| //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// |
| // |
| // Peephole optimize the CFG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Constant.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/Support/CFG.h" |
| #include <algorithm> |
| #include <functional> |
| |
| // PropogatePredecessors - This gets "Succ" ready to have the predecessors from |
| // "BB". This is a little tricky because "Succ" has PHI nodes, which need to |
| // have extra slots added to them to hold the merge edges from BB's |
| // predecessors. This function returns true (failure) if the Succ BB already |
| // has a predecessor that is a predecessor of BB. |
| // |
| // Assumption: Succ is the single successor for BB. |
| // |
| static bool PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { |
| assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); |
| |
| if (!isa<PHINode>(Succ->front())) |
| return false; // We can make the transformation, no problem. |
| |
| // If there is more than one predecessor, and there are PHI nodes in |
| // the successor, then we need to add incoming edges for the PHI nodes |
| // |
| const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB)); |
| |
| // Check to see if one of the predecessors of BB is already a predecessor of |
| // Succ. If so, we cannot do the transformation! |
| // |
| for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); |
| PI != PE; ++PI) |
| if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) |
| return true; |
| |
| // Loop over all of the PHI nodes in the successor BB |
| for (BasicBlock::iterator I = Succ->begin(); |
| PHINode *PN = dyn_cast<PHINode>(&*I); ++I) { |
| Value *OldVal = PN->removeIncomingValue(BB, false); |
| assert(OldVal && "No entry in PHI for Pred BB!"); |
| |
| for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), |
| End = BBPreds.end(); PredI != End; ++PredI) { |
| // Add an incoming value for each of the new incoming values... |
| PN->addIncoming(OldVal, *PredI); |
| } |
| } |
| return false; |
| } |
| |
| |
| // SimplifyCFG - This function is used to do simplification of a CFG. For |
| // example, it adjusts branches to branches to eliminate the extra hop, it |
| // eliminates unreachable basic blocks, and does other "peephole" optimization |
| // of the CFG. It returns true if a modification was made, and returns an |
| // iterator that designates the first element remaining after the block that |
| // was deleted. |
| // |
| // WARNING: The entry node of a function may not be simplified. |
| // |
| bool SimplifyCFG(BasicBlock *BB) { |
| Function *M = BB->getParent(); |
| |
| assert(BB && BB->getParent() && "Block not embedded in function!"); |
| assert(BB->getTerminator() && "Degenerate basic block encountered!"); |
| assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!"); |
| |
| |
| // Remove basic blocks that have no predecessors... which are unreachable. |
| if (pred_begin(BB) == pred_end(BB) && |
| !BB->hasConstantReferences()) { |
| //cerr << "Removing BB: \n" << BB; |
| |
| // Loop through all of our successors and make sure they know that one |
| // of their predecessors is going away. |
| for_each(succ_begin(BB), succ_end(BB), |
| std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB)); |
| |
| while (!BB->empty()) { |
| Instruction &I = BB->back(); |
| // If this instruction is used, replace uses with an arbitrary |
| // constant value. Because control flow can't get here, we don't care |
| // what we replace the value with. Note that since this block is |
| // unreachable, and all values contained within it must dominate their |
| // uses, that all uses will eventually be removed. |
| if (!I.use_empty()) |
| // Make all users of this instruction reference the constant instead |
| I.replaceAllUsesWith(Constant::getNullValue(I.getType())); |
| |
| // Remove the instruction from the basic block |
| BB->getInstList().pop_back(); |
| } |
| M->getBasicBlockList().erase(BB); |
| return true; |
| } |
| |
| // Check to see if this block has no instructions and only a single |
| // successor. If so, replace block references with successor. |
| succ_iterator SI(succ_begin(BB)); |
| if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ? |
| if (BB->front().isTerminator()) { // Terminator is the only instruction! |
| BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor |
| |
| if (Succ != BB) { // Arg, don't hurt infinite loops! |
| // If our successor has PHI nodes, then we need to update them to |
| // include entries for BB's predecessors, not for BB itself. |
| // Be careful though, if this transformation fails (returns true) then |
| // we cannot do this transformation! |
| // |
| if (!PropogatePredecessorsForPHIs(BB, Succ)) { |
| //cerr << "Killing Trivial BB: \n" << BB; |
| BB->replaceAllUsesWith(Succ); |
| std::string OldName = BB->getName(); |
| |
| // Delete the old basic block... |
| M->getBasicBlockList().erase(BB); |
| |
| if (!OldName.empty() && !Succ->hasName()) // Transfer name if we can |
| Succ->setName(OldName); |
| |
| //cerr << "Function after removal: \n" << M; |
| return true; |
| } |
| } |
| } |
| } |
| |
| // Merge basic blocks into their predecessor if there is only one distinct |
| // pred, and if there is only one distinct successor of the predecessor, and |
| // if there are no PHI nodes. |
| // |
| if (!BB->hasConstantReferences()) { |
| pred_iterator PI(pred_begin(BB)), PE(pred_end(BB)); |
| BasicBlock *OnlyPred = *PI++; |
| for (; PI != PE; ++PI) // Search all predecessors, see if they are all same |
| if (*PI != OnlyPred) { |
| OnlyPred = 0; // There are multiple different predecessors... |
| break; |
| } |
| |
| BasicBlock *OnlySucc = 0; |
| if (OnlyPred && OnlyPred != BB) { // Don't break self loops |
| // Check to see if there is only one distinct successor... |
| succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred)); |
| OnlySucc = BB; |
| for (; SI != SE; ++SI) |
| if (*SI != OnlySucc) { |
| OnlySucc = 0; // There are multiple distinct successors! |
| break; |
| } |
| } |
| |
| if (OnlySucc) { |
| //cerr << "Merging: " << BB << "into: " << OnlyPred; |
| TerminatorInst *Term = OnlyPred->getTerminator(); |
| |
| // Resolve any PHI nodes at the start of the block. They are all |
| // guaranteed to have exactly one entry if they exist, unless there are |
| // multiple duplicate (but guaranteed to be equal) entries for the |
| // incoming edges. This occurs when there are multiple edges from |
| // OnlyPred to OnlySucc. |
| // |
| while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { |
| PN->replaceAllUsesWith(PN->getIncomingValue(0)); |
| BB->getInstList().pop_front(); // Delete the phi node... |
| } |
| |
| // Delete the unconditional branch from the predecessor... |
| OnlyPred->getInstList().pop_back(); |
| |
| // Move all definitions in the succecessor to the predecessor... |
| OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); |
| |
| // Make all PHI nodes that refered to BB now refer to Pred as their |
| // source... |
| BB->replaceAllUsesWith(OnlyPred); |
| |
| std::string OldName = BB->getName(); |
| |
| // Erase basic block from the function... |
| M->getBasicBlockList().erase(BB); |
| |
| // Inherit predecessors name if it exists... |
| if (!OldName.empty() && !OnlyPred->hasName()) |
| OnlyPred->setName(OldName); |
| |
| return true; |
| } |
| } |
| |
| return false; |
| } |