| //===- Expressions.cpp - Expression Analysis Utilities ----------------------=// | 
 | // | 
 | // This file defines a package of expression analysis utilties: | 
 | // | 
 | // ClassifyExpression: Analyze an expression to determine the complexity of the | 
 | //   expression, and which other variables it depends on.   | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/Expressions.h" | 
 | #include "llvm/Transforms/Scalar/ConstantHandling.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/BasicBlock.h" | 
 | #include <iostream> | 
 |  | 
 | using namespace analysis; | 
 |  | 
 | ExprType::ExprType(Value *Val) { | 
 |   if (Val)  | 
 |     if (ConstantInt *CPI = dyn_cast<ConstantInt>(Val)) { | 
 |       Offset = CPI; | 
 |       Var = 0; | 
 |       ExprTy = Constant; | 
 |       Scale = 0; | 
 |       return; | 
 |     } | 
 |  | 
 |   Var = Val; Offset = 0; | 
 |   ExprTy = Var ? Linear : Constant; | 
 |   Scale = 0; | 
 | } | 
 |  | 
 | ExprType::ExprType(const ConstantInt *scale, Value *var,  | 
 | 		   const ConstantInt *offset) { | 
 |   Scale = var ? scale : 0; Var = var; Offset = offset; | 
 |   ExprTy = Scale ? ScaledLinear : (Var ? Linear : Constant); | 
 |   if (Scale && Scale->equalsInt(0)) {  // Simplify 0*Var + const | 
 |     Scale = 0; Var = 0; | 
 |     ExprTy = Constant; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | const Type *ExprType::getExprType(const Type *Default) const { | 
 |   if (Offset) return Offset->getType(); | 
 |   if (Scale) return Scale->getType(); | 
 |   return Var ? Var->getType() : Default; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | class DefVal { | 
 |   const ConstantInt * const Val; | 
 |   const Type * const Ty; | 
 | protected: | 
 |   inline DefVal(const ConstantInt *val, const Type *ty) : Val(val), Ty(ty) {} | 
 | public: | 
 |   inline const Type *getType() const { return Ty; } | 
 |   inline const ConstantInt *getVal() const { return Val; } | 
 |   inline operator const ConstantInt * () const { return Val; } | 
 |   inline const ConstantInt *operator->() const { return Val; } | 
 | }; | 
 |  | 
 | struct DefZero : public DefVal { | 
 |   inline DefZero(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {} | 
 |   inline DefZero(const ConstantInt *val) : DefVal(val, val->getType()) {} | 
 | }; | 
 |  | 
 | struct DefOne : public DefVal { | 
 |   inline DefOne(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {} | 
 | }; | 
 |  | 
 |  | 
 | // getUnsignedConstant - Return a constant value of the specified type.  If the | 
 | // constant value is not valid for the specified type, return null.  This cannot | 
 | // happen for values in the range of 0 to 127. | 
 | // | 
 | static ConstantInt *getUnsignedConstant(uint64_t V, const Type *Ty) { | 
 |   if (Ty->isPointerType()) Ty = Type::ULongTy; | 
 |   if (Ty->isSigned()) { | 
 |     // If this value is not a valid unsigned value for this type, return null! | 
 |     if (V > 127 && ((int64_t)V < 0 || | 
 |                     !ConstantSInt::isValueValidForType(Ty, (int64_t)V))) | 
 |       return 0; | 
 |     return ConstantSInt::get(Ty, V); | 
 |   } else { | 
 |     // If this value is not a valid unsigned value for this type, return null! | 
 |     if (V > 255 && !ConstantUInt::isValueValidForType(Ty, V)) | 
 |       return 0; | 
 |     return ConstantUInt::get(Ty, V); | 
 |   } | 
 | } | 
 |  | 
 | // Add - Helper function to make later code simpler.  Basically it just adds | 
 | // the two constants together, inserts the result into the constant pool, and | 
 | // returns it.  Of course life is not simple, and this is no exception.  Factors | 
 | // that complicate matters: | 
 | //   1. Either argument may be null.  If this is the case, the null argument is | 
 | //      treated as either 0 (if DefOne = false) or 1 (if DefOne = true) | 
