| //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a simple register coalescing pass that attempts to |
| // aggressively coalesce every register copy that it can. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regcoalescing" |
| #include "llvm/CodeGen/SimpleRegisterCoalescing.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "VirtRegMap.h" |
| #include "llvm/Value.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/CodeGen/RegisterCoalescer.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| #include <cmath> |
| using namespace llvm; |
| |
| STATISTIC(numJoins , "Number of interval joins performed"); |
| STATISTIC(numPeep , "Number of identity moves eliminated after coalescing"); |
| STATISTIC(numAborts , "Number of times interval joining aborted"); |
| |
| char SimpleRegisterCoalescing::ID = 0; |
| namespace { |
| static cl::opt<bool> |
| EnableJoining("join-liveintervals", |
| cl::desc("Coalesce copies (default=true)"), |
| cl::init(true)); |
| |
| RegisterPass<SimpleRegisterCoalescing> |
| X("simple-register-coalescing", "Simple Register Coalescing"); |
| |
| // Declare that we implement the RegisterCoalescer interface |
| RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X); |
| } |
| |
| const PassInfo *llvm::SimpleRegisterCoalescingID = X.getPassInfo(); |
| |
| void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const { |
| //AU.addPreserved<LiveVariables>(); |
| AU.addPreserved<LiveIntervals>(); |
| AU.addPreservedID(PHIEliminationID); |
| AU.addPreservedID(TwoAddressInstructionPassID); |
| AU.addRequired<LiveVariables>(); |
| AU.addRequired<LiveIntervals>(); |
| AU.addRequired<LoopInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA |
| /// being the source and IntB being the dest, thus this defines a value number |
| /// in IntB. If the source value number (in IntA) is defined by a copy from B, |
| /// see if we can merge these two pieces of B into a single value number, |
| /// eliminating a copy. For example: |
| /// |
| /// A3 = B0 |
| /// ... |
| /// B1 = A3 <- this copy |
| /// |
| /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 |
| /// value number to be replaced with B0 (which simplifies the B liveinterval). |
| /// |
| /// This returns true if an interval was modified. |
| /// |
| bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB, |
| MachineInstr *CopyMI) { |
| unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI)); |
| |
| // BValNo is a value number in B that is defined by a copy from A. 'B3' in |
| // the example above. |
| LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); |
| VNInfo *BValNo = BLR->valno; |
| |
| // Get the location that B is defined at. Two options: either this value has |
| // an unknown definition point or it is defined at CopyIdx. If unknown, we |
| // can't process it. |
| if (!BValNo->reg) return false; |
| assert(BValNo->def == CopyIdx && |
| "Copy doesn't define the value?"); |
| |
| // AValNo is the value number in A that defines the copy, A0 in the example. |
| LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1); |
| VNInfo *AValNo = AValLR->valno; |
| |
| // If AValNo is defined as a copy from IntB, we can potentially process this. |
| |
| // Get the instruction that defines this value number. |
| unsigned SrcReg = AValNo->reg; |
| if (!SrcReg) return false; // Not defined by a copy. |
| |
| // If the value number is not defined by a copy instruction, ignore it. |
| |
| // If the source register comes from an interval other than IntB, we can't |
| // handle this. |
| if (rep(SrcReg) != IntB.reg) return false; |
| |
| // Get the LiveRange in IntB that this value number starts with. |
| LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1); |
| |
| // Make sure that the end of the live range is inside the same block as |
| // CopyMI. |
| MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1); |
| if (!ValLREndInst || |
| ValLREndInst->getParent() != CopyMI->getParent()) return false; |
| |
| // Okay, we now know that ValLR ends in the same block that the CopyMI |
| // live-range starts. If there are no intervening live ranges between them in |
| // IntB, we can merge them. |
| if (ValLR+1 != BLR) return false; |
| |
| // If a live interval is a physical register, conservatively check if any |
| // of its sub-registers is overlapping the live interval of the virtual |
| // register. If so, do not coalesce. |
| if (MRegisterInfo::isPhysicalRegister(IntB.reg) && |
| *mri_->getSubRegisters(IntB.reg)) { |
| for (const unsigned* SR = mri_->getSubRegisters(IntB.reg); *SR; ++SR) |
| if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) { |
| DOUT << "Interfere with sub-register "; |
| DEBUG(li_->getInterval(*SR).print(DOUT, mri_)); |
| return false; |
| } |
| } |
| |
| DOUT << "\nExtending: "; IntB.print(DOUT, mri_); |
| |
| unsigned FillerStart = ValLR->end, FillerEnd = BLR->start; |
| // We are about to delete CopyMI, so need to remove it as the 'instruction |
| // that defines this value #'. Update the the valnum with the new defining |
| // instruction #. |
| BValNo->def = FillerStart; |
| BValNo->reg = 0; |
| |
| // Okay, we can merge them. We need to insert a new liverange: |
| // [ValLR.end, BLR.begin) of either value number, then we merge the |
| // two value numbers. |
| IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo)); |
| |
| // If the IntB live range is assigned to a physical register, and if that |
| // physreg has aliases, |
| if (MRegisterInfo::isPhysicalRegister(IntB.reg)) { |
| // Update the liveintervals of sub-registers. |
