| //===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===// |
| // |
| // This file implements a value numbering pass that value #'s load instructions. |
| // To do this, it finds lexically identical load instructions, and uses alias |
| // analysis to determine which loads are guaranteed to produce the same value. |
| // |
| // This pass builds off of another value numbering pass to implement value |
| // numbering for non-load instructions. It uses Alias Analysis so that it can |
| // disambiguate the load instructions. The more powerful these base analyses |
| // are, the more powerful the resultant analysis will be. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LoadValueNumbering.h" |
| #include "llvm/Analysis/ValueNumbering.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Type.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/Support/CFG.h" |
| #include <algorithm> |
| #include <set> |
| |
| namespace { |
| // FIXME: This should not be a FunctionPass. |
| struct LoadVN : public FunctionPass, public ValueNumbering { |
| |
| /// Pass Implementation stuff. This doesn't do any analysis. |
| /// |
| bool runOnFunction(Function &) { return false; } |
| |
| /// getAnalysisUsage - Does not modify anything. It uses Value Numbering |
| /// and Alias Analysis. |
| /// |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const; |
| |
| /// getEqualNumberNodes - Return nodes with the same value number as the |
| /// specified Value. This fills in the argument vector with any equal |
| /// values. |
| /// |
| virtual void getEqualNumberNodes(Value *V1, |
| std::vector<Value*> &RetVals) const; |
| private: |
| /// haveEqualValueNumber - Given two load instructions, determine if they |
| /// both produce the same value on every execution of the program, assuming |
| /// that their source operands always give the same value. This uses the |
| /// AliasAnalysis implementation to invalidate loads when stores or function |
| /// calls occur that could modify the value produced by the load. |
| /// |
| bool haveEqualValueNumber(LoadInst *LI, LoadInst *LI2, AliasAnalysis &AA, |
| DominatorSet &DomSetInfo) const; |
| bool haveEqualValueNumber(LoadInst *LI, StoreInst *SI, AliasAnalysis &AA, |
| DominatorSet &DomSetInfo) const; |
| }; |
| |
| // Register this pass... |
| RegisterOpt<LoadVN> X("load-vn", "Load Value Numbering"); |
| |
| // Declare that we implement the ValueNumbering interface |
| RegisterAnalysisGroup<ValueNumbering, LoadVN> Y; |
| } |
| |
| |
| |
| Pass *createLoadValueNumberingPass() { return new LoadVN(); } |
| |
| |
| /// getAnalysisUsage - Does not modify anything. It uses Value Numbering and |
| /// Alias Analysis. |
| /// |
| void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addRequired<ValueNumbering>(); |
| AU.addRequired<DominatorSet>(); |
| AU.addRequired<TargetData>(); |
| } |
| |
| // getEqualNumberNodes - Return nodes with the same value number as the |
| // specified Value. This fills in the argument vector with any equal values. |
| // |
| void LoadVN::getEqualNumberNodes(Value *V, |
| std::vector<Value*> &RetVals) const { |
| // If the alias analysis has any must alias information to share with us, we |
| // can definitely use it. |
| if (isa<PointerType>(V->getType())) |
| getAnalysis<AliasAnalysis>().getMustAliases(V, RetVals); |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(V)) { |
| // Volatile loads cannot be replaced with the value of other loads. |
| if (LI->isVolatile()) |
| return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals); |
| |
| // If we have a load instruction, find all of the load and store |
| // instructions that use the same source operand. We implement this |
| // recursively, because there could be a load of a load of a load that are |
| // all identical. We are guaranteed that this cannot be an infinite |
| // recursion because load instructions would have to pass through a PHI node |
| // in order for there to be a cycle. The PHI node would be handled by the |
| // else case here, breaking the infinite recursion. |
| // |
| std::vector<Value*> PointerSources; |
| getEqualNumberNodes(LI->getOperand(0), PointerSources); |
| PointerSources.push_back(LI->getOperand(0)); |
| |
| Function *F = LI->getParent()->getParent(); |
| |
| // Now that we know the set of equivalent source pointers for the load |
| // instruction, look to see if there are any load or store candiates that |
| // are identical. |
| // |
| std::vector<LoadInst*> CandidateLoads; |
| std::vector<StoreInst*> CandidateStores; |
