| //===- InstructionCombining.cpp - Combine multiple instructions -----------===// |
| // |
| // InstructionCombining - Combine instructions to form fewer, simple |
| // instructions. This pass does not modify the CFG This pass is where algebraic |
| // simplification happens. |
| // |
| // This pass combines things like: |
| // %Y = add int 1, %X |
| // %Z = add int 1, %Y |
| // into: |
| // %Z = add int 2, %X |
| // |
| // This is a simple worklist driven algorithm. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Constants.h" |
| #include "llvm/ConstantHandling.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Support/InstIterator.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Support/CallSite.h" |
| #include "Support/Statistic.h" |
| #include <algorithm> |
| |
| namespace { |
| Statistic<> NumCombined ("instcombine", "Number of insts combined"); |
| Statistic<> NumConstProp("instcombine", "Number of constant folds"); |
| Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated"); |
| |
| class InstCombiner : public FunctionPass, |
| public InstVisitor<InstCombiner, Instruction*> { |
| // Worklist of all of the instructions that need to be simplified. |
| std::vector<Instruction*> WorkList; |
| |
| void AddUsesToWorkList(Instruction &I) { |
| // The instruction was simplified, add all users of the instruction to |
| // the work lists because they might get more simplified now... |
| // |
| for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); |
| UI != UE; ++UI) |
| WorkList.push_back(cast<Instruction>(*UI)); |
| } |
| |
| // removeFromWorkList - remove all instances of I from the worklist. |
| void removeFromWorkList(Instruction *I); |
| public: |
| virtual bool runOnFunction(Function &F); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| } |
| |
| // Visitation implementation - Implement instruction combining for different |
| // instruction types. The semantics are as follows: |
| // Return Value: |
| // null - No change was made |
| // I - Change was made, I is still valid, I may be dead though |
| // otherwise - Change was made, replace I with returned instruction |
| // |
| Instruction *visitAdd(BinaryOperator &I); |
| Instruction *visitSub(BinaryOperator &I); |
| Instruction *visitMul(BinaryOperator &I); |
| Instruction *visitDiv(BinaryOperator &I); |
| Instruction *visitRem(BinaryOperator &I); |
| Instruction *visitAnd(BinaryOperator &I); |
| Instruction *visitOr (BinaryOperator &I); |
| Instruction *visitXor(BinaryOperator &I); |
| Instruction *visitSetCondInst(BinaryOperator &I); |
| Instruction *visitShiftInst(ShiftInst &I); |
| Instruction *visitCastInst(CastInst &CI); |
| Instruction *visitCallInst(CallInst &CI); |
| Instruction *visitInvokeInst(InvokeInst &II); |
| Instruction *visitPHINode(PHINode &PN); |
| Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); |
| Instruction *visitAllocationInst(AllocationInst &AI); |
| Instruction *visitLoadInst(LoadInst &LI); |
| Instruction *visitBranchInst(BranchInst &BI); |
| |
| // visitInstruction - Specify what to return for unhandled instructions... |
| Instruction *visitInstruction(Instruction &I) { return 0; } |
| |
| private: |
| bool transformConstExprCastCall(CallSite CS); |
| |
| // InsertNewInstBefore - insert an instruction New before instruction Old |
| // in the program. Add the new instruction to the worklist. |
| // |
| void InsertNewInstBefore(Instruction *New, Instruction &Old) { |
| assert(New && New->getParent() == 0 && |
| "New instruction already inserted into a basic block!"); |
| BasicBlock *BB = Old.getParent(); |
| BB->getInstList().insert(&Old, New); // Insert inst |
| WorkList.push_back(New); // Add to worklist |
| } |
| |
| // ReplaceInstUsesWith - This method is to be used when an instruction is |
| // found to be dead, replacable with another preexisting expression. Here |
| // we add all uses of I to the worklist, replace all uses of I with the new |
| // value, then return I, so that the inst combiner will know that I was |
| // modified. |
| // |
| Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) { |
| AddUsesToWorkList(I); // Add all modified instrs to worklist |
| I.replaceAllUsesWith(V); |
| return &I; |
| } |
| |
| // SimplifyCommutative - This performs a few simplifications for commutative |
| // operators... |
| bool SimplifyCommutative(BinaryOperator &I); |
| }; |
| |
| RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions"); |
| } |
| |
| // getComplexity: Assign a complexity or rank value to LLVM Values... |
| // 0 -> Constant, 1 -> Other, 2 -> Argument, 2 -> Unary, 3 -> OtherInst |
| static unsigned getComplexity(Value *V) { |
| if (isa<Instruction>(V)) { |
| if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V)) |
| return 2; |
| return 3; |
| } |
| if (isa<Argument>(V)) return 2; |
| return isa<Constant>(V) ? 0 : 1; |
| } |
| |
| // isOnlyUse - Return true if this instruction will be deleted if we stop using |
| // it. |
| static bool isOnlyUse(Value *V) { |
| return V->use_size() == 1 || isa<Constant>(V); |
| } |
| |
| // SimplifyCommutative - This performs a few simplifications for commutative |
| // operators: |
| // |
| // 1. Order operands such that they are listed from right (least complex) to |
| // left (most complex). This puts constants before unary operators before |
| // binary operators. |
| // |
| // 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2)) |
| // 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) |
| // |
| bool InstCombiner::SimplifyCommutative(BinaryOperator &I) { |
| bool Changed = false; |
| if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) |
| Changed = !I.swapOperands(); |
| |
| if (!I.isAssociative()) return Changed; |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0))) |
| if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) { |
| if (isa<Constant>(I.getOperand(1))) { |
| Constant *Folded = ConstantExpr::get(I.getOpcode(), |
| cast<Constant>(I.getOperand(1)), |
| cast<Constant>(Op->getOperand(1))); |
| I.setOperand(0, Op->getOperand(0)); |
| I.setOperand(1, Folded); |
| return true; |
| } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1))) |
| if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) && |
| isOnlyUse(Op) && isOnlyUse(Op1)) { |
| Constant *C1 = cast<Constant>(Op->getOperand(1)); |
| Constant *C2 = cast<Constant>(Op1->getOperand(1)); |
| |
| // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) |
| Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2); |
| Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0), |
| Op1->getOperand(0), |
| Op1->getName(), &I); |
| WorkList.push_back(New); |
| I.setOperand(0, New); |
| I.setOperand(1, Folded); |
| return true; |
| } |
| } |
| return Changed; |
| } |
| |
| // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction |
| // if the LHS is a constant zero (which is the 'negate' form). |
| // |
| static inline Value *dyn_castNegVal(Value *V) { |
| if (BinaryOperator::isNeg(V)) |
| return BinaryOperator::getNegArgument(cast<BinaryOperator>(V)); |
| |
| // Constants can be considered to be negated values if they can be folded... |
| if (Constant *C = dyn_cast<Constant>(V)) |
| return ConstantExpr::get(Instruction::Sub, |
| Constant::getNullValue(V->getType()), C); |
| return 0; |
| } |
| |
| static inline Value *dyn_castNotVal(Value *V) { |
| if (BinaryOperator::isNot(V)) |
| return BinaryOperator::getNotArgument(cast<BinaryOperator>(V)); |
| |
| // Constants can be considered to be not'ed values... |
| if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V)) |
| return ConstantExpr::get(Instruction::Xor, |
| ConstantIntegral::getAllOnesValue(C->getType()),C); |
| return 0; |
| } |
| |
| // dyn_castFoldableMul - If this value is a multiply that can be folded into |
| // other computations (because it has a constant operand), return the |
| // non-constant operand of the multiply. |
| // |
| static inline Value *dyn_castFoldableMul(Value *V) { |
| if (V->use_size() == 1 && V->getType()->isInteger()) |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| if (I->getOpcode() == Instruction::Mul) |
| if (isa<Constant>(I->getOperand(1))) |
| return I->getOperand(0); |
| return 0; |
| } |
| |
| // dyn_castMaskingAnd - If this value is an And instruction masking a value with |
| // a constant, return the constant being anded with. |
| // |
| static inline Constant *dyn_castMaskingAnd(Value *V) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| if (I->getOpcode() == Instruction::And) |
| return dyn_cast<Constant>(I->getOperand(1)); |
| |
| // If this is a constant, it acts just like we were masking with it. |
| return dyn_cast<Constant>(V); |
| } |
| |
| // Log2 - Calculate the log base 2 for the specified value if it is exactly a |
| // power of 2. |
| static unsigned Log2(uint64_t Val) { |
| assert(Val > 1 && "Values 0 and 1 should be handled elsewhere!"); |
| unsigned Count = 0; |
| while (Val != 1) { |
| if (Val & 1) return 0; // Multiple bits set? |
| Val >>= 1; |
| ++Count; |
| } |
| return Count; |
| } |
| |
| Instruction *InstCombiner::visitAdd(BinaryOperator &I) { |
| bool Changed = SimplifyCommutative(I); |
| Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| |
| // Eliminate 'add int %X, 0' |
| if (RHS == Constant::getNullValue(I.getType())) |
| return ReplaceInstUsesWith(I, LHS); |
| |
| // -A + B --> B - A |
| if (Value *V = dyn_castNegVal(LHS)) |
| return BinaryOperator::create(Instruction::Sub, RHS, V); |
| |
| // A + -B --> A - B |
| if (!isa<Constant>(RHS)) |
| if (Value *V = dyn_castNegVal(RHS)) |
| return BinaryOperator::create(Instruction::Sub, LHS, V); |
| |
| // X*C + X --> X * (C+1) |
| if (dyn_castFoldableMul(LHS) == RHS) { |
| Constant *CP1 = |
| ConstantExpr::get(Instruction::Add, |
| cast<Constant>(cast<Instruction>(LHS)->getOperand(1)), |
| ConstantInt::get(I.getType(), 1)); |
| return BinaryOperator::create(Instruction::Mul, RHS, CP1); |
| } |
| |
| // X + X*C --> X * (C+1) |
| if (dyn_castFoldableMul(RHS) == LHS) { |
| Constant *CP1 = |
| ConstantExpr::get(Instruction::Add, |
| cast<Constant>(cast<Instruction>(RHS)->getOperand(1)), |
| ConstantInt::get(I.getType(), 1)); |
| return BinaryOperator::create(Instruction::Mul, LHS, CP1); |
| } |
| |
| // (A & C1)+(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| if (Constant *C1 = dyn_castMaskingAnd(LHS)) |
| if (Constant *C2 = dyn_castMaskingAnd(RHS)) |
| if (ConstantExpr::get(Instruction::And, C1, C2)->isNullValue()) |
| return BinaryOperator::create(Instruction::Or, LHS, RHS); |
| |
| return Changed ? &I : 0; |
| } |
| |
| Instruction *InstCombiner::visitSub(BinaryOperator &I) { |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| if (Op0 == Op1) // sub X, X -> 0 |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| |
| // If this is a 'B = x-(-A)', change to B = x+A... |
| if (Value *V = dyn_castNegVal(Op1)) |
| return BinaryOperator::create(Instruction::Add, Op0, V); |
| |
| // Replace (-1 - A) with (~A)... |
| if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) |
| if (C->isAllOnesValue()) |
| return BinaryOperator::createNot(Op1); |
| |
| if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) |
| if (Op1I->use_size() == 1) { |
| // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression |
| // is not used by anyone else... |
| // |
| if (Op1I->getOpcode() == Instruction::Sub) { |
| // Swap the two operands of the subexpr... |
| Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1); |
| Op1I->setOperand(0, IIOp1); |
| Op1I->setOperand(1, IIOp0); |
| |
| // Create the new top level add instruction... |
| return BinaryOperator::create(Instruction::Add, Op0, Op1); |
| } |
| |
| // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)... |
| // |
| if (Op1I->getOpcode() == Instruction::And && |
| (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) { |
| Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0); |
| |
| Instruction *NewNot = BinaryOperator::createNot(OtherOp, "B.not", &I); |
| return BinaryOperator::create(Instruction::And, Op0, NewNot); |
| } |
| |
| // X - X*C --> X * (1-C) |
| if (dyn_castFoldableMul(Op1I) == Op0) { |
| Constant *CP1 = |
| ConstantExpr::get(Instruction::Sub, |
| ConstantInt::get(I.getType(), 1), |
| cast<Constant>(cast<Instruction>(Op1)->getOperand(1))); |
| assert(CP1 && "Couldn't constant fold 1-C?"); |
| return BinaryOperator::create(Instruction::Mul, Op0, CP1); |
| } |
| } |
| |
| // X*C - X --> X * (C-1) |
| if (dyn_castFoldableMul(Op0) == Op1) { |
| Constant *CP1 = |
| ConstantExpr::get(Instruction::Sub, |
| cast<Constant>(cast<Instruction>(Op0)->getOperand(1)), |
| ConstantInt::get(I.getType(), 1)); |
| assert(CP1 && "Couldn't constant fold C - 1?"); |
| return BinaryOperator::create(Instruction::Mul, Op1, CP1); |
| } |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitMul(BinaryOperator &I) { |
| bool Changed = SimplifyCommutative(I); |
| Value *Op0 = I.getOperand(0); |