| for (const unsigned *AS = mri_->getSubRegisters(IntB.reg); *AS; ++AS) { |
| LiveInterval &AliasLI = li_->getInterval(*AS); |
| AliasLI.addRange(LiveRange(FillerStart, FillerEnd, |
| AliasLI.getNextValue(FillerStart, 0, li_->getVNInfoAllocator()))); |
| } |
| } |
| |
| // Okay, merge "B1" into the same value number as "B0". |
| if (BValNo != ValLR->valno) |
| IntB.MergeValueNumberInto(BValNo, ValLR->valno); |
| DOUT << " result = "; IntB.print(DOUT, mri_); |
| DOUT << "\n"; |
| |
| // If the source instruction was killing the source register before the |
| // merge, unset the isKill marker given the live range has been extended. |
| int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true); |
| if (UIdx != -1) |
| ValLREndInst->getOperand(UIdx).unsetIsKill(); |
| |
| // Finally, delete the copy instruction. |
| li_->RemoveMachineInstrFromMaps(CopyMI); |
| CopyMI->eraseFromParent(); |
| ++numPeep; |
| return true; |
| } |
| |
| /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, |
| /// which are the src/dst of the copy instruction CopyMI. This returns true |
| /// if the copy was successfully coalesced away, or if it is never possible |
| /// to coalesce this copy, due to register constraints. It returns |
| /// false if it is not currently possible to coalesce this interval, but |
| /// it may be possible if other things get coalesced. |
| bool SimpleRegisterCoalescing::JoinCopy(MachineInstr *CopyMI, |
| unsigned SrcReg, unsigned DstReg, bool PhysOnly) { |
| DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI; |
| |
| // Get representative registers. |
| unsigned repSrcReg = rep(SrcReg); |
| unsigned repDstReg = rep(DstReg); |
| |
| // If they are already joined we continue. |
| if (repSrcReg == repDstReg) { |
| DOUT << "\tCopy already coalesced.\n"; |
| return true; // Not coalescable. |
| } |
| |
| bool SrcIsPhys = MRegisterInfo::isPhysicalRegister(repSrcReg); |
| bool DstIsPhys = MRegisterInfo::isPhysicalRegister(repDstReg); |
| if (PhysOnly && !SrcIsPhys && !DstIsPhys) |
| // Only joining physical registers with virtual registers in this round. |
| return true; |
| |
| // If they are both physical registers, we cannot join them. |
| if (SrcIsPhys && DstIsPhys) { |
| DOUT << "\tCan not coalesce physregs.\n"; |
| return true; // Not coalescable. |
| } |
| |
| // We only join virtual registers with allocatable physical registers. |
| if (SrcIsPhys && !allocatableRegs_[repSrcReg]) { |
| DOUT << "\tSrc reg is unallocatable physreg.\n"; |
| return true; // Not coalescable. |
| } |
| if (DstIsPhys && !allocatableRegs_[repDstReg]) { |
| DOUT << "\tDst reg is unallocatable physreg.\n"; |
| return true; // Not coalescable. |
| } |
| |
| // If they are not of the same register class, we cannot join them. |
| if (differingRegisterClasses(repSrcReg, repDstReg)) { |
| DOUT << "\tSrc/Dest are different register classes.\n"; |
| return true; // Not coalescable. |
| } |
| |
| LiveInterval &SrcInt = li_->getInterval(repSrcReg); |
| LiveInterval &DstInt = li_->getInterval(repDstReg); |
| assert(SrcInt.reg == repSrcReg && DstInt.reg == repDstReg && |
| "Register mapping is horribly broken!"); |
| |
| DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_); |
| DOUT << " and "; DstInt.print(DOUT, mri_); |
| DOUT << ": "; |
| |
| // Check if it is necessary to propagate "isDead" property before intervals |
| // are joined. |
| MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg); |
| bool isDead = mopd->isDead(); |
| bool isShorten = false; |
| unsigned SrcStart = 0, RemoveStart = 0; |
| unsigned SrcEnd = 0, RemoveEnd = 0; |
| if (isDead) { |
| unsigned CopyIdx = li_->getInstructionIndex(CopyMI); |
| LiveInterval::iterator SrcLR = |
| SrcInt.FindLiveRangeContaining(li_->getUseIndex(CopyIdx)); |
| RemoveStart = SrcStart = SrcLR->start; |
| RemoveEnd = SrcEnd = SrcLR->end; |
| // The instruction which defines the src is only truly dead if there are |
| // no intermediate uses and there isn't a use beyond the copy. |
| // FIXME: find the last use, mark is kill and shorten the live range. |
| if (SrcEnd > li_->getDefIndex(CopyIdx)) { |
| isDead = false; |
| } else { |
| MachineOperand *MOU; |
| MachineInstr *LastUse= lastRegisterUse(SrcStart, CopyIdx, repSrcReg, MOU); |
| if (LastUse) { |
| // Shorten the liveinterval to the end of last use. |
| MOU->setIsKill(); |
| isDead = false; |
| isShorten = true; |
| RemoveStart = li_->getDefIndex(li_->getInstructionIndex(LastUse)); |
| RemoveEnd = SrcEnd; |
| } else { |
| MachineInstr *SrcMI = li_->getInstructionFromIndex(SrcStart); |
| if (SrcMI) { |
| MachineOperand *mops = findDefOperand(SrcMI, repSrcReg); |
| if (mops) |
| // A dead def should have a single cycle interval. |
| ++RemoveStart; |
| } |
| } |
| } |
| } |
| |
| // We need to be careful about coalescing a source physical register with a |
| // virtual register. Once the coalescing is done, it cannot be broken and |
| // these are not spillable! If the destination interval uses are far away, |
| // think twice about coalescing them! |
| if (!mopd->isDead() && (SrcIsPhys || DstIsPhys)) { |
| LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt; |
| unsigned JoinVReg = SrcIsPhys ? repDstReg : repSrcReg; |
| unsigned JoinPReg = SrcIsPhys ? repSrcReg : repDstReg; |
| const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(JoinVReg); |
| unsigned Threshold = allocatableRCRegs_[RC].count(); |
| |
| // If the virtual register live interval is long has it has low use desity, |
| // do not join them, instead mark the physical register as its allocation |
| // preference. |
| unsigned Length = JoinVInt.getSize() / InstrSlots::NUM; |