 | //   2. Types get in the way.  We want to do arithmetic operations without | 
 | //      regard for the underlying types.  It is assumed that the constants are | 
 | //      integral constants.  The new value takes the type of the left argument. | 
 | //   3. If DefOne is true, a null return value indicates a value of 1, if DefOne | 
 | //      is false, a null return value indicates a value of 0. | 
 | // | 
 | static const ConstantInt *Add(const ConstantInt *Arg1, | 
 |                               const ConstantInt *Arg2, bool DefOne) { | 
 |   assert(Arg1 && Arg2 && "No null arguments should exist now!"); | 
 |   assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); | 
 |  | 
 |   // Actually perform the computation now! | 
 |   Constant *Result = *Arg1 + *Arg2; | 
 |   assert(Result && Result->getType() == Arg1->getType() && | 
 | 	 "Couldn't perform addition!"); | 
 |   ConstantInt *ResultI = cast<ConstantInt>(Result); | 
 |  | 
 |   // Check to see if the result is one of the special cases that we want to | 
 |   // recognize... | 
 |   if (ResultI->equalsInt(DefOne ? 1 : 0)) | 
 |     return 0;  // Yes it is, simply return null. | 
 |  | 
 |   return ResultI; | 
 | } | 
 |  | 
 | inline const ConstantInt *operator+(const DefZero &L, const DefZero &R) { | 
 |   if (L == 0) return R; | 
 |   if (R == 0) return L; | 
 |   return Add(L, R, false); | 
 | } | 
 |  | 
 | inline const ConstantInt *operator+(const DefOne &L, const DefOne &R) { | 
 |   if (L == 0) { | 
 |     if (R == 0) | 
 |       return getUnsignedConstant(2, L.getType()); | 
 |     else | 
 |       return Add(getUnsignedConstant(1, L.getType()), R, true); | 
 |   } else if (R == 0) { | 
 |     return Add(L, getUnsignedConstant(1, L.getType()), true); | 
 |   } | 
 |   return Add(L, R, true); | 
 | } | 
 |  | 
 |  | 
 | // Mul - Helper function to make later code simpler.  Basically it just | 
 | // multiplies the two constants together, inserts the result into the constant | 
 | // pool, and returns it.  Of course life is not simple, and this is no | 
 | // exception.  Factors that complicate matters: | 
 | //   1. Either argument may be null.  If this is the case, the null argument is | 
 | //      treated as either 0 (if DefOne = false) or 1 (if DefOne = true) | 
 | //   2. Types get in the way.  We want to do arithmetic operations without | 
 | //      regard for the underlying types.  It is assumed that the constants are | 
 | //      integral constants. | 
 | //   3. If DefOne is true, a null return value indicates a value of 1, if DefOne | 
 | //      is false, a null return value indicates a value of 0. | 
 | // | 
 | inline const ConstantInt *Mul(const ConstantInt *Arg1,  | 
 |                               const ConstantInt *Arg2, bool DefOne) { | 
 |   assert(Arg1 && Arg2 && "No null arguments should exist now!"); | 
 |   assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); | 
 |  | 
 |   // Actually perform the computation now! | 
 |   Constant *Result = *Arg1 * *Arg2; | 
 |   assert(Result && Result->getType() == Arg1->getType() &&  | 
 | 	 "Couldn't perform multiplication!"); | 
 |   ConstantInt *ResultI = cast<ConstantInt>(Result); | 
 |  | 
 |   // Check to see if the result is one of the special cases that we want to | 
 |   // recognize... | 
 |   if (ResultI->equalsInt(DefOne ? 1 : 0)) | 
 |     return 0; // Yes it is, simply return null. | 
 |  | 
 |   return ResultI; | 
 | } | 
 |  | 
 | inline const ConstantInt *operator*(const DefZero &L, const DefZero &R) { | 
 |   if (L == 0 || R == 0) return 0; | 
 |   return Mul(L, R, false); | 
 | } | 
 | inline const ConstantInt *operator*(const DefOne &L, const DefZero &R) { | 
 |   if (R == 0) return getUnsignedConstant(0, L.getType()); | 
 |   if (L == 0) return R->equalsInt(1) ? 0 : R.getVal(); | 
 |   return Mul(L, R, true); | 
 | } | 