| |
| // Simplify mul instructions with a constant RHS... |
| if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| const Type *Ty = CI->getType(); |
| int64_t Val = Ty->isSigned() ? cast<ConstantSInt>(CI)->getValue() : |
| (int64_t)cast<ConstantUInt>(CI)->getValue(); |
| switch (Val) { |
| case -1: // X * -1 -> -X |
| return BinaryOperator::createNeg(Op0, I.getName()); |
| case 0: |
| return ReplaceInstUsesWith(I, Op1); // Eliminate 'mul double %X, 0' |
| case 1: |
| return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul int %X, 1' |
| case 2: // Convert 'mul int %X, 2' to 'add int %X, %X' |
| return BinaryOperator::create(Instruction::Add, Op0, Op0, I.getName()); |
| } |
| |
| if (uint64_t C = Log2(Val)) // Replace X*(2^C) with X << C |
| return new ShiftInst(Instruction::Shl, Op0, |
| ConstantUInt::get(Type::UByteTy, C)); |
| } else { |
| ConstantFP *Op1F = cast<ConstantFP>(Op1); |
| if (Op1F->isNullValue()) |
| return ReplaceInstUsesWith(I, Op1); |
| |
| // "In IEEE floating point, x*1 is not equivalent to x for nans. However, |
| // ANSI says we can drop signals, so we can do this anyway." (from GCC) |
| if (Op1F->getValue() == 1.0) |
| return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0' |
| } |
| } |
| |
| if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y |
| if (Value *Op1v = dyn_castNegVal(I.getOperand(1))) |
| return BinaryOperator::create(Instruction::Mul, Op0v, Op1v); |
| |
| return Changed ? &I : 0; |
| } |
| |
| Instruction *InstCombiner::visitDiv(BinaryOperator &I) { |
| // div X, 1 == X |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) { |
| if (RHS->equalsInt(1)) |
| return ReplaceInstUsesWith(I, I.getOperand(0)); |
| |
| // Check to see if this is an unsigned division with an exact power of 2, |
| // if so, convert to a right shift. |
| if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS)) |
| if (uint64_t Val = C->getValue()) // Don't break X / 0 |
| if (uint64_t C = Log2(Val)) |
| return new ShiftInst(Instruction::Shr, I.getOperand(0), |
| ConstantUInt::get(Type::UByteTy, C)); |
| } |
| |
| // 0 / X == 0, we don't need to preserve faults! |
| if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0))) |
| if (LHS->equalsInt(0)) |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| |
| return 0; |
| } |
| |
| |
| Instruction *InstCombiner::visitRem(BinaryOperator &I) { |
| if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) { |
| if (RHS->equalsInt(1)) // X % 1 == 0 |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| |
| // Check to see if this is an unsigned remainder with an exact power of 2, |
| // if so, convert to a bitwise and. |
| if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS)) |
| if (uint64_t Val = C->getValue()) // Don't break X % 0 (divide by zero) |
| if (Log2(Val)) |
| return BinaryOperator::create(Instruction::And, I.getOperand(0), |
| ConstantUInt::get(I.getType(), Val-1)); |
| } |
| |
| // 0 % X == 0, we don't need to preserve faults! |
| if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0))) |
| if (LHS->equalsInt(0)) |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| |
| return 0; |
| } |
| |
| // isMaxValueMinusOne - return true if this is Max-1 |
| static bool isMaxValueMinusOne(const ConstantInt *C) { |
| if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) { |
| // Calculate -1 casted to the right type... |
| unsigned TypeBits = C->getType()->getPrimitiveSize()*8; |
| uint64_t Val = ~0ULL; // All ones |
| Val >>= 64-TypeBits; // Shift out unwanted 1 bits... |
| return CU->getValue() == Val-1; |
| } |
| |
| const ConstantSInt *CS = cast<ConstantSInt>(C); |
| |
| // Calculate 0111111111..11111 |
| unsigned TypeBits = C->getType()->getPrimitiveSize()*8; |
| int64_t Val = INT64_MAX; // All ones |
| Val >>= 64-TypeBits; // Shift out unwanted 1 bits... |
| return CS->getValue() == Val-1; |
| } |
| |
| // isMinValuePlusOne - return true if this is Min+1 |
| static bool isMinValuePlusOne(const ConstantInt *C) { |
| if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) |
| return CU->getValue() == 1; |
| |
| const ConstantSInt *CS = cast<ConstantSInt>(C); |
| |
| // Calculate 1111111111000000000000 |
| unsigned TypeBits = C->getType()->getPrimitiveSize()*8; |
| int64_t Val = -1; // All ones |
| Val <<= TypeBits-1; // Shift over to the right spot |
| return CS->getValue() == Val+1; |
| } |
| |
| |
| Instruction *InstCombiner::visitAnd(BinaryOperator &I) { |
| bool Changed = SimplifyCommutative(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // and X, X = X and X, 0 == 0 |
| if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType())) |
| return ReplaceInstUsesWith(I, Op1); |
| |
| // and X, -1 == X |
| if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) |
| if (RHS->isAllOnesValue()) |
| return ReplaceInstUsesWith(I, Op0); |
| |
| Value *Op0NotVal = dyn_castNotVal(Op0); |
| Value *Op1NotVal = dyn_castNotVal(Op1); |
| |
| // (~A & ~B) == (~(A | B)) - Demorgan's Law |
| if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) { |
| Instruction *Or = BinaryOperator::create(Instruction::Or, Op0NotVal, |
| Op1NotVal,I.getName()+".demorgan", |
| &I); |
| WorkList.push_back(Or); |
| return BinaryOperator::createNot(Or); |
| } |
| |
| if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0 |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| |
| return Changed ? &I : 0; |
| } |
| |
| |
| |
| Instruction *InstCombiner::visitOr(BinaryOperator &I) { |
| bool Changed = SimplifyCommutative(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // or X, X = X or X, 0 == X |
| if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType())) |
| return ReplaceInstUsesWith(I, Op0); |
| |
| // or X, -1 == -1 |
| if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) |
| if (RHS->isAllOnesValue()) |
| return ReplaceInstUsesWith(I, Op1); |
| |
| Value *Op0NotVal = dyn_castNotVal(Op0); |
| Value *Op1NotVal = dyn_castNotVal(Op1); |
| |
| if (Op1 == Op0NotVal) // ~A | A == -1 |
| return ReplaceInstUsesWith(I, |
| ConstantIntegral::getAllOnesValue(I.getType())); |
| |
| if (Op0 == Op1NotVal) // A | ~A == -1 |
| return ReplaceInstUsesWith(I, |
| ConstantIntegral::getAllOnesValue(I.getType())); |
| |
| // (~A | ~B) == (~(A & B)) - Demorgan's Law |
| if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) { |
| Instruction *And = BinaryOperator::create(Instruction::And, Op0NotVal, |
| Op1NotVal,I.getName()+".demorgan", |
| &I); |
| WorkList.push_back(And); |