| LiveVariables::VarInfo &vi = lv_->getVarInfo(JoinVReg); |
| if (Length > Threshold && |
| (((float)vi.NumUses / Length) < (1.0 / Threshold))) { |
| JoinVInt.preference = JoinPReg; |
| ++numAborts; |
| DOUT << "\tMay tie down a physical register, abort!\n"; |
| return false; |
| } |
| } |
| |
| // Okay, attempt to join these two intervals. On failure, this returns false. |
| // Otherwise, if one of the intervals being joined is a physreg, this method |
| // always canonicalizes DstInt to be it. The output "SrcInt" will not have |
| // been modified, so we can use this information below to update aliases. |
| bool Swapped = false; |
| if (JoinIntervals(DstInt, SrcInt, Swapped)) { |
| if (isDead) { |
| // Result of the copy is dead. Propagate this property. |
| if (SrcStart == 0) { |
| assert(MRegisterInfo::isPhysicalRegister(repSrcReg) && |
| "Live-in must be a physical register!"); |
| // Live-in to the function but dead. Remove it from entry live-in set. |
| // JoinIntervals may end up swapping the two intervals. |
| mf_->begin()->removeLiveIn(repSrcReg); |
| } else { |
| MachineInstr *SrcMI = li_->getInstructionFromIndex(SrcStart); |
| if (SrcMI) { |
| MachineOperand *mops = findDefOperand(SrcMI, repSrcReg); |
| if (mops) |
| mops->setIsDead(); |
| } |
| } |
| } |
| |
| if (isShorten || isDead) { |
| // Shorten the destination live interval. |
| if (Swapped) |
| SrcInt.removeRange(RemoveStart, RemoveEnd); |
| } |
| } else { |
| // Coalescing failed. |
| |
| // If we can eliminate the copy without merging the live ranges, do so now. |
| if (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI)) |
| return true; |
| |
| // Otherwise, we are unable to join the intervals. |
| DOUT << "Interference!\n"; |
| return false; |
| } |
| |
| LiveInterval *ResSrcInt = &SrcInt; |
| LiveInterval *ResDstInt = &DstInt; |
| if (Swapped) { |
| std::swap(repSrcReg, repDstReg); |
| std::swap(ResSrcInt, ResDstInt); |
| } |
| assert(MRegisterInfo::isVirtualRegister(repSrcReg) && |
| "LiveInterval::join didn't work right!"); |
| |
| // If we're about to merge live ranges into a physical register live range, |
| // we have to update any aliased register's live ranges to indicate that they |
| // have clobbered values for this range. |
| if (MRegisterInfo::isPhysicalRegister(repDstReg)) { |
| // Unset unnecessary kills. |
| if (!ResDstInt->containsOneValue()) { |
| for (LiveInterval::Ranges::const_iterator I = ResSrcInt->begin(), |
| E = ResSrcInt->end(); I != E; ++I) |
| unsetRegisterKills(I->start, I->end, repDstReg); |
| } |
| |
| // Update the liveintervals of sub-registers. |
| for (const unsigned *AS = mri_->getSubRegisters(repDstReg); *AS; ++AS) |
| li_->getInterval(*AS).MergeInClobberRanges(*ResSrcInt, |
| li_->getVNInfoAllocator()); |
| } else { |
| // Merge use info if the destination is a virtual register. |
| LiveVariables::VarInfo& dVI = lv_->getVarInfo(repDstReg); |
| LiveVariables::VarInfo& sVI = lv_->getVarInfo(repSrcReg); |
| dVI.NumUses += sVI.NumUses; |
| } |
| |
| DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, mri_); |
| DOUT << "\n"; |
| |
| // Remember these liveintervals have been joined. |
| JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister); |
| if (MRegisterInfo::isVirtualRegister(repDstReg)) |
| JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister); |
| |
| // repSrcReg is guarateed to be the register whose live interval that is |
| // being merged. |
| li_->removeInterval(repSrcReg); |
| r2rMap_[repSrcReg] = repDstReg; |
| |
| // Finally, delete the copy instruction. |
| li_->RemoveMachineInstrFromMaps(CopyMI); |
| CopyMI->eraseFromParent(); |
| ++numPeep; |
| ++numJoins; |
| return true; |
| } |
| |
| /// ComputeUltimateVN - Assuming we are going to join two live intervals, |
| /// compute what the resultant value numbers for each value in the input two |
| /// ranges will be. This is complicated by copies between the two which can |
| /// and will commonly cause multiple value numbers to be merged into one. |
| /// |
| /// VN is the value number that we're trying to resolve. InstDefiningValue |
| /// keeps track of the new InstDefiningValue assignment for the result |
| /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of |
| /// whether a value in this or other is a copy from the opposite set. |
| /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have |
| /// already been assigned. |
| /// |
| /// ThisFromOther[x] - If x is defined as a copy from the other interval, this |
| /// contains the value number the copy is from. |
| /// |
| static unsigned ComputeUltimateVN(VNInfo *VNI, |
| SmallVector<VNInfo*, 16> &NewVNInfo, |
| DenseMap<VNInfo*, VNInfo*> &ThisFromOther, |
| DenseMap<VNInfo*, VNInfo*> &OtherFromThis, |
| SmallVector<int, 16> &ThisValNoAssignments, |
| SmallVector<int, 16> &OtherValNoAssignments) { |
| unsigned VN = VNI->id; |
| |
| // If the VN has already been computed, just return it. |
| if (ThisValNoAssignments[VN] >= 0) |
| return ThisValNoAssignments[VN]; |
| // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?"); |
| |
| // If this val is not a copy from the other val, then it must be a new value |
| // number in the destination. |
| DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI); |
| if (I == ThisFromOther.end()) { |
| NewVNInfo.push_back(VNI); |
| return ThisValNoAssignments[VN] = NewVNInfo.size()-1; |
| } |
| VNInfo *OtherValNo = I->second; |
| |
| // Otherwise, this *is* a copy from the RHS. If the other side has already |
| // been computed, return it. |
| if (OtherValNoAssignments[OtherValNo->id] >= 0) |