 | inline const ConstantInt *operator*(const DefZero &L, const DefOne &R) { | 
 |   if (L == 0 || R == 0) return L.getVal(); | 
 |   return Mul(R, L, false); | 
 | } | 
 |  | 
 | // handleAddition - Add two expressions together, creating a new expression that | 
 | // represents the composite of the two... | 
 | // | 
 | static ExprType handleAddition(ExprType Left, ExprType Right, Value *V) { | 
 |   const Type *Ty = V->getType(); | 
 |   if (Left.ExprTy > Right.ExprTy) | 
 |     std::swap(Left, Right);   // Make left be simpler than right | 
 |  | 
 |   switch (Left.ExprTy) { | 
 |   case ExprType::Constant: | 
 |         return ExprType(Right.Scale, Right.Var, | 
 | 			DefZero(Right.Offset, Ty) + DefZero(Left.Offset, Ty)); | 
 |   case ExprType::Linear:              // RHS side must be linear or scaled | 
 |   case ExprType::ScaledLinear:        // RHS must be scaled | 
 |     if (Left.Var != Right.Var)        // Are they the same variables? | 
 |       return V;                       //   if not, we don't know anything! | 
 |  | 
 |     return ExprType(DefOne(Left.Scale  , Ty) + DefOne(Right.Scale , Ty), | 
 | 		    Right.Var, | 
 | 		    DefZero(Left.Offset, Ty) + DefZero(Right.Offset, Ty)); | 
 |   default: | 
 |     assert(0 && "Dont' know how to handle this case!"); | 
 |     return ExprType(); | 
 |   } | 
 | } | 
 |  | 
 | // negate - Negate the value of the specified expression... | 
 | // | 
 | static inline ExprType negate(const ExprType &E, Value *V) { | 
 |   const Type *Ty = V->getType(); | 
 |   ConstantInt *Zero   = getUnsignedConstant(0, Ty); | 
 |   ConstantInt *One    = getUnsignedConstant(1, Ty); | 
 |   ConstantInt *NegOne = cast<ConstantInt>(*Zero - *One); | 
 |   if (NegOne == 0) return V;  // Couldn't subtract values... | 
 |  | 
 |   return ExprType(DefOne (E.Scale , Ty) * NegOne, E.Var, | 
 | 		  DefZero(E.Offset, Ty) * NegOne); | 
 | } | 
 |  | 
 |  | 
 | // ClassifyExpression: Analyze an expression to determine the complexity of the | 
 | // expression, and which other values it depends on.   | 
 | // | 
 | // Note that this analysis cannot get into infinite loops because it treats PHI | 
 | // nodes as being an unknown linear expression. | 
 | // | 
 | ExprType analysis::ClassifyExpression(Value *Expr) { | 
 |   assert(Expr != 0 && "Can't classify a null expression!"); | 
 |   if (Expr->getType() == Type::FloatTy || Expr->getType() == Type::DoubleTy) | 
 |     return Expr;   // FIXME: Can't handle FP expressions | 
 |  | 
 |   switch (Expr->getValueType()) { | 
 |   case Value::InstructionVal: break;    // Instruction... hmmm... investigate. | 
 |   case Value::TypeVal:   case Value::BasicBlockVal: | 
 |   case Value::FunctionVal: case Value::ModuleVal: default: | 
 |     //assert(0 && "Unexpected expression type to classify!"); | 
 |     std::cerr << "Bizarre thing to expr classify: " << Expr << "\n"; | 
 |     return Expr; | 
 |   case Value::GlobalVariableVal:        // Global Variable & Function argument: | 
 |   case Value::FunctionArgumentVal:      // nothing known, return variable itself | 
 |     return Expr; | 
 |   case Value::ConstantVal:              // Constant value, just return constant | 
 |     Constant *CPV = cast<Constant>(Expr); | 
 |     if (CPV->getType()->isIntegral()) { // It's an integral constant! | 
 |       ConstantInt *CPI = cast<ConstantInt>(Expr); | 
 |       return ExprType(CPI->equalsInt(0) ? 0 : CPI); | 
 |     } | 
 |     return Expr; | 
 |   } | 
 |    | 
 |   Instruction *I = cast<Instruction>(Expr); | 
 |   const Type *Ty = I->getType(); | 
 |  | 
 |   switch (I->getOpcode()) {       // Handle each instruction type seperately | 
 |   case Instruction::Add: { | 
 |     ExprType Left (ClassifyExpression(I->getOperand(0))); | 
 |     ExprType Right(ClassifyExpression(I->getOperand(1))); | 
 |     return handleAddition(Left, Right, I); | 