| return BinaryOperator::createNot(And); |
| } |
| |
| return Changed ? &I : 0; |
| } |
| |
| |
| |
| Instruction *InstCombiner::visitXor(BinaryOperator &I) { |
| bool Changed = SimplifyCommutative(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // xor X, X = 0 |
| if (Op0 == Op1) |
| return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| |
| if (ConstantIntegral *Op1C = dyn_cast<ConstantIntegral>(Op1)) { |
| // xor X, 0 == X |
| if (Op1C->isNullValue()) |
| return ReplaceInstUsesWith(I, Op0); |
| |
| // Is this a "NOT" instruction? |
| if (Op1C->isAllOnesValue()) { |
| // xor (xor X, -1), -1 = not (not X) = X |
| if (Value *X = dyn_castNotVal(Op0)) |
| return ReplaceInstUsesWith(I, X); |
| |
| // xor (setcc A, B), true = not (setcc A, B) = setncc A, B |
| if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0)) |
| if (SCI->use_size() == 1) |
| return new SetCondInst(SCI->getInverseCondition(), |
| SCI->getOperand(0), SCI->getOperand(1)); |
| } |
| } |
| |
| if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1 |
| if (X == Op1) |
| return ReplaceInstUsesWith(I, |
| ConstantIntegral::getAllOnesValue(I.getType())); |
| |
| if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1 |
| if (X == Op0) |
| return ReplaceInstUsesWith(I, |
| ConstantIntegral::getAllOnesValue(I.getType())); |
| |
| if (Instruction *Op1I = dyn_cast<Instruction>(Op1)) |
| if (Op1I->getOpcode() == Instruction::Or) |
| if (Op1I->getOperand(0) == Op0) { // B^(B|A) == (A|B)^B |
| cast<BinaryOperator>(Op1I)->swapOperands(); |
| I.swapOperands(); |
| std::swap(Op0, Op1); |
| } else if (Op1I->getOperand(1) == Op0) { // B^(A|B) == (A|B)^B |
| I.swapOperands(); |
| std::swap(Op0, Op1); |
| } |
| |
| if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) |
| if (Op0I->getOpcode() == Instruction::Or && Op0I->use_size() == 1) { |
| if (Op0I->getOperand(0) == Op1) // (B|A)^B == (A|B)^B |
| cast<BinaryOperator>(Op0I)->swapOperands(); |
| if (Op0I->getOperand(1) == Op1) { // (A|B)^B == A & ~B |
| Value *NotB = BinaryOperator::createNot(Op1, Op1->getName()+".not", &I); |
| WorkList.push_back(cast<Instruction>(NotB)); |
| return BinaryOperator::create(Instruction::And, Op0I->getOperand(0), |
| NotB); |
| } |
| } |
| |
| // (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1^C2 == 0 |
| if (Constant *C1 = dyn_castMaskingAnd(Op0)) |
| if (Constant *C2 = dyn_castMaskingAnd(Op1)) |
| if (ConstantExpr::get(Instruction::And, C1, C2)->isNullValue()) |
| return BinaryOperator::create(Instruction::Or, Op0, Op1); |
| |
| return Changed ? &I : 0; |
| } |
| |
| // AddOne, SubOne - Add or subtract a constant one from an integer constant... |
| static Constant *AddOne(ConstantInt *C) { |
| Constant *Result = ConstantExpr::get(Instruction::Add, C, |
| ConstantInt::get(C->getType(), 1)); |
| assert(Result && "Constant folding integer addition failed!"); |
| return Result; |
| } |
| static Constant *SubOne(ConstantInt *C) { |
| Constant *Result = ConstantExpr::get(Instruction::Sub, C, |
| ConstantInt::get(C->getType(), 1)); |
| assert(Result && "Constant folding integer addition failed!"); |
| return Result; |
| } |
| |
| // isTrueWhenEqual - Return true if the specified setcondinst instruction is |
| // true when both operands are equal... |
| // |
| static bool isTrueWhenEqual(Instruction &I) { |
| return I.getOpcode() == Instruction::SetEQ || |
| I.getOpcode() == Instruction::SetGE || |
| I.getOpcode() == Instruction::SetLE; |
| } |
| |
| Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) { |
| bool Changed = SimplifyCommutative(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| const Type *Ty = Op0->getType(); |
| |
| // setcc X, X |
| if (Op0 == Op1) |
| return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I))); |
| |
| // setcc <global*>, 0 - Global value addresses are never null! |
| if (isa<GlobalValue>(Op0) && isa<ConstantPointerNull>(Op1)) |
| return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I))); |
| |
| // setcc's with boolean values can always be turned into bitwise operations |
| if (Ty == Type::BoolTy) { |
| // If this is <, >, or !=, we can change this into a simple xor instruction |
| if (!isTrueWhenEqual(I)) |
| return BinaryOperator::create(Instruction::Xor, Op0, Op1, I.getName()); |
| |
| // Otherwise we need to make a temporary intermediate instruction and insert |
| // it into the instruction stream. This is what we are after: |
| // |
| // seteq bool %A, %B -> ~(A^B) |
| // setle bool %A, %B -> ~A | B |
| // setge bool %A, %B -> A | ~B |
| // |
| if (I.getOpcode() == Instruction::SetEQ) { // seteq case |
| Instruction *Xor = BinaryOperator::create(Instruction::Xor, Op0, Op1, |
| I.getName()+"tmp"); |
| InsertNewInstBefore(Xor, I); |
| return BinaryOperator::createNot(Xor, I.getName()); |
| } |
| |
| // Handle the setXe cases... |
| assert(I.getOpcode() == Instruction::SetGE || |
| I.getOpcode() == Instruction::SetLE); |
| |
| if (I.getOpcode() == Instruction::SetGE) |
| std::swap(Op0, Op1); // Change setge -> setle |
| |
| // Now we just have the SetLE case. |
| Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp"); |
| InsertNewInstBefore(Not, I); |
| return BinaryOperator::create(Instruction::Or, Not, Op1, I.getName()); |
| } |
| |
| // Check to see if we are doing one of many comparisons against constant |
| // integers at the end of their ranges... |
| // |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| if (CI->isNullValue()) { |
| if (I.getOpcode() == Instruction::SetNE) |
| return new CastInst(Op0, Type::BoolTy, I.getName()); |
| else if (I.getOpcode() == Instruction::SetEQ) { |
| // seteq X, 0 -> not (cast X to bool) |
| Instruction *Val = new CastInst(Op0, Type::BoolTy, I.getName()+".not"); |
| InsertNewInstBefore(Val, I); |
| return BinaryOperator::createNot(Val, I.getName()); |
| } |
| } |
| |
| // Check to see if we are comparing against the minimum or maximum value... |
| if (CI->isMinValue()) { |
| if (I.getOpcode() == Instruction::SetLT) // A < MIN -> FALSE |
| return ReplaceInstUsesWith(I, ConstantBool::False); |
| if (I.getOpcode() == Instruction::SetGE) // A >= MIN -> TRUE |
| return ReplaceInstUsesWith(I, ConstantBool::True); |
| if (I.getOpcode() == Instruction::SetLE) // A <= MIN -> A == MIN |
| return BinaryOperator::create(Instruction::SetEQ, Op0,Op1, I.getName()); |
| if (I.getOpcode() == Instruction::SetGT) // A > MIN -> A != MIN |
| return BinaryOperator::create(Instruction::SetNE, Op0,Op1, I.getName()); |