| return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id]; |
| |
| // Mark this value number as currently being computed, then ask what the |
| // ultimate value # of the other value is. |
| ThisValNoAssignments[VN] = -2; |
| unsigned UltimateVN = |
| ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther, |
| OtherValNoAssignments, ThisValNoAssignments); |
| return ThisValNoAssignments[VN] = UltimateVN; |
| } |
| |
| static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) { |
| return std::find(V.begin(), V.end(), Val) != V.end(); |
| } |
| |
| /// SimpleJoin - Attempt to joint the specified interval into this one. The |
| /// caller of this method must guarantee that the RHS only contains a single |
| /// value number and that the RHS is not defined by a copy from this |
| /// interval. This returns false if the intervals are not joinable, or it |
| /// joins them and returns true. |
| bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) { |
| assert(RHS.containsOneValue()); |
| |
| // Some number (potentially more than one) value numbers in the current |
| // interval may be defined as copies from the RHS. Scan the overlapping |
| // portions of the LHS and RHS, keeping track of this and looking for |
| // overlapping live ranges that are NOT defined as copies. If these exist, we |
| // cannot coalesce. |
| |
| LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end(); |
| LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end(); |
| |
| if (LHSIt->start < RHSIt->start) { |
| LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start); |
| if (LHSIt != LHS.begin()) --LHSIt; |
| } else if (RHSIt->start < LHSIt->start) { |
| RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start); |
| if (RHSIt != RHS.begin()) --RHSIt; |
| } |
| |
| SmallVector<VNInfo*, 8> EliminatedLHSVals; |
| |
| while (1) { |
| // Determine if these live intervals overlap. |
| bool Overlaps = false; |
| if (LHSIt->start <= RHSIt->start) |
| Overlaps = LHSIt->end > RHSIt->start; |
| else |
| Overlaps = RHSIt->end > LHSIt->start; |
| |
| // If the live intervals overlap, there are two interesting cases: if the |
| // LHS interval is defined by a copy from the RHS, it's ok and we record |
| // that the LHS value # is the same as the RHS. If it's not, then we cannot |
| // coalesce these live ranges and we bail out. |
| if (Overlaps) { |
| // If we haven't already recorded that this value # is safe, check it. |
| if (!InVector(LHSIt->valno, EliminatedLHSVals)) { |
| // Copy from the RHS? |
| unsigned SrcReg = LHSIt->valno->reg; |
| if (rep(SrcReg) != RHS.reg) |
| return false; // Nope, bail out. |
| |
| EliminatedLHSVals.push_back(LHSIt->valno); |
| } |
| |
| // We know this entire LHS live range is okay, so skip it now. |
| if (++LHSIt == LHSEnd) break; |
| continue; |
| } |
| |
| if (LHSIt->end < RHSIt->end) { |
| if (++LHSIt == LHSEnd) break; |
| } else { |
| // One interesting case to check here. It's possible that we have |
| // something like "X3 = Y" which defines a new value number in the LHS, |
| // and is the last use of this liverange of the RHS. In this case, we |
| // want to notice this copy (so that it gets coalesced away) even though |
| // the live ranges don't actually overlap. |
| if (LHSIt->start == RHSIt->end) { |
| if (InVector(LHSIt->valno, EliminatedLHSVals)) { |
| // We already know that this value number is going to be merged in |
| // if coalescing succeeds. Just skip the liverange. |
| if (++LHSIt == LHSEnd) break; |
| } else { |
| // Otherwise, if this is a copy from the RHS, mark it as being merged |
| // in. |
| if (rep(LHSIt->valno->reg) == RHS.reg) { |
| EliminatedLHSVals.push_back(LHSIt->valno); |
| |
| // We know this entire LHS live range is okay, so skip it now. |
| if (++LHSIt == LHSEnd) break; |
| } |
| } |
| } |
| |
| if (++RHSIt == RHSEnd) break; |
| } |
| } |
| |
| // If we got here, we know that the coalescing will be successful and that |
| // the value numbers in EliminatedLHSVals will all be merged together. Since |
| // the most common case is that EliminatedLHSVals has a single number, we |
| // optimize for it: if there is more than one value, we merge them all into |
| // the lowest numbered one, then handle the interval as if we were merging |
| // with one value number. |
| VNInfo *LHSValNo; |
| if (EliminatedLHSVals.size() > 1) { |
| // Loop through all the equal value numbers merging them into the smallest |
| // one. |
| VNInfo *Smallest = EliminatedLHSVals[0]; |
| for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) { |
| if (EliminatedLHSVals[i]->id < Smallest->id) { |
| // Merge the current notion of the smallest into the smaller one. |
| LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]); |
| Smallest = EliminatedLHSVals[i]; |
| } else { |
| // Merge into the smallest. |
| LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest); |
| } |
| } |
| LHSValNo = Smallest; |
| } else { |
| assert(!EliminatedLHSVals.empty() && "No copies from the RHS?"); |
| LHSValNo = EliminatedLHSVals[0]; |
| } |
| |
| // Okay, now that there is a single LHS value number that we're merging the |
| // RHS into, update the value number info for the LHS to indicate that the |
| // value number is defined where the RHS value number was. |
| const VNInfo *VNI = RHS.getValNumInfo(0); |
| LHSValNo->def = VNI->def; |
| LHSValNo->reg = VNI->reg; |
| |
| // Okay, the final step is to loop over the RHS live intervals, adding them to |
| // the LHS. |
| LHS.addKills(LHSValNo, VNI->kills); |
| LHS.MergeRangesInAsValue(RHS, LHSValNo); |
