI nodes for SourceBlock now. |
| for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock); |
| SI != SE; ++SI) { |
| BasicBlock *Succ = *SI; |
| for (BasicBlock::iterator PNI = Succ->begin(); |
| PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { |
| // Ok, we have a PHI node. Figure out what the incoming value was for the |
| // DestBlock. |
| Value *IV = PN->getIncomingValueForBlock(DestBlock); |
| |
| // Remap the value if necessary... |
| if (Value *MappedIV = ValueMapping[IV]) |
| IV = MappedIV; |
| PN->addIncoming(IV, SourceBlock); |
| } |
| } |
| |
| // Now that all of the instructions are correctly copied into the SourceBlock, |
| // we have one more minor problem: the successors of the original DestBB may |
| // use the values computed in DestBB either directly (if DestBB dominated the |
| // block), or through a PHI node. In either case, we need to insert PHI nodes |
| // into any successors of DestBB (which are now our successors) for each value |
| // that is computed in DestBB, but is used outside of it. All of these uses |
| // we have to rewrite with the new PHI node. |
| // |
| if (succ_begin(SourceBlock) != succ_end(SourceBlock)) // Avoid wasting time... |
| for (BI = DestBlock->begin(); BI != DestBlock->end(); ++BI) |
| if (BI->getType() != Type::VoidTy) |
| InsertPHINodesIfNecessary(BI, ValueMapping[BI], SourceBlock); |
| |
| // Final step: now that we have finished everything up, walk the cloned |
| // instructions one last time, constant propagating and DCE'ing them, because |
| // they may not be needed anymore. |
| // |
| BI = Branch; ++BI; // Get an iterator to the first new instruction |
| if (HadPHINodes) |
| while (BI != SourceBlock->end()) |
| if (!dceInstruction(BI) && !doConstantPropagation(BI)) |
| ++BI; |
| |
| DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes... |
| SourceBlock->getInstList().erase(Branch); // Destroy the uncond branch... |
| |
| ++NumEliminated; // We just killed a branch! |
| } |
| |
| /// InsertPHINodesIfNecessary - So at this point, we cloned the OrigInst |
| /// instruction into the NewBlock with the value of NewInst. If OrigInst was |
| /// used outside of its defining basic block, we need to insert a PHI nodes into |
| /// the successors. |
| /// |
| void TailDup::InsertPHINodesIfNecessary(Instruction *OrigInst, Value *NewInst, |
| BasicBlock *NewBlock) { |
| // Loop over all of the uses of OrigInst, rewriting them to be newly inserted |
| // PHI nodes, unless they are in the same basic block as OrigInst. |
| BasicBlock *OrigBlock = OrigInst->getParent(); |
| std::vector<Instruction*> Users; |
| Users.reserve(OrigInst->use_size()); |
| for (Value::use_iterator I = OrigInst->use_begin(), E = OrigInst->use_end(); |
| I != E; ++I) { |
| Instruction *In = cast<Instruction>(*I); |
| if (In->getParent() != OrigBlock) // Don't modify uses in the orig block! |
| Users.push_back(In); |
| } |
| |
| // The common case is that the instruction is only used within the block that |
| // defines it. If we have this case, quick exit. |
| // |
| if (Users.empty()) return; |
| |
| // Otherwise, we have a more complex case, handle it now. This requires the |
| // construction of a mapping between a basic block and the value to use when |
| // in the scope of that basic block. This map will map to the original and |
| // new values when in the original or new block, but will map to inserted PHI |
| // nodes when in other blocks. |
| // |
| std::map<BasicBlock*, Value*> ValueMap; |
| std::map<BasicBlock*, Value*> OutValueMap; // The outgoing value map |
| OutValueMap[OrigBlock] = OrigInst; |
| OutValueMap[NewBlock ] = NewInst; // Seed the initial values... |
| |
| DEBUG(std::cerr << " ** Inserting PHI nodes for " << OrigInst); |
| while (!Users.empty()) { |
| Instruction *User = Users.back(); Users.pop_back(); |
| |
| if (PHINode *PN = dyn_cast<PHINode>(User)) { |