| |
| } else if (CI->isMaxValue()) { |
| if (I.getOpcode() == Instruction::SetGT) // A > MAX -> FALSE |
| return ReplaceInstUsesWith(I, ConstantBool::False); |
| if (I.getOpcode() == Instruction::SetLE) // A <= MAX -> TRUE |
| return ReplaceInstUsesWith(I, ConstantBool::True); |
| if (I.getOpcode() == Instruction::SetGE) // A >= MAX -> A == MAX |
| return BinaryOperator::create(Instruction::SetEQ, Op0,Op1, I.getName()); |
| if (I.getOpcode() == Instruction::SetLT) // A < MAX -> A != MAX |
| return BinaryOperator::create(Instruction::SetNE, Op0,Op1, I.getName()); |
| |
| // Comparing against a value really close to min or max? |
| } else if (isMinValuePlusOne(CI)) { |
| if (I.getOpcode() == Instruction::SetLT) // A < MIN+1 -> A == MIN |
| return BinaryOperator::create(Instruction::SetEQ, Op0, |
| SubOne(CI), I.getName()); |
| if (I.getOpcode() == Instruction::SetGE) // A >= MIN-1 -> A != MIN |
| return BinaryOperator::create(Instruction::SetNE, Op0, |
| SubOne(CI), I.getName()); |
| |
| } else if (isMaxValueMinusOne(CI)) { |
| if (I.getOpcode() == Instruction::SetGT) // A > MAX-1 -> A == MAX |
| return BinaryOperator::create(Instruction::SetEQ, Op0, |
| AddOne(CI), I.getName()); |
| if (I.getOpcode() == Instruction::SetLE) // A <= MAX-1 -> A != MAX |
| return BinaryOperator::create(Instruction::SetNE, Op0, |
| AddOne(CI), I.getName()); |
| } |
| } |
| |
| return Changed ? &I : 0; |
| } |
| |
| |
| |
| Instruction *InstCombiner::visitShiftInst(ShiftInst &I) { |
| assert(I.getOperand(1)->getType() == Type::UByteTy); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // shl X, 0 == X and shr X, 0 == X |
| // shl 0, X == 0 and shr 0, X == 0 |
| if (Op1 == Constant::getNullValue(Type::UByteTy) || |
| Op0 == Constant::getNullValue(Op0->getType())) |
| return ReplaceInstUsesWith(I, Op0); |
| |
| // If this is a shift of a shift, see if we can fold the two together... |
| if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0)) { |
| if (isa<Constant>(Op1) && isa<Constant>(Op0SI->getOperand(1))) { |
| ConstantUInt *ShiftAmt1C = cast<ConstantUInt>(Op0SI->getOperand(1)); |
| unsigned ShiftAmt1 = ShiftAmt1C->getValue(); |
| unsigned ShiftAmt2 = cast<ConstantUInt>(Op1)->getValue(); |
| |
| // Check for (A << c1) << c2 and (A >> c1) >> c2 |
| if (I.getOpcode() == Op0SI->getOpcode()) { |
| unsigned Amt = ShiftAmt1+ShiftAmt2; // Fold into one big shift... |
| return new ShiftInst(I.getOpcode(), Op0SI->getOperand(0), |
| ConstantUInt::get(Type::UByteTy, Amt)); |
| } |
| |
| if (I.getType()->isUnsigned()) { // Check for (A << c1) >> c2 or visaversa |
| // Calculate bitmask for what gets shifted off the edge... |
| Constant *C = ConstantIntegral::getAllOnesValue(I.getType()); |
| if (I.getOpcode() == Instruction::Shr) |
| C = ConstantExpr::getShift(Instruction::Shr, C, ShiftAmt1C); |
| else |
| C = ConstantExpr::getShift(Instruction::Shl, C, ShiftAmt1C); |
| |
| Instruction *Mask = |
| BinaryOperator::create(Instruction::And, Op0SI->getOperand(0), |
| C, Op0SI->getOperand(0)->getName()+".mask",&I); |
| WorkList.push_back(Mask); |
| |
| // Figure out what flavor of shift we should use... |
| if (ShiftAmt1 == ShiftAmt2) |
| return ReplaceInstUsesWith(I, Mask); // (A << c) >> c === A & c2 |
| else if (ShiftAmt1 < ShiftAmt2) { |
| return new ShiftInst(I.getOpcode(), Mask, |
| ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1)); |
| } else { |
| return new ShiftInst(Op0SI->getOpcode(), Mask, |
| ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2)); |
| } |
| } |
| } |
| } |
| |
| // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr of |
| // a signed value. |
| // |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1)) { |
| unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8; |
| if (CUI->getValue() >= TypeBits && |
| (!Op0->getType()->isSigned() || I.getOpcode() == Instruction::Shl)) |
| return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); |
| |
| // Check to see if we are shifting left by 1. If so, turn it into an add |
| // instruction. |
| if (I.getOpcode() == Instruction::Shl && CUI->equalsInt(1)) |
| // Convert 'shl int %X, 1' to 'add int %X, %X' |
| return BinaryOperator::create(Instruction::Add, Op0, Op0, I.getName()); |
| |
| } |
| |
| // shr int -1, X = -1 (for any arithmetic shift rights of ~0) |
| if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0)) |
| if (I.getOpcode() == Instruction::Shr && CSI->isAllOnesValue()) |
| return ReplaceInstUsesWith(I, CSI); |
| |
| return 0; |
| } |
| |
| |
| // isEliminableCastOfCast - Return true if it is valid to eliminate the CI |
| // instruction. |
| // |
| static inline bool isEliminableCastOfCast(const CastInst &CI, |
| const CastInst *CSrc) { |
| assert(CI.getOperand(0) == CSrc); |
| const Type *SrcTy = CSrc->getOperand(0)->getType(); |
| const Type *MidTy = CSrc->getType(); |
| const Type *DstTy = CI.getType(); |
| |
| // It is legal to eliminate the instruction if casting A->B->A if the sizes |
| // are identical and the bits don't get reinterpreted (for example |
| // int->float->int would not be allowed) |
| if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy)) |
| return true; |
| |
| // Allow free casting and conversion of sizes as long as the sign doesn't |
| // change... |
| if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) { |
| unsigned SrcSize = SrcTy->getPrimitiveSize(); |
| unsigned MidSize = MidTy->getPrimitiveSize(); |
| unsigned DstSize = DstTy->getPrimitiveSize(); |
| |
| // Cases where we are monotonically decreasing the size of the type are |
| // always ok, regardless of what sign changes are going on. |
| // |
| if (SrcSize >= MidSize && MidSize >= DstSize) |
| return true; |
| |
| // Cases where the source and destination type are the same, but the middle |
| // type is bigger are noops. |
| // |
| if (SrcSize == DstSize && MidSize > SrcSize) |
| return true; |
| |
| // If we are monotonically growing, things are more complex. |
| // |
| if (SrcSize <= MidSize && MidSize <= DstSize) { |
| // We have eight combinations of signedness to worry about. Here's the |
| // table: |
| static const int SignTable[8] = { |
| // CODE, SrcSigned, MidSigned, DstSigned, Comment |
| 1, // U U U Always ok |
| 1, // U U S Always ok |
| 3, // U S U Ok iff SrcSize != MidSize |
| 3, // U S S Ok iff SrcSize != MidSize |
| 0, // S U U Never ok |
| 2, // S U S Ok iff MidSize == DstSize |
| 1, // S S U Always ok |
| 1, // S S S Always ok |
| }; |