 |   }  // end case Instruction::Add | 
 |  | 
 |   case Instruction::Sub: { | 
 |     ExprType Left (ClassifyExpression(I->getOperand(0))); | 
 |     ExprType Right(ClassifyExpression(I->getOperand(1))); | 
 |     ExprType RightNeg = negate(Right, I); | 
 |     if (RightNeg.Var == I && !RightNeg.Offset && !RightNeg.Scale) | 
 |       return I;   // Could not negate value... | 
 |     return handleAddition(Left, RightNeg, I); | 
 |   }  // end case Instruction::Sub | 
 |  | 
 |   case Instruction::Shl: {  | 
 |     ExprType Right(ClassifyExpression(I->getOperand(1))); | 
 |     if (Right.ExprTy != ExprType::Constant) break; | 
 |     ExprType Left(ClassifyExpression(I->getOperand(0))); | 
 |     if (Right.Offset == 0) return Left;   // shl x, 0 = x | 
 |     assert(Right.Offset->getType() == Type::UByteTy && | 
 | 	   "Shift amount must always be a unsigned byte!"); | 
 |     uint64_t ShiftAmount = ((ConstantUInt*)Right.Offset)->getValue(); | 
 |     ConstantInt *Multiplier = getUnsignedConstant(1ULL << ShiftAmount, Ty); | 
 |  | 
 |     // We don't know how to classify it if they are shifting by more than what | 
 |     // is reasonable.  In most cases, the result will be zero, but there is one | 
 |     // class of cases where it is not, so we cannot optimize without checking | 
 |     // for it.  The case is when you are shifting a signed value by 1 less than | 
 |     // the number of bits in the value.  For example: | 
 |     //    %X = shl sbyte %Y, ubyte 7 | 
 |     // will try to form an sbyte multiplier of 128, which will give a null | 
 |     // multiplier, even though the result is not 0.  Until we can check for this | 
 |     // case, be conservative.  TODO. | 
 |     // | 
 |     if (Multiplier == 0) | 
 |       return Expr; | 
 |  | 
 |     return ExprType(DefOne(Left.Scale, Ty) * Multiplier, Left.Var, | 
 | 		    DefZero(Left.Offset, Ty) * Multiplier); | 
 |   }  // end case Instruction::Shl | 
 |  | 
 |   case Instruction::Mul: { | 
 |     ExprType Left (ClassifyExpression(I->getOperand(0))); | 
 |     ExprType Right(ClassifyExpression(I->getOperand(1))); | 
 |     if (Left.ExprTy > Right.ExprTy) | 
 |       std::swap(Left, Right);   // Make left be simpler than right | 
 |  | 
 |     if (Left.ExprTy != ExprType::Constant)  // RHS must be > constant | 
 |       return I;         // Quadratic eqn! :( | 
 |  | 
 |     const ConstantInt *Offs = Left.Offset; | 
 |     if (Offs == 0) return ExprType(); | 
 |     return ExprType( DefOne(Right.Scale , Ty) * Offs, Right.Var, | 
 | 		    DefZero(Right.Offset, Ty) * Offs); | 
 |   } // end case Instruction::Mul | 
 |  | 
 |   case Instruction::Cast: { | 
 |     ExprType Src(ClassifyExpression(I->getOperand(0))); | 
 |     const Type *DestTy = I->getType(); | 
 |     if (DestTy->isPointerType()) | 
 |       DestTy = Type::ULongTy;  // Pointer types are represented as ulong | 
 |  | 
 |     /* | 
 |     if (!Src.getExprType(0)->isLosslesslyConvertableTo(DestTy)) { | 
 |       if (Src.ExprTy != ExprType::Constant) | 
 |         return I;  // Converting cast, and not a constant value... | 
 |     } | 
 |     */ | 
 |  | 
 |     const ConstantInt *Offset = Src.Offset; | 
 |     const ConstantInt *Scale  = Src.Scale; | 
 |     if (Offset) { | 
 |       const Constant *CPV = ConstantFoldCastInstruction(Offset, DestTy); | 
 |       if (!CPV) return I; | 
 |       Offset = cast<ConstantInt>(CPV); | 
 |     } | 
 |     if (Scale) { | 
 |       const Constant *CPV = ConstantFoldCastInstruction(Scale, DestTy); | 
 |       if (!CPV) return I; | 
 |       Scale = cast<ConstantInt>(CPV); | 
 |     } | 
 |     return ExprType(Scale, Src.Var, Offset); | 
 |   } // end case Instruction::Cast | 
 |     // TODO: Handle SUB, SHR? | 
 |  | 
 |   }  // end switch | 
 |  | 
 |   // Otherwise, I don't know anything about this value! | 
 |   return I; | 
 | } |