| // PHI nodes must be handled specially here, because their operands are |
| // actually defined in predecessor basic blocks, NOT in the block that the |
| // PHI node lives in. Note that we have already added entries to PHI nods |
| // which are in blocks that are immediate successors of OrigBlock, so |
| // don't modify them again. |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) == OrigInst && |
| PN->getIncomingBlock(i) != OrigBlock) { |
| Value *V = GetValueOutBlock(PN->getIncomingBlock(i), OrigInst, |
| ValueMap, OutValueMap); |
| PN->setIncomingValue(i, V); |
| } |
| |
| } else { |
| // Any other user of the instruction can just replace any uses with the |
| // new value defined in the block it resides in. |
| Value *V = GetValueInBlock(User->getParent(), OrigInst, ValueMap, |
| OutValueMap); |
| User->replaceUsesOfWith(OrigInst, V); |
| } |
| } |
| } |
| |
| /// GetValueInBlock - This is a recursive method which inserts PHI nodes into |
| /// the function until there is a value available in basic block BB. |
| /// |
| Value *TailDup::GetValueInBlock(BasicBlock *BB, Value *OrigVal, |
| std::map<BasicBlock*, Value*> &ValueMap, |
| std::map<BasicBlock*, Value*> &OutValueMap) { |
| Value*& BBVal = ValueMap[BB]; |
| if (BBVal) return BBVal; // Value already computed for this block? |
| |
| assert(pred_begin(BB) != pred_end(BB) && |
| "Propagating PHI nodes to unreachable blocks?"); |
| |
| // If there is no value already available in this basic block, we need to |
| // either reuse a value from an incoming, dominating, basic block, or we need |
| // to create a new PHI node to merge in different incoming values. Because we |
| // don't know if we're part of a loop at this point or not, we create a PHI |
| // node, even if we will ultimately eliminate it. |
| PHINode *PN = new PHINode(OrigVal->getType(), OrigVal->getName()+".pn", |
| BB->begin()); |
| BBVal = PN; // Insert this into the BBVal slot in case of cycles... |
| |
| Value*& BBOutVal = OutValueMap[BB]; |
| if (BBOutVal == 0) BBOutVal = PN; |
| |
| // Now that we have created the PHI node, loop over all of the predecessors of |
| // this block, computing an incoming value for the predecessor. |
| std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB)); |
| for (unsigned i = 0, e = Preds.size(); i != e; ++i) |
| PN->addIncoming(GetValueOutBlock(Preds[i], OrigVal, ValueMap, OutValueMap), |
| Preds[i]); |
| |
| // The PHI node is complete. In many cases, however the PHI node was |
| // ultimately unnecessary: we could have just reused a dominating incoming |
| // value. If this is the case, nuke the PHI node and replace the map entry |
| // with the dominating value. |
| // |
| assert(PN->getNumIncomingValues() > 0 && "No predecessors?"); |
| |
| // Check to see if all of the elements in the PHI node are either the PHI node |
| // itself or ONE particular value. |
| unsigned i = 0; |
| Value *ReplVal = PN->getIncomingValue(i); |
| for (; ReplVal == PN && i != PN->getNumIncomingValues(); ++i) |
| ReplVal = PN->getIncomingValue(i); // Skip values equal to the PN |
| |
| for (; i != PN->getNumIncomingValues(); ++i) |
| if (PN->getIncomingValue(i) != PN && PN->getIncomingValue(i) != ReplVal) { |
| ReplVal = 0; |
| break; |
| } |
| |
| // Found a value to replace the PHI node with? |
| if (ReplVal) { |
| PN->replaceAllUsesWith(ReplVal); |
| BBVal = ReplVal; |
| if (BBOutVal == PN) BBOutVal = ReplVal; |
| BB->getInstList().erase(PN); // Erase the PHI node... |
| } else { |
| ++NumPHINodes; |
| } |
| |
| return BBVal; |
| } |
| |
| Value *TailDup::GetValueOutBlock(BasicBlock *BB, Value *OrigVal, |
| std::map<BasicBlock*, Value*> &ValueMap, |
| std::map<BasicBlock*, Value*> &OutValueMap) { |
| Value*& BBVal = OutValueMap[BB]; |
| if (BBVal) return BBVal; // Value already computed for this block? |
| |
| return BBVal = GetValueInBlock(BB, OrigVal, ValueMap, OutValueMap); |
| } |