| |
| // Choose an action based on the current entry of the signtable that this |
| // cast of cast refers to... |
| unsigned Row = SrcTy->isSigned()*4+MidTy->isSigned()*2+DstTy->isSigned(); |
| switch (SignTable[Row]) { |
| case 0: return false; // Never ok |
| case 1: return true; // Always ok |
| case 2: return MidSize == DstSize; // Ok iff MidSize == DstSize |
| case 3: // Ok iff SrcSize != MidSize |
| return SrcSize != MidSize || SrcTy == Type::BoolTy; |
| default: assert(0 && "Bad entry in sign table!"); |
| } |
| } |
| } |
| |
| // Otherwise, we cannot succeed. Specifically we do not want to allow things |
| // like: short -> ushort -> uint, because this can create wrong results if |
| // the input short is negative! |
| // |
| return false; |
| } |
| |
| |
| // CastInst simplification |
| // |
| Instruction *InstCombiner::visitCastInst(CastInst &CI) { |
| Value *Src = CI.getOperand(0); |
| |
| // If the user is casting a value to the same type, eliminate this cast |
| // instruction... |
| if (CI.getType() == Src->getType()) |
| return ReplaceInstUsesWith(CI, Src); |
| |
| // If casting the result of another cast instruction, try to eliminate this |
| // one! |
| // |
| if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { |
| if (isEliminableCastOfCast(CI, CSrc)) { |
| // This instruction now refers directly to the cast's src operand. This |
| // has a good chance of making CSrc dead. |
| CI.setOperand(0, CSrc->getOperand(0)); |
| return &CI; |
| } |
| |
| // If this is an A->B->A cast, and we are dealing with integral types, try |
| // to convert this into a logical 'and' instruction. |
| // |
| if (CSrc->getOperand(0)->getType() == CI.getType() && |
| CI.getType()->isInteger() && CSrc->getType()->isInteger() && |
| CI.getType()->isUnsigned() && CSrc->getType()->isUnsigned() && |
| CSrc->getType()->getPrimitiveSize() < CI.getType()->getPrimitiveSize()){ |
| assert(CSrc->getType() != Type::ULongTy && |
| "Cannot have type bigger than ulong!"); |
| uint64_t AndValue = (1ULL << CSrc->getType()->getPrimitiveSize()*8)-1; |
| Constant *AndOp = ConstantUInt::get(CI.getType(), AndValue); |
| return BinaryOperator::create(Instruction::And, CSrc->getOperand(0), |
| AndOp); |
| } |
| } |
| |
| // If casting the result of a getelementptr instruction with no offset, turn |
| // this into a cast of the original pointer! |
| // |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { |
| bool AllZeroOperands = true; |
| for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i) |
| if (!isa<Constant>(GEP->getOperand(i)) || |
| !cast<Constant>(GEP->getOperand(i))->isNullValue()) { |
| AllZeroOperands = false; |
| break; |
| } |
| if (AllZeroOperands) { |
| CI.setOperand(0, GEP->getOperand(0)); |
| return &CI; |
| } |
| } |
| |
| // If this is a cast to bool (which is effectively a "!=0" test), then we can |
| // perform a few optimizations... |
| // |
| if (CI.getType() == Type::BoolTy) { |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Src)) { |
| Value *Op0 = BO->getOperand(0), *Op1 = BO->getOperand(1); |
| |
| // Replace (cast (sub A, B) to bool) with (setne A, B) |
| if (BO->getOpcode() == Instruction::Sub) |
| return new SetCondInst(Instruction::SetNE, Op0, Op1); |
| |
| // Replace (cast (add A, B) to bool) with (setne A, -B) if B is |
| // efficiently invertible, or if the add has just this one use. |
| if (BO->getOpcode() == Instruction::Add) |
| if (Value *NegVal = dyn_castNegVal(Op1)) |
| return new SetCondInst(Instruction::SetNE, Op0, NegVal); |
| else if (Value *NegVal = dyn_castNegVal(Op0)) |
| return new SetCondInst(Instruction::SetNE, NegVal, Op1); |
| else if (BO->use_size() == 1) { |
| Instruction *Neg = BinaryOperator::createNeg(Op1, BO->getName()); |
| BO->setName(""); |
| InsertNewInstBefore(Neg, CI); |
| return new SetCondInst(Instruction::SetNE, Op0, Neg); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| // CallInst simplification |
| // |
| Instruction *InstCombiner::visitCallInst(CallInst &CI) { |
| if (transformConstExprCastCall(&CI)) return 0; |
| return 0; |
| } |
| |
| // InvokeInst simplification |
| // |
| Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { |
| if (transformConstExprCastCall(&II)) return 0; |
| return 0; |
| } |
| |
| // getPromotedType - Return the specified type promoted as it would be to pass |
| // though a va_arg area... |
| static const Type *getPromotedType(const Type *Ty) { |
| switch (Ty->getPrimitiveID()) { |
| case Type::SByteTyID: |
| case Type::ShortTyID: return Type::IntTy; |
| case Type::UByteTyID: |
| case Type::UShortTyID: return Type::UIntTy; |
| case Type::FloatTyID: return Type::DoubleTy; |
| default: return Ty; |
| } |
| } |
| |
| // transformConstExprCastCall - If the callee is a constexpr cast of a function, |
| // attempt to move the cast to the arguments of the call/invoke. |
| // |
| bool InstCombiner::transformConstExprCastCall(CallSite CS) { |
| if (!isa<ConstantExpr>(CS.getCalledValue())) return false; |
| ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue()); |
| if (CE->getOpcode() != Instruction::Cast || |
| !isa<ConstantPointerRef>(CE->getOperand(0))) |
| return false; |
| ConstantPointerRef *CPR = cast<ConstantPointerRef>(CE->getOperand(0)); |
| if (!isa<Function>(CPR->getValue())) return false; |
| Function *Callee = cast<Function>(CPR->getValue()); |
| Instruction *Caller = CS.getInstruction(); |
| |
| // Okay, this is a cast from a function to a different type. Unless doing so |
| // would cause a type conversion of one of our arguments, change this call to |
| // be a direct call with arguments casted to the appropriate types. |
| // |
| const FunctionType *FT = Callee->getFunctionType(); |
| const Type *OldRetTy = Caller->getType(); |
| |
| if (Callee->isExternal() && |
| !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType())) |
| return false; // Cannot transform this return value... |
| |
| unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); |
| unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); |
| |
| CallSite::arg_iterator AI = CS.arg_begin(); |
| for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { |
| const Type *ParamTy = FT->getParamType(i); |
| bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy); |
| if (Callee->isExternal() && !isConvertible) return false; |
| } |
| |
| if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() && |
| Callee->isExternal()) |
| return false; // Do not delete arguments unless we have a function body... |