| LHS.weight += RHS.weight; |
| if (RHS.preference && !LHS.preference) |
| LHS.preference = RHS.preference; |
| |
| return true; |
| } |
| |
| /// JoinIntervals - Attempt to join these two intervals. On failure, this |
| /// returns false. Otherwise, if one of the intervals being joined is a |
| /// physreg, this method always canonicalizes LHS to be it. The output |
| /// "RHS" will not have been modified, so we can use this information |
| /// below to update aliases. |
| bool SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, |
| LiveInterval &RHS, bool &Swapped) { |
| // Compute the final value assignment, assuming that the live ranges can be |
| // coalesced. |
| SmallVector<int, 16> LHSValNoAssignments; |
| SmallVector<int, 16> RHSValNoAssignments; |
| DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS; |
| DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS; |
| SmallVector<VNInfo*, 16> NewVNInfo; |
| |
| // If a live interval is a physical register, conservatively check if any |
| // of its sub-registers is overlapping the live interval of the virtual |
| // register. If so, do not coalesce. |
| if (MRegisterInfo::isPhysicalRegister(LHS.reg) && |
| *mri_->getSubRegisters(LHS.reg)) { |
| for (const unsigned* SR = mri_->getSubRegisters(LHS.reg); *SR; ++SR) |
| if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) { |
| DOUT << "Interfere with sub-register "; |
| DEBUG(li_->getInterval(*SR).print(DOUT, mri_)); |
| return false; |
| } |
| } else if (MRegisterInfo::isPhysicalRegister(RHS.reg) && |
| *mri_->getSubRegisters(RHS.reg)) { |
| for (const unsigned* SR = mri_->getSubRegisters(RHS.reg); *SR; ++SR) |
| if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) { |
| DOUT << "Interfere with sub-register "; |
| DEBUG(li_->getInterval(*SR).print(DOUT, mri_)); |
| return false; |
| } |
| } |
| |
| // Compute ultimate value numbers for the LHS and RHS values. |
| if (RHS.containsOneValue()) { |
| // Copies from a liveinterval with a single value are simple to handle and |
| // very common, handle the special case here. This is important, because |
| // often RHS is small and LHS is large (e.g. a physreg). |
| |
| // Find out if the RHS is defined as a copy from some value in the LHS. |
| int RHSVal0DefinedFromLHS = -1; |
| int RHSValID = -1; |
| VNInfo *RHSValNoInfo = NULL; |
| VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0); |
| unsigned RHSSrcReg = RHSValNoInfo0->reg; |
| if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) { |
| // If RHS is not defined as a copy from the LHS, we can use simpler and |
| // faster checks to see if the live ranges are coalescable. This joiner |
| // can't swap the LHS/RHS intervals though. |
| if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) { |
| return SimpleJoin(LHS, RHS); |
| } else { |
| RHSValNoInfo = RHSValNoInfo0; |
| } |
| } else { |
| // It was defined as a copy from the LHS, find out what value # it is. |
| RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno; |
| RHSValID = RHSValNoInfo->id; |
| RHSVal0DefinedFromLHS = RHSValID; |
| } |
| |
| LHSValNoAssignments.resize(LHS.getNumValNums(), -1); |
| RHSValNoAssignments.resize(RHS.getNumValNums(), -1); |
| NewVNInfo.resize(LHS.getNumValNums(), NULL); |
| |
| // Okay, *all* of the values in LHS that are defined as a copy from RHS |
| // should now get updated. |
| for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); |
| i != e; ++i) { |
| VNInfo *VNI = *i; |
| unsigned VN = VNI->id; |
| if (unsigned LHSSrcReg = VNI->reg) { |
| if (rep(LHSSrcReg) != RHS.reg) { |
| // If this is not a copy from the RHS, its value number will be |
| // unmodified by the coalescing. |
| NewVNInfo[VN] = VNI; |
| LHSValNoAssignments[VN] = VN; |
| } else if (RHSValID == -1) { |
| // Otherwise, it is a copy from the RHS, and we don't already have a |
| // value# for it. Keep the current value number, but remember it. |
| LHSValNoAssignments[VN] = RHSValID = VN; |
| NewVNInfo[VN] = RHSValNoInfo; |
| LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0; |
| } else { |
| // Otherwise, use the specified value #. |
| LHSValNoAssignments[VN] = RHSValID; |
| if (VN == (unsigned)RHSValID) { // Else this val# is dead. |
| NewVNInfo[VN] = RHSValNoInfo; |
| LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0; |
| } |
| } |
| } else { |
| NewVNInfo[VN] = VNI; |
| LHSValNoAssignments[VN] = VN; |
| } |
| } |
| |
| assert(RHSValID != -1 && "Didn't find value #?"); |
| RHSValNoAssignments[0] = RHSValID; |
| if (RHSVal0DefinedFromLHS != -1) { |
| // This path doesn't go through ComputeUltimateVN so just set |
| // it to anything. |
| RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1; |
| } |
| } else { |
| // Loop over the value numbers of the LHS, seeing if any are defined from |
| // the RHS. |
| for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); |
| i != e; ++i) { |
| VNInfo *VNI = *i; |
| unsigned ValSrcReg = VNI->reg; |
| if (ValSrcReg == 0) // Src not defined by a copy? |
| continue; |
| |
| // DstReg is known to be a register in the LHS interval. If the src is |
| // from the RHS interval, we can use its value #. |
| if (rep(ValSrcReg) != RHS.reg) |
| continue; |
| |
| // Figure out the value # from the RHS. |
| LHSValsDefinedFromRHS[VNI] = RHS.getLiveRangeContaining(VNI->def-1)->valno; |
| } |
| |
| // Loop over the value numbers of the RHS, seeing if any are defined from |
| // the LHS. |
| for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); |
| i != e; ++i) { |
| VNInfo *VNI = *i; |
| unsigned ValSrcReg = VNI->reg; |
| if (ValSrcReg == 0) // Src not defined by a copy? |