| |
| while (!PointerSources.empty()) { |
| Value *Source = PointerSources.back(); |
| PointerSources.pop_back(); // Get a source pointer... |
| |
| for (Value::use_iterator UI = Source->use_begin(), UE = Source->use_end(); |
| UI != UE; ++UI) |
| if (LoadInst *Cand = dyn_cast<LoadInst>(*UI)) {// Is a load of source? |
| if (Cand->getParent()->getParent() == F && // In the same function? |
| Cand != LI && !Cand->isVolatile()) // Not LI itself? |
| CandidateLoads.push_back(Cand); // Got one... |
| } else if (StoreInst *Cand = dyn_cast<StoreInst>(*UI)) { |
| if (Cand->getParent()->getParent() == F && !Cand->isVolatile() && |
| Cand->getOperand(1) == Source) // It's a store THROUGH the ptr... |
| CandidateStores.push_back(Cand); |
| } |
| } |
| |
| // Remove duplicates from the CandidateLoads list because alias analysis |
| // processing may be somewhat expensive and we don't want to do more work |
| // than necessary. |
| // |
| unsigned OldSize = CandidateLoads.size(); |
| std::sort(CandidateLoads.begin(), CandidateLoads.end()); |
| CandidateLoads.erase(std::unique(CandidateLoads.begin(), |
| CandidateLoads.end()), |
| CandidateLoads.end()); |
| // FIXME: REMOVE THIS SORTING AND UNIQUING IF IT CAN'T HAPPEN |
| assert(CandidateLoads.size() == OldSize && "Shrunk the candloads list?"); |
| |
| // Get Alias Analysis... |
| AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); |
| DominatorSet &DomSetInfo = getAnalysis<DominatorSet>(); |
| |
| // Loop over all of the candindate loads. If they are not invalidated by |
| // stores or calls between execution of them and LI, then add them to |
| // RetVals. |
| for (unsigned i = 0, e = CandidateLoads.size(); i != e; ++i) |
| if (haveEqualValueNumber(LI, CandidateLoads[i], AA, DomSetInfo)) |
| RetVals.push_back(CandidateLoads[i]); |
| for (unsigned i = 0, e = CandidateStores.size(); i != e; ++i) |
| if (haveEqualValueNumber(LI, CandidateStores[i], AA, DomSetInfo)) |
| RetVals.push_back(CandidateStores[i]->getOperand(0)); |
| |
| } else { |
| assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this && |
| "getAnalysis() returned this!"); |
| |
| // Not a load instruction? Just chain to the base value numbering |
| // implementation to satisfy the request... |
| return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals); |
| } |
| } |
| |
| // CheckForInvalidatingInst - Return true if BB or any of the predecessors of BB |
| // (until DestBB) contain an instruction that might invalidate Ptr. |
| // |
| static bool CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB, |
| Value *Ptr, unsigned Size, |
| AliasAnalysis &AA, |
| std::set<BasicBlock*> &VisitedSet) { |
| // Found the termination point! |
| if (BB == DestBB || VisitedSet.count(BB)) return false; |
| |
| // Avoid infinite recursion! |
| VisitedSet.insert(BB); |
| |
| // Can this basic block modify Ptr? |
| if (AA.canBasicBlockModify(*BB, Ptr, Size)) |
| return true; |
| |
| // Check all of our predecessor blocks... |
| for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) |
| if (CheckForInvalidatingInst(*PI, DestBB, Ptr, Size, AA, VisitedSet)) |
| return true; |
| |
| // None of our predecessor blocks contain an invalidating instruction, and we |
| // don't either! |
| return false; |
| } |
| |
| |
| /// haveEqualValueNumber - Given two load instructions, determine if they both |
| /// produce the same value on every execution of the program, assuming that |
| /// their source operands always give the same value. This uses the |
| /// AliasAnalysis implementation to invalidate loads when stores or function |
| /// calls occur that could modify the value produced by the load. |
| /// |
| bool LoadVN::haveEqualValueNumber(LoadInst *L1, LoadInst *L2, |
| AliasAnalysis &AA, |
| DominatorSet &DomSetInfo) const { |
| // Figure out which load dominates the other one. If neither dominates the |
| // other we cannot eliminate them. |
| // |
| // FIXME: This could be enhanced to some cases with a shared dominator! |
| // |
| if (DomSetInfo.dominates(L2, L1)) |
| std::swap(L1, L2); // Make L1 dominate L2 |
| else if (!DomSetInfo.dominates(L1, L2)) |
| return false; // Neither instruction dominates the other one... |
| |
| BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent(); |
| Value *LoadAddress = L1->getOperand(0); |
| |
| assert(L1->getType() == L2->getType() && |
| "How could the same source pointer return different types?"); |
| |
| // Find out how many bytes of memory are loaded by the load instruction... |
| unsigned LoadSize = getAnalysis<TargetData>().getTypeSize(L1->getType()); |