| |
| // Okay, we decided that this is a safe thing to do: go ahead and start |
| // inserting cast instructions as necessary... |
| std::vector<Value*> Args; |
| Args.reserve(NumActualArgs); |
| |
| AI = CS.arg_begin(); |
| for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { |
| const Type *ParamTy = FT->getParamType(i); |
| if ((*AI)->getType() == ParamTy) { |
| Args.push_back(*AI); |
| } else { |
| Instruction *Cast = new CastInst(*AI, ParamTy, "tmp"); |
| InsertNewInstBefore(Cast, *Caller); |
| Args.push_back(Cast); |
| } |
| } |
| |
| // If the function takes more arguments than the call was taking, add them |
| // now... |
| for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) |
| Args.push_back(Constant::getNullValue(FT->getParamType(i))); |
| |
| // If we are removing arguments to the function, emit an obnoxious warning... |
| if (FT->getNumParams() < NumActualArgs) |
| if (!FT->isVarArg()) { |
| std::cerr << "WARNING: While resolving call to function '" |
| << Callee->getName() << "' arguments were dropped!\n"; |
| } else { |
| // Add all of the arguments in their promoted form to the arg list... |
| for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { |
| const Type *PTy = getPromotedType((*AI)->getType()); |
| if (PTy != (*AI)->getType()) { |
| // Must promote to pass through va_arg area! |
| Instruction *Cast = new CastInst(*AI, PTy, "tmp"); |
| InsertNewInstBefore(Cast, *Caller); |
| Args.push_back(Cast); |
| } else { |
| Args.push_back(*AI); |
| } |
| } |
| } |
| |
| if (FT->getReturnType() == Type::VoidTy) |
| Caller->setName(""); // Void type should not have a name... |
| |
| Instruction *NC; |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { |
| NC = new InvokeInst(Callee, II->getNormalDest(), II->getExceptionalDest(), |
| Args, Caller->getName(), Caller); |
| } else { |
| NC = new CallInst(Callee, Args, Caller->getName(), Caller); |
| } |
| |
| // Insert a cast of the return type as necessary... |
| Value *NV = NC; |
| if (Caller->getType() != NV->getType() && !Caller->use_empty()) { |
| if (NV->getType() != Type::VoidTy) { |
| NV = NC = new CastInst(NC, Caller->getType(), "tmp"); |
| InsertNewInstBefore(NC, *Caller); |
| AddUsesToWorkList(*Caller); |
| } else { |
| NV = Constant::getNullValue(Caller->getType()); |
| } |
| } |
| |
| if (Caller->getType() != Type::VoidTy && !Caller->use_empty()) |
| Caller->replaceAllUsesWith(NV); |
| Caller->getParent()->getInstList().erase(Caller); |
| removeFromWorkList(Caller); |
| return true; |
| } |
| |
| |
| |
| // PHINode simplification |
| // |
| Instruction *InstCombiner::visitPHINode(PHINode &PN) { |
| // If the PHI node only has one incoming value, eliminate the PHI node... |
| if (PN.getNumIncomingValues() == 1) |
| return ReplaceInstUsesWith(PN, PN.getIncomingValue(0)); |
| |
| // Otherwise if all of the incoming values are the same for the PHI, replace |
| // the PHI node with the incoming value. |
| // |
| Value *InVal = 0; |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) |
| if (PN.getIncomingValue(i) != &PN) // Not the PHI node itself... |
| if (InVal && PN.getIncomingValue(i) != InVal) |
| return 0; // Not the same, bail out. |
| else |
| InVal = PN.getIncomingValue(i); |
| |
| // The only case that could cause InVal to be null is if we have a PHI node |
| // that only has entries for itself. In this case, there is no entry into the |
| // loop, so kill the PHI. |
| // |
| if (InVal == 0) InVal = Constant::getNullValue(PN.getType()); |
| |
| // All of the incoming values are the same, replace the PHI node now. |
| return ReplaceInstUsesWith(PN, InVal); |
| } |
| |
| |
| Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| // Is it 'getelementptr %P, long 0' or 'getelementptr %P' |
| // If so, eliminate the noop. |
| if ((GEP.getNumOperands() == 2 && |
| GEP.getOperand(1) == Constant::getNullValue(Type::LongTy)) || |
| GEP.getNumOperands() == 1) |
| return ReplaceInstUsesWith(GEP, GEP.getOperand(0)); |
| |
| // Combine Indices - If the source pointer to this getelementptr instruction |
| // is a getelementptr instruction, combine the indices of the two |
| // getelementptr instructions into a single instruction. |
| // |
| if (GetElementPtrInst *Src = dyn_cast<GetElementPtrInst>(GEP.getOperand(0))) { |
| std::vector<Value *> Indices; |
| |
| // Can we combine the two pointer arithmetics offsets? |
| if (Src->getNumOperands() == 2 && isa<Constant>(Src->getOperand(1)) && |
| isa<Constant>(GEP.getOperand(1))) { |
| // Replace: gep (gep %P, long C1), long C2, ... |
| // With: gep %P, long (C1+C2), ... |
| Value *Sum = ConstantExpr::get(Instruction::Add, |
| cast<Constant>(Src->getOperand(1)), |
| cast<Constant>(GEP.getOperand(1))); |
| assert(Sum && "Constant folding of longs failed!?"); |
| GEP.setOperand(0, Src->getOperand(0)); |
| GEP.setOperand(1, Sum); |
| AddUsesToWorkList(*Src); // Reduce use count of Src |
| return &GEP; |
| } else if (Src->getNumOperands() == 2) { |
| // Replace: gep (gep %P, long B), long A, ... |
| // With: T = long A+B; gep %P, T, ... |
| // |
| Value *Sum = BinaryOperator::create(Instruction::Add, Src->getOperand(1), |
| GEP.getOperand(1), |
| Src->getName()+".sum", &GEP); |
| GEP.setOperand(0, Src->getOperand(0)); |
| GEP.setOperand(1, Sum); |
| WorkList.push_back(cast<Instruction>(Sum)); |
| return &GEP; |
| } else if (*GEP.idx_begin() == Constant::getNullValue(Type::LongTy) && |
| Src->getNumOperands() != 1) { |
| // Otherwise we can do the fold if the first index of the GEP is a zero |
| Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end()); |
| Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end()); |
| } else if (Src->getOperand(Src->getNumOperands()-1) == |
| Constant::getNullValue(Type::LongTy)) { |
| // If the src gep ends with a constant array index, merge this get into |
| // it, even if we have a non-zero array index. |
| Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end()-1); |
| Indices.insert(Indices.end(), GEP.idx_begin(), GEP.idx_end()); |
| } |
| |
| if (!Indices.empty()) |
| return new GetElementPtrInst(Src->getOperand(0), Indices, GEP.getName()); |
| |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(GEP.getOperand(0))) { |
| // GEP of global variable. If all of the indices for this GEP are |
| // constants, we can promote this to a constexpr instead of an instruction. |
| |
| // Scan for nonconstants... |
| std::vector<Constant*> Indices; |