| continue; |
| |
| // DstReg is known to be a register in the RHS interval. If the src is |
| // from the LHS interval, we can use its value #. |
| if (rep(ValSrcReg) != LHS.reg) |
| continue; |
| |
| // Figure out the value # from the LHS. |
| RHSValsDefinedFromLHS[VNI]= LHS.getLiveRangeContaining(VNI->def-1)->valno; |
| } |
| |
| LHSValNoAssignments.resize(LHS.getNumValNums(), -1); |
| RHSValNoAssignments.resize(RHS.getNumValNums(), -1); |
| NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums()); |
| |
| for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end(); |
| i != e; ++i) { |
| VNInfo *VNI = *i; |
| unsigned VN = VNI->id; |
| if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) |
| continue; |
| ComputeUltimateVN(VNI, NewVNInfo, |
| LHSValsDefinedFromRHS, RHSValsDefinedFromLHS, |
| LHSValNoAssignments, RHSValNoAssignments); |
| } |
| for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end(); |
| i != e; ++i) { |
| VNInfo *VNI = *i; |
| unsigned VN = VNI->id; |
| if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U) |
| continue; |
| // If this value number isn't a copy from the LHS, it's a new number. |
| if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) { |
| NewVNInfo.push_back(VNI); |
| RHSValNoAssignments[VN] = NewVNInfo.size()-1; |
| continue; |
| } |
| |
| ComputeUltimateVN(VNI, NewVNInfo, |
| RHSValsDefinedFromLHS, LHSValsDefinedFromRHS, |
| RHSValNoAssignments, LHSValNoAssignments); |
| } |
| } |
| |
| // Armed with the mappings of LHS/RHS values to ultimate values, walk the |
| // interval lists to see if these intervals are coalescable. |
| LiveInterval::const_iterator I = LHS.begin(); |
| LiveInterval::const_iterator IE = LHS.end(); |
| LiveInterval::const_iterator J = RHS.begin(); |
| LiveInterval::const_iterator JE = RHS.end(); |
| |
| // Skip ahead until the first place of potential sharing. |
| if (I->start < J->start) { |
| I = std::upper_bound(I, IE, J->start); |
| if (I != LHS.begin()) --I; |
| } else if (J->start < I->start) { |
| J = std::upper_bound(J, JE, I->start); |
| if (J != RHS.begin()) --J; |
| } |
| |
| while (1) { |
| // Determine if these two live ranges overlap. |
| bool Overlaps; |
| if (I->start < J->start) { |
| Overlaps = I->end > J->start; |
| } else { |
| Overlaps = J->end > I->start; |
| } |
| |
| // If so, check value # info to determine if they are really different. |
| if (Overlaps) { |
| // If the live range overlap will map to the same value number in the |
| // result liverange, we can still coalesce them. If not, we can't. |
| if (LHSValNoAssignments[I->valno->id] != |
| RHSValNoAssignments[J->valno->id]) |
| return false; |
| } |
| |
| if (I->end < J->end) { |
| ++I; |
| if (I == IE) break; |
| } else { |
| ++J; |
| if (J == JE) break; |
| } |
| } |
| |
| // If we get here, we know that we can coalesce the live ranges. Ask the |
| // intervals to coalesce themselves now. |
| if ((RHS.ranges.size() > LHS.ranges.size() && |
| MRegisterInfo::isVirtualRegister(LHS.reg)) || |
| MRegisterInfo::isPhysicalRegister(RHS.reg)) { |
| // Update kill info. Some live ranges are extended due to copy coalescing. |
| for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(), |
| E = LHSValsDefinedFromRHS.end(); I != E; ++I) { |
| VNInfo *VNI = I->first; |
| unsigned LHSValID = LHSValNoAssignments[VNI->id]; |
| LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def); |
| RHS.addKills(NewVNInfo[LHSValID], VNI->kills); |
| } |
| |
| RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo); |
| Swapped = true; |
| } else { |
| // Update kill info. Some live ranges are extended due to copy coalescing. |
| for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(), |
| E = RHSValsDefinedFromLHS.end(); I != E; ++I) { |
| VNInfo *VNI = I->first; |
| unsigned RHSValID = RHSValNoAssignments[VNI->id]; |
| LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def); |
| LHS.addKills(NewVNInfo[RHSValID], VNI->kills); |
| } |
| |
| LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo); |
| Swapped = false; |
| } |
| return true; |
| } |
| |
| namespace { |
| // DepthMBBCompare - Comparison predicate that sort first based on the loop |
| // depth of the basic block (the unsigned), and then on the MBB number. |
| struct DepthMBBCompare { |
| typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair; |
| bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { |
| if (LHS.first > RHS.first) return true; // Deeper loops first |
| return LHS.first == RHS.first && |
| LHS.second->getNumber() < RHS.second->getNumber(); |
| } |
| }; |
| } |
| |
| void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB, |
| std::vector<CopyRec> *TryAgain, bool PhysOnly) { |
| DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n"; |
| |
| for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); |
| MII != E;) { |
| MachineInstr *Inst = MII++; |
| |
| // If this isn't a copy, we can't join intervals. |
| unsigned SrcReg, DstReg; |
| if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue; |
| |
| if (TryAgain && !JoinCopy(Inst, SrcReg, DstReg, PhysOnly)) |
| TryAgain->push_back(getCopyRec(Inst, SrcReg, DstReg)); |
| } |
| } |
| |
| void SimpleRegisterCoalescing::joinIntervals() { |
| DOUT << "********** JOINING INTERVALS ***********\n"; |
| |
| JoinedLIs.resize(li_->getNumIntervals()); |
| JoinedLIs.reset(); |
| |
| std::vector<CopyRec> TryAgainList; |
| const LoopInfo &LI = getAnalysis<LoopInfo>(); |
| if (LI.begin() == LI.end()) { |
| // If there are no loops in the function, join intervals in function order. |
