| //===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tablegen backend emits a DAG instruction selector. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "DAGISelEmitter.h" |
| #include "DAGISelMatcher.h" |
| #include "Record.h" |
| #include "llvm/Support/Debug.h" |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // DAGISelEmitter Helper methods |
| // |
| |
| /// getResultPatternCost - Compute the number of instructions for this pattern. |
| /// This is a temporary hack. We should really include the instruction |
| /// latencies in this calculation. |
| static unsigned getResultPatternCost(TreePatternNode *P, |
| CodeGenDAGPatterns &CGP) { |
| if (P->isLeaf()) return 0; |
| |
| unsigned Cost = 0; |
| Record *Op = P->getOperator(); |
| if (Op->isSubClassOf("Instruction")) { |
| Cost++; |
| CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); |
| if (II.usesCustomInserter) |
| Cost += 10; |
| } |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) |
| Cost += getResultPatternCost(P->getChild(i), CGP); |
| return Cost; |
| } |
| |
| /// getResultPatternCodeSize - Compute the code size of instructions for this |
| /// pattern. |
| static unsigned getResultPatternSize(TreePatternNode *P, |
| CodeGenDAGPatterns &CGP) { |
| if (P->isLeaf()) return 0; |
| |
| unsigned Cost = 0; |
| Record *Op = P->getOperator(); |
| if (Op->isSubClassOf("Instruction")) { |
| Cost += Op->getValueAsInt("CodeSize"); |
| } |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) |
| Cost += getResultPatternSize(P->getChild(i), CGP); |
| return Cost; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Predicate emitter implementation. |
| // |
| |
| void DAGISelEmitter::EmitPredicateFunctions(raw_ostream &OS) { |
| OS << "\n// Predicate functions.\n"; |
| |
| // Walk the pattern fragments, adding them to a map, which sorts them by |
| // name. |
| typedef std::map<std::string, std::pair<Record*, TreePattern*> > PFsByNameTy; |
| PFsByNameTy PFsByName; |
| |
| for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end(); |
| I != E; ++I) |
| PFsByName.insert(std::make_pair(I->first->getName(), *I)); |
| |
| |
| for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end(); |
| I != E; ++I) { |
| Record *PatFragRecord = I->second.first;// Record that derives from PatFrag. |
| TreePattern *P = I->second.second; |
| |
| // If there is a code init for this fragment, emit the predicate code. |
| std::string Code = PatFragRecord->getValueAsCode("Predicate"); |
| if (Code.empty()) continue; |
| |
| if (P->getOnlyTree()->isLeaf()) |
| OS << "inline bool Predicate_" << PatFragRecord->getName() |
| << "(SDNode *N) const {\n"; |
| else { |
| std::string ClassName = |
| CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); |
| const char *C2 = ClassName == "SDNode" ? "N" : "inN"; |
| |
| OS << "inline bool Predicate_" << PatFragRecord->getName() |
| << "(SDNode *" << C2 << ") const {\n"; |
| if (ClassName != "SDNode") |
| OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; |
| } |
| OS << Code << "\n}\n"; |
| } |
| |
| OS << "\n\n"; |
| } |
| |
| namespace { |
| // PatternSortingPredicate - return true if we prefer to match LHS before RHS. |
| // In particular, we want to match maximal patterns first and lowest cost within |
| // a particular complexity first. |
| struct PatternSortingPredicate { |
| PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {} |
| CodeGenDAGPatterns &CGP; |
| |
| bool operator()(const PatternToMatch *LHS, const PatternToMatch *RHS) { |
| const TreePatternNode *LHSSrc = LHS->getSrcPattern(); |
| const TreePatternNode *RHSSrc = RHS->getSrcPattern(); |
| |
| if (LHSSrc->getNumTypes() != 0 && RHSSrc->getNumTypes() != 0 && |
| LHSSrc->getType(0) != RHSSrc->getType(0)) { |
| MVT::SimpleValueType V1 = LHSSrc->getType(0), V2 = RHSSrc->getType(0); |
| if (MVT(V1).isVector() != MVT(V2).isVector()) |
| return MVT(V2).isVector(); |
| |
| if (MVT(V1).isFloatingPoint() != MVT(V2).isFloatingPoint()) |
| return MVT(V2).isFloatingPoint(); |
| } |
| |
| // Otherwise, if the patterns might both match, sort based on complexity, |
| // which means that we prefer to match patterns that cover more nodes in the |
| // input over nodes that cover fewer. |
| unsigned LHSSize = LHS->getPatternComplexity(CGP); |
| unsigned RHSSize = RHS->getPatternComplexity(CGP); |
| if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost |
| if (LHSSize < RHSSize) return false; |
| |
| // If the patterns have equal complexity, compare generated instruction cost |
| unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP); |
| unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP); |
| if (LHSCost < RHSCost) return true; |
| if (LHSCost > RHSCost) return false; |
| |
| unsigned LHSPatSize = getResultPatternSize(LHS->getDstPattern(), CGP); |
| unsigned RHSPatSize = getResultPatternSize(RHS->getDstPattern(), CGP); |
| if (LHSPatSize < RHSPatSize) return true; |
| if (LHSPatSize > RHSPatSize) return false; |
| |
| // Sort based on the UID of the pattern, giving us a deterministic ordering |
| // if all other sorting conditions fail. |
| assert(LHS == RHS || LHS->ID != RHS->ID); |
| return LHS->ID < RHS->ID; |
| } |
| }; |
| } |
| |
| |
| void DAGISelEmitter::run(raw_ostream &OS) { |
| EmitSourceFileHeader("DAG Instruction Selector for the " + |
| CGP.getTargetInfo().getName() + " target", OS); |
| |
| OS << "// *** NOTE: This file is #included into the middle of the target\n" |
| << "// *** instruction selector class. These functions are really " |
| << "methods.\n\n"; |
| |
| DEBUG(errs() << "\n\nALL PATTERNS TO MATCH:\n\n"; |
| for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), |
| E = CGP.ptm_end(); I != E; ++I) { |
| errs() << "PATTERN: "; I->getSrcPattern()->dump(); |
| errs() << "\nRESULT: "; I->getDstPattern()->dump(); |
| errs() << "\n"; |
| }); |
| |
| // FIXME: These are being used by hand written code, gross. |
| EmitPredicateFunctions(OS); |
| |
| // Add all the patterns to a temporary list so we can sort them. |
| std::vector<const PatternToMatch*> Patterns; |
| for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); |
| I != E; ++I) |
| Patterns.push_back(&*I); |
| |
| // We want to process the matches in order of minimal cost. Sort the patterns |
| // so the least cost one is at the start. |
| std::sort(Patterns.begin(), Patterns.end(), PatternSortingPredicate(CGP)); |
| |
| |
| // Convert each variant of each pattern into a Matcher. |
| std::vector<Matcher*> PatternMatchers; |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| for (unsigned Variant = 0; ; ++Variant) { |
| if (Matcher *M = ConvertPatternToMatcher(*Patterns[i], Variant, CGP)) |
| PatternMatchers.push_back(M); |
| else |
| break; |
| } |
| } |
| |
| Matcher *TheMatcher = new ScopeMatcher(&PatternMatchers[0], |
| PatternMatchers.size()); |
| |
| TheMatcher = OptimizeMatcher(TheMatcher, CGP); |
| //Matcher->dump(); |
| EmitMatcherTable(TheMatcher, CGP, OS); |
| delete TheMatcher; |
| } |