| User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); |
| for (; I != E && isa<Constant>(*I); ++I) |
| Indices.push_back(cast<Constant>(*I)); |
| |
| if (I == E) { // If they are all constants... |
| Constant *CE = |
| ConstantExpr::getGetElementPtr(ConstantPointerRef::get(GV), Indices); |
| |
| // Replace all uses of the GEP with the new constexpr... |
| return ReplaceInstUsesWith(GEP, CE); |
| } |
| } |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) { |
| // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1 |
| if (AI.isArrayAllocation()) // Check C != 1 |
| if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) { |
| const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue()); |
| AllocationInst *New = 0; |
| |
| // Create and insert the replacement instruction... |
| if (isa<MallocInst>(AI)) |
| New = new MallocInst(NewTy, 0, AI.getName(), &AI); |
| else { |
| assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!"); |
| New = new AllocaInst(NewTy, 0, AI.getName(), &AI); |
| } |
| |
| // Scan to the end of the allocation instructions, to skip over a block of |
| // allocas if possible... |
| // |
| BasicBlock::iterator It = New; |
| while (isa<AllocationInst>(*It)) ++It; |
| |
| // Now that I is pointing to the first non-allocation-inst in the block, |
| // insert our getelementptr instruction... |
| // |
| std::vector<Value*> Idx(2, Constant::getNullValue(Type::LongTy)); |
| Value *V = new GetElementPtrInst(New, Idx, New->getName()+".sub", It); |
| |
| // Now make everything use the getelementptr instead of the original |
| // allocation. |
| ReplaceInstUsesWith(AI, V); |
| return &AI; |
| } |
| return 0; |
| } |
| |
| /// GetGEPGlobalInitializer - Given a constant, and a getelementptr |
| /// constantexpr, return the constant value being addressed by the constant |
| /// expression, or null if something is funny. |
| /// |
| static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) { |
| if (CE->getOperand(1) != Constant::getNullValue(Type::LongTy)) |
| return 0; // Do not allow stepping over the value! |
| |
| // Loop over all of the operands, tracking down which value we are |
| // addressing... |
| for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) |
| if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) { |
| ConstantStruct *CS = cast<ConstantStruct>(C); |
| if (CU->getValue() >= CS->getValues().size()) return 0; |
| C = cast<Constant>(CS->getValues()[CU->getValue()]); |
| } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) { |
| ConstantArray *CA = cast<ConstantArray>(C); |
| if ((uint64_t)CS->getValue() >= CA->getValues().size()) return 0; |
| C = cast<Constant>(CA->getValues()[CS->getValue()]); |
| } else |
| return 0; |
| return C; |
| } |
| |
| Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { |
| Value *Op = LI.getOperand(0); |
| if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Op)) |
| Op = CPR->getValue(); |
| |
| // Instcombine load (constant global) into the value loaded... |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op)) |
| if (GV->isConstant()) |
| return ReplaceInstUsesWith(LI, GV->getInitializer()); |
| |
| // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded... |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) |
| if (CE->getOpcode() == Instruction::GetElementPtr) |
| if (ConstantPointerRef *G=dyn_cast<ConstantPointerRef>(CE->getOperand(0))) |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getValue())) |
| if (GV->isConstant()) |
| if (Constant *V = GetGEPGlobalInitializer(GV->getInitializer(), CE)) |
| return ReplaceInstUsesWith(LI, V); |
| return 0; |
| } |
| |
| |
| Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { |
| // Change br (not X), label True, label False to: br X, label False, True |
| if (BI.isConditional() && !isa<Constant>(BI.getCondition())) |
| if (Value *V = dyn_castNotVal(BI.getCondition())) { |
| BasicBlock *TrueDest = BI.getSuccessor(0); |
| BasicBlock *FalseDest = BI.getSuccessor(1); |
| // Swap Destinations and condition... |
| BI.setCondition(V); |
| BI.setSuccessor(0, FalseDest); |
| BI.setSuccessor(1, TrueDest); |
| return &BI; |
| } |
| return 0; |
| } |
| |
| |
| void InstCombiner::removeFromWorkList(Instruction *I) { |
| WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I), |
| WorkList.end()); |
| } |
| |
| bool InstCombiner::runOnFunction(Function &F) { |
| bool Changed = false; |
| |
| WorkList.insert(WorkList.end(), inst_begin(F), inst_end(F)); |
| |
| while (!WorkList.empty()) { |
| Instruction *I = WorkList.back(); // Get an instruction from the worklist |
| WorkList.pop_back(); |
| |
| // Check to see if we can DCE or ConstantPropagate the instruction... |
| // Check to see if we can DIE the instruction... |
| if (isInstructionTriviallyDead(I)) { |
| // Add operands to the worklist... |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i))) |
| WorkList.push_back(Op); |
| |
| ++NumDeadInst; |
| BasicBlock::iterator BBI = I; |
| if (dceInstruction(BBI)) { |
| removeFromWorkList(I); |
| continue; |
| } |
| } |
| |
| // Instruction isn't dead, see if we can constant propagate it... |
| if (Constant *C = ConstantFoldInstruction(I)) { |
| // Add operands to the worklist... |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i))) |
| WorkList.push_back(Op); |
| ReplaceInstUsesWith(*I, C); |
| |
| ++NumConstProp; |
| BasicBlock::iterator BBI = I; |
| if (dceInstruction(BBI)) { |
| removeFromWorkList(I); |
| continue; |
| } |
| } |
| |
| // Now that we have an instruction, try combining it to simplify it... |
| if (Instruction *Result = visit(*I)) { |
| ++NumCombined; |
| // Should we replace the old instruction with a new one? |
| if (Result != I) { |
| // Instructions can end up on the worklist more than once. Make sure |
| // we do not process an instruction that has been deleted. |
| removeFromWorkList(I); |
| ReplaceInstWithInst(I, Result); |
| } else { |
| BasicBlock::iterator II = I; |
| |
| // If the instruction was modified, it's possible that it is now dead. |
| // if so, remove it. |
| if (dceInstruction(II)) { |
| // Instructions may end up in the worklist more than once. Erase them |
| // all. |
| removeFromWorkList(I); |
| Result = 0; |
| } |
| } |
| |
| if (Result) { |
| WorkList.push_back(Result); |
| AddUsesToWorkList(*Result); |
| } |
| Changed = true; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| Pass *createInstructionCombiningPass() { |
| return new InstCombiner(); |
| } |