| for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); |
| I != E; ++I) |
| CopyCoalesceInMBB(I, &TryAgainList); |
| } else { |
| // Otherwise, join intervals in inner loops before other intervals. |
| // Unfortunately we can't just iterate over loop hierarchy here because |
| // there may be more MBB's than BB's. Collect MBB's for sorting. |
| |
| // Join intervals in the function prolog first. We want to join physical |
| // registers with virtual registers before the intervals got too long. |
| std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs; |
| for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E;++I) |
| MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I)); |
| |
| // Sort by loop depth. |
| std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); |
| |
| // Finally, join intervals in loop nest order. |
| for (unsigned i = 0, e = MBBs.size(); i != e; ++i) |
| CopyCoalesceInMBB(MBBs[i].second, NULL, true); |
| for (unsigned i = 0, e = MBBs.size(); i != e; ++i) |
| CopyCoalesceInMBB(MBBs[i].second, &TryAgainList, false); |
| } |
| |
| // Joining intervals can allow other intervals to be joined. Iteratively join |
| // until we make no progress. |
| bool ProgressMade = true; |
| while (ProgressMade) { |
| ProgressMade = false; |
| |
| for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) { |
| CopyRec &TheCopy = TryAgainList[i]; |
| if (TheCopy.MI && |
| JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) { |
| TheCopy.MI = 0; // Mark this one as done. |
| ProgressMade = true; |
| } |
| } |
| } |
| |
| // Some live range has been lengthened due to colaescing, eliminate the |
| // unnecessary kills. |
| int RegNum = JoinedLIs.find_first(); |
| while (RegNum != -1) { |
| unsigned Reg = RegNum + MRegisterInfo::FirstVirtualRegister; |
| unsigned repReg = rep(Reg); |
| LiveInterval &LI = li_->getInterval(repReg); |
| LiveVariables::VarInfo& svi = lv_->getVarInfo(Reg); |
| for (unsigned i = 0, e = svi.Kills.size(); i != e; ++i) { |
| MachineInstr *Kill = svi.Kills[i]; |
| // Suppose vr1 = op vr2, x |
| // and vr1 and vr2 are coalesced. vr2 should still be marked kill |
| // unless it is a two-address operand. |
| if (li_->isRemoved(Kill) || hasRegisterDef(Kill, repReg)) |
| continue; |
| if (LI.liveAt(li_->getInstructionIndex(Kill) + InstrSlots::NUM)) |
| unsetRegisterKill(Kill, repReg); |
| } |
| RegNum = JoinedLIs.find_next(RegNum); |
| } |
| |
| DOUT << "*** Register mapping ***\n"; |
| for (int i = 0, e = r2rMap_.size(); i != e; ++i) |
| if (r2rMap_[i]) { |
| DOUT << " reg " << i << " -> "; |
| DEBUG(printRegName(r2rMap_[i])); |
| DOUT << "\n"; |
| } |
| } |
| |
| /// Return true if the two specified registers belong to different register |
| /// classes. The registers may be either phys or virt regs. |
| bool SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA, |
| unsigned RegB) const { |
| |
| // Get the register classes for the first reg. |
| if (MRegisterInfo::isPhysicalRegister(RegA)) { |
| assert(MRegisterInfo::isVirtualRegister(RegB) && |
| "Shouldn't consider two physregs!"); |
| return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA); |
| } |
| |
| // Compare against the regclass for the second reg. |
| const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA); |
| if (MRegisterInfo::isVirtualRegister(RegB)) |
| return RegClass != mf_->getSSARegMap()->getRegClass(RegB); |
| else |
| return !RegClass->contains(RegB); |
| } |
| |
| /// lastRegisterUse - Returns the last use of the specific register between |
| /// cycles Start and End. It also returns the use operand by reference. It |
| /// returns NULL if there are no uses. |
| MachineInstr * |
| SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End, unsigned Reg, |
| MachineOperand *&MOU) { |
| int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM; |
| int s = Start; |
| while (e >= s) { |
| // Skip deleted instructions |
| MachineInstr *MI = li_->getInstructionFromIndex(e); |
| while ((e - InstrSlots::NUM) >= s && !MI) { |
| e -= InstrSlots::NUM; |
| MI = li_->getInstructionFromIndex(e); |
| } |
| if (e < s || MI == NULL) |
| return NULL; |
| |
| for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isUse() && MO.getReg() && |
| mri_->regsOverlap(rep(MO.getReg()), Reg)) { |
| MOU = &MO; |
| return MI; |
| } |
| } |
| |
| e -= InstrSlots::NUM; |
| } |
| |
| return NULL; |
| } |
| |
| |
| /// findDefOperand - Returns the MachineOperand that is a def of the specific |
| /// register. It returns NULL if the def is not found. |
| MachineOperand *SimpleRegisterCoalescing::findDefOperand(MachineInstr *MI, unsigned Reg) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isDef() && |
| mri_->regsOverlap(rep(MO.getReg()), Reg)) |
| return &MO; |
| } |
| return NULL; |
| } |
| |
| /// unsetRegisterKill - Unset IsKill property of all uses of specific register |
| /// of the specific instruction. |
| void SimpleRegisterCoalescing::unsetRegisterKill(MachineInstr *MI, unsigned Reg) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isKill() && MO.getReg() && |
| mri_->regsOverlap(rep(MO.getReg()), Reg)) |
| MO.unsetIsKill(); |
| } |
| } |
| |
| /// unsetRegisterKills - Unset IsKill property of all uses of specific register |
| /// between cycles Start and End. |
| void SimpleRegisterCoalescing::unsetRegisterKills(unsigned Start, unsigned End, |
| unsigned Reg) { |
| int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM; |
| int s = Start; |
| while (e >= s) { |
| // Skip deleted instructions |
| MachineInstr *MI = li_->getInstructionFromIndex(e); |
| while ((e - InstrSlots::NUM) >= s && !MI) { |