| |
| // L1 now dominates L2. Check to see if the intervening instructions between |
| // the two loads include a store or call... |
| // |
| if (BB1 == BB2) { // In same basic block? |
| // In this degenerate case, no checking of global basic blocks has to occur |
| // just check the instructions BETWEEN L1 & L2... |
| // |
| if (AA.canInstructionRangeModify(*L1, *L2, LoadAddress, LoadSize)) |
| return false; // Cannot eliminate load |
| |
| // No instructions invalidate the loads, they produce the same value! |
| return true; |
| } else { |
| // Make sure that there are no store instructions between L1 and the end of |
| // its basic block... |
| // |
| if (AA.canInstructionRangeModify(*L1, *BB1->getTerminator(), LoadAddress, |
| LoadSize)) |
| return false; // Cannot eliminate load |
| |
| // Make sure that there are no store instructions between the start of BB2 |
| // and the second load instruction... |
| // |
| if (AA.canInstructionRangeModify(BB2->front(), *L2, LoadAddress, LoadSize)) |
| return false; // Cannot eliminate load |
| |
| // Do a depth first traversal of the inverse CFG starting at L2's block, |
| // looking for L1's block. The inverse CFG is made up of the predecessor |
| // nodes of a block... so all of the edges in the graph are "backward". |
| // |
| std::set<BasicBlock*> VisitedSet; |
| for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI) |
| if (CheckForInvalidatingInst(*PI, BB1, LoadAddress, LoadSize, AA, |
| VisitedSet)) |
| return false; |
| |
| // If we passed all of these checks then we are sure that the two loads |
| // produce the same value. |
| return true; |
| } |
| } |
| |
| |
| /// haveEqualValueNumber - Given a load instruction and a store instruction, |
| /// determine if the stored value reaches the loaded value unambiguously on |
| /// every execution of the program. This uses the AliasAnalysis implementation |
| /// to invalidate the stored value when stores or function calls occur that |
| /// could modify the value produced by the load. |
| /// |
| bool LoadVN::haveEqualValueNumber(LoadInst *Load, StoreInst *Store, |
| AliasAnalysis &AA, |
| DominatorSet &DomSetInfo) const { |
| // If the store does not dominate the load, we cannot do anything... |
| if (!DomSetInfo.dominates(Store, Load)) |
| return false; |
| |
| BasicBlock *BB1 = Store->getParent(), *BB2 = Load->getParent(); |
| Value *LoadAddress = Load->getOperand(0); |
| |
| assert(LoadAddress->getType() == Store->getOperand(1)->getType() && |
| "How could the same source pointer return different types?"); |
| |
| // Find out how many bytes of memory are loaded by the load instruction... |
| unsigned LoadSize = getAnalysis<TargetData>().getTypeSize(Load->getType()); |
| |
| // Compute a basic block iterator pointing to the instruction after the store. |
| BasicBlock::iterator StoreIt = Store; ++StoreIt; |
| |
| // Check to see if the intervening instructions between the two store and load |
| // include a store or call... |
| // |
| if (BB1 == BB2) { // In same basic block? |
| // In this degenerate case, no checking of global basic blocks has to occur |
| // just check the instructions BETWEEN Store & Load... |
| // |
| if (AA.canInstructionRangeModify(*StoreIt, *Load, LoadAddress, LoadSize)) |
| return false; // Cannot eliminate load |
| |
| // No instructions invalidate the stored value, they produce the same value! |
| return true; |
| } else { |
| // Make sure that there are no store instructions between the Store and the |
| // end of its basic block... |
| // |
| if (AA.canInstructionRangeModify(*StoreIt, *BB1->getTerminator(), |
| LoadAddress, LoadSize)) |
| return false; // Cannot eliminate load |
| |
| // Make sure that there are no store instructions between the start of BB2 |
| // and the second load instruction... |
| // |
| if (AA.canInstructionRangeModify(BB2->front(), *Load, LoadAddress,LoadSize)) |
| return false; // Cannot eliminate load |
| |
| // Do a depth first traversal of the inverse CFG starting at L2's block, |
| // looking for L1's block. The inverse CFG is made up of the predecessor |
| // nodes of a block... so all of the edges in the graph are "backward". |
| // |
| std::set<BasicBlock*> VisitedSet; |
| for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI) |
| if (CheckForInvalidatingInst(*PI, BB1, LoadAddress, LoadSize, AA, |
| VisitedSet)) |
| return false; |
| |
| // If we passed all of these checks then we are sure that the two loads |
| // produce the same value. |
| return true; |
| } |
| } |