| e -= InstrSlots::NUM; |
| MI = li_->getInstructionFromIndex(e); |
| } |
| if (e < s || MI == NULL) |
| return; |
| |
| for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isKill() && MO.getReg() && |
| mri_->regsOverlap(rep(MO.getReg()), Reg)) { |
| MO.unsetIsKill(); |
| } |
| } |
| |
| e -= InstrSlots::NUM; |
| } |
| } |
| |
| /// hasRegisterDef - True if the instruction defines the specific register. |
| /// |
| bool SimpleRegisterCoalescing::hasRegisterDef(MachineInstr *MI, unsigned Reg) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isDef() && |
| mri_->regsOverlap(rep(MO.getReg()), Reg)) |
| return true; |
| } |
| return false; |
| } |
| |
| void SimpleRegisterCoalescing::printRegName(unsigned reg) const { |
| if (MRegisterInfo::isPhysicalRegister(reg)) |
| cerr << mri_->getName(reg); |
| else |
| cerr << "%reg" << reg; |
| } |
| |
| void SimpleRegisterCoalescing::releaseMemory() { |
| r2rMap_.clear(); |
| JoinedLIs.clear(); |
| } |
| |
| static bool isZeroLengthInterval(LiveInterval *li) { |
| for (LiveInterval::Ranges::const_iterator |
| i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i) |
| if (i->end - i->start > LiveIntervals::InstrSlots::NUM) |
| return false; |
| return true; |
| } |
| |
| bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) { |
| mf_ = &fn; |
| tm_ = &fn.getTarget(); |
| mri_ = tm_->getRegisterInfo(); |
| tii_ = tm_->getInstrInfo(); |
| li_ = &getAnalysis<LiveIntervals>(); |
| lv_ = &getAnalysis<LiveVariables>(); |
| |
| DOUT << "********** SIMPLE REGISTER COALESCING **********\n" |
| << "********** Function: " |
| << ((Value*)mf_->getFunction())->getName() << '\n'; |
| |
| allocatableRegs_ = mri_->getAllocatableSet(fn); |
| for (MRegisterInfo::regclass_iterator I = mri_->regclass_begin(), |
| E = mri_->regclass_end(); I != E; ++I) |
| allocatableRCRegs_.insert(std::make_pair(*I,mri_->getAllocatableSet(fn, *I))); |
| |
| r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg()); |
| |
| // Join (coalesce) intervals if requested. |
| if (EnableJoining) { |
| joinIntervals(); |
| DOUT << "********** INTERVALS POST JOINING **********\n"; |
| for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) { |
| I->second.print(DOUT, mri_); |
| DOUT << "\n"; |
| } |
| } |
| |
| // perform a final pass over the instructions and compute spill |
| // weights, coalesce virtual registers and remove identity moves. |
| const LoopInfo &loopInfo = getAnalysis<LoopInfo>(); |
| |
| for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); |
| mbbi != mbbe; ++mbbi) { |
| MachineBasicBlock* mbb = mbbi; |
| unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock()); |
| |
| for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); |
| mii != mie; ) { |
| // if the move will be an identity move delete it |
| unsigned srcReg, dstReg, RegRep; |
| if (tii_->isMoveInstr(*mii, srcReg, dstReg) && |
| (RegRep = rep(srcReg)) == rep(dstReg)) { |
| // remove from def list |
| LiveInterval &RegInt = li_->getOrCreateInterval(RegRep); |
| MachineOperand *MO = mii->findRegisterDefOperand(dstReg); |
| // If def of this move instruction is dead, remove its live range from |
| // the dstination register's live interval. |
| if (MO->isDead()) { |
| unsigned MoveIdx = li_->getDefIndex(li_->getInstructionIndex(mii)); |
| LiveInterval::iterator MLR = RegInt.FindLiveRangeContaining(MoveIdx); |
| RegInt.removeRange(MLR->start, MoveIdx+1); |
| if (RegInt.empty()) |
| li_->removeInterval(RegRep); |
| } |
| li_->RemoveMachineInstrFromMaps(mii); |
| mii = mbbi->erase(mii); |
| ++numPeep; |
| } else { |
| SmallSet<unsigned, 4> UniqueUses; |
| for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) { |
| const MachineOperand &mop = mii->getOperand(i); |
| if (mop.isRegister() && mop.getReg() && |
| MRegisterInfo::isVirtualRegister(mop.getReg())) { |
| // replace register with representative register |
| unsigned reg = rep(mop.getReg()); |
| mii->getOperand(i).setReg(reg); |
| |
| // Multiple uses of reg by the same instruction. It should not |
| // contribute to spill weight again. |
| if (UniqueUses.count(reg) != 0) |
| continue; |
| LiveInterval &RegInt = li_->getInterval(reg); |
| float w = (mop.isUse()+mop.isDef()) * powf(10.0F, (float)loopDepth); |
| RegInt.weight += w; |
| UniqueUses.insert(reg); |
| } |
| } |
| ++mii; |
| } |
| } |
| } |
| |
| for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) { |
| LiveInterval &LI = I->second; |
| if (MRegisterInfo::isVirtualRegister(LI.reg)) { |
| // If the live interval length is essentially zero, i.e. in every live |
| // range the use follows def immediately, it doesn't make sense to spill |
| // it and hope it will be easier to allocate for this li. |
| if (isZeroLengthInterval(&LI)) |
| LI.weight = HUGE_VALF; |
| |
| // Slightly prefer live interval that has been assigned a preferred reg. |
| if (LI.preference) |
| LI.weight *= 1.01F; |
| |
| // Divide the weight of the interval by its size. This encourages |
| // spilling of intervals that are large and have few uses, and |
| // discourages spilling of small intervals with many uses. |
| LI.weight /= LI.getSize(); |
| } |
| } |
| |
| DEBUG(dump()); |
| return true; |
| } |
| |
| /// print - Implement the dump method. |
| void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const { |
| li_->print(O, m); |
| } |
| |
| RegisterCoalescer* llvm::createSimpleRegisterCoalescer() { |
| return new SimpleRegisterCoalescing(); |
| } |
| |
| // Make sure that anything that uses RegisterCoalescer pulls in this file... |
| DEFINING_FILE_FOR(SimpleRegisterCoalescing) |