| //===-- SparcV9InstrSelection.cpp -------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // BURS instruction selection for SPARC V9 architecture. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Module.h" |
| #include "llvm/CodeGen/InstrForest.h" |
| #include "llvm/CodeGen/InstrSelection.h" |
| #include "llvm/CodeGen/MachineCodeForInstruction.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "MachineInstrAnnot.h" |
| #include "SparcV9InstrSelectionSupport.h" |
| #include "SparcV9Internals.h" |
| #include "SparcV9RegClassInfo.h" |
| #include "SparcV9RegInfo.h" |
| #include "Support/MathExtras.h" |
| #include <algorithm> |
| #include <cmath> |
| |
| namespace llvm { |
| |
| static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node, |
| std::vector<MachineInstr*>& mvec) { |
| mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue()) |
| .addReg(Node->rightChild()->getValue()) |
| .addRegDef(Node->getValue())); |
| } |
| |
| |
| //--------------------------------------------------------------------------- |
| // Function: FoldGetElemChain |
| // |
| // Purpose: |
| // Fold a chain of GetElementPtr instructions containing only |
| // constant offsets into an equivalent (Pointer, IndexVector) pair. |
| // Returns the pointer Value, and stores the resulting IndexVector |
| // in argument chainIdxVec. This is a helper function for |
| // FoldConstantIndices that does the actual folding. |
| //--------------------------------------------------------------------------- |
| |
| |
| // Check for a constant 0. |
| static inline bool |
| IsZero(Value* idx) |
| { |
| return (idx == ConstantSInt::getNullValue(idx->getType())); |
| } |
| |
| static Value* |
| FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec, |
| bool lastInstHasLeadingNonZero) |
| { |
| InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode); |
| GetElementPtrInst* gepInst = |
| dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0); |
| |
| // ptr value is not computed in this tree or ptr value does not come from GEP |
| // instruction |
| if (gepInst == NULL) |
| return NULL; |
| |
| // Return NULL if we don't fold any instructions in. |
| Value* ptrVal = NULL; |
| |
| // Now chase the chain of getElementInstr instructions, if any. |
| // Check for any non-constant indices and stop there. |
| // Also, stop if the first index of child is a non-zero array index |
| // and the last index of the current node is a non-array index: |
| // in that case, a non-array declared type is being accessed as an array |
| // which is not type-safe, but could be legal. |
| // |
| InstructionNode* ptrChild = gepNode; |
| while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr || |
| ptrChild->getOpLabel() == GetElemPtrIdx)) |
| { |
| // Child is a GetElemPtr instruction |
| gepInst = cast<GetElementPtrInst>(ptrChild->getValue()); |
| User::op_iterator OI, firstIdx = gepInst->idx_begin(); |
| User::op_iterator lastIdx = gepInst->idx_end(); |
| bool allConstantOffsets = true; |
| |
| // The first index of every GEP must be an array index. |
| assert((*firstIdx)->getType() == Type::LongTy && |
| "INTERNAL ERROR: Structure index for a pointer type!"); |
| |
| // If the last instruction had a leading non-zero index, check if the |
| // current one references a sequential (i.e., indexable) type. |
| // If not, the code is not type-safe and we would create an illegal GEP |
| // by folding them, so don't fold any more instructions. |
| // |
| if (lastInstHasLeadingNonZero) |
| if (! isa<SequentialType>(gepInst->getType()->getElementType())) |
| break; // cannot fold in any preceding getElementPtr instrs. |
| |
| // Check that all offsets are constant for this instruction |
| for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI) |
| allConstantOffsets = isa<ConstantInt>(*OI); |
| |
| if (allConstantOffsets) { |
| // Get pointer value out of ptrChild. |
| ptrVal = gepInst->getPointerOperand(); |
| |
| // Insert its index vector at the start, skipping any leading [0] |
| // Remember the old size to check if anything was inserted. |
| unsigned oldSize = chainIdxVec.size(); |
| int firstIsZero = IsZero(*firstIdx); |
| chainIdxVec.insert(chainIdxVec.begin(), firstIdx + firstIsZero, lastIdx); |
| |
| // Remember if it has leading zero index: it will be discarded later. |
| if (oldSize < chainIdxVec.size()) |
| lastInstHasLeadingNonZero = !firstIsZero; |
| |
| // Mark the folded node so no code is generated for it. |
| ((InstructionNode*) ptrChild)->markFoldedIntoParent(); |
| |
| // Get the previous GEP instruction and continue trying to fold |
| ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild()); |
| } else // cannot fold this getElementPtr instr. or any preceding ones |
| break; |
| } |
| |
| // If the first getElementPtr instruction had a leading [0], add it back. |
| // Note that this instruction is the *last* one that was successfully |
| // folded *and* contributed any indices, in the loop above. |
| // |
| if (ptrVal && ! lastInstHasLeadingNonZero) |
| chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0)); |
| |
| return ptrVal; |
| } |
| |
| |
| //--------------------------------------------------------------------------- |
| // Function: GetGEPInstArgs |
| // |
| // Purpose: |
| // Helper function for GetMemInstArgs that handles the final getElementPtr |
| // instruction used by (or same as) the memory operation. |
| // Extracts the indices of the current instruction and tries to fold in |
| // preceding ones if all indices of the current one are constant. |
| //--------------------------------------------------------------------------- |
| |
| static Value * |
| GetGEPInstArgs(InstructionNode* gepNode, |
| std::vector<Value*>& idxVec, |
| bool& allConstantIndices) |
| { |
| allConstantIndices = true; |
| GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction()); |
| |
| // Default pointer is the one from the current instruction. |
| Value* ptrVal = gepI->getPointerOperand(); |
| InstrTreeNode* ptrChild = gepNode->leftChild(); |
| |
| // Extract the index vector of the GEP instruction. |
| // If all indices are constant and first index is zero, try to fold |
| // in preceding GEPs with all constant indices. |
| for (User::op_iterator OI=gepI->idx_begin(), OE=gepI->idx_end(); |
| allConstantIndices && OI != OE; ++OI) |
| if (! isa<Constant>(*OI)) |
| allConstantIndices = false; // note: this also terminates loop! |
| |
| // If we have only constant indices, fold chains of constant indices |
| // in this and any preceding GetElemPtr instructions. |
| bool foldedGEPs = false; |
| bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin()); |
| if (allConstantIndices) |
| if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) { |
| ptrVal = newPtr; |
| foldedGEPs = true; |
| } |
| |
| // Append the index vector of the current instruction. |
| // Skip the leading [0] index if preceding GEPs were folded into this. |
| idxVec.insert(idxVec.end(), |
| gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx), |
| gepI->idx_end()); |
| |
| return ptrVal; |
| } |
| |
| //--------------------------------------------------------------------------- |
| // Function: GetMemInstArgs |
| // |
| // Purpose: |
| // Get the pointer value and the index vector for a memory operation |
| // (GetElementPtr, Load, or Store). If all indices of the given memory |
| // operation are constant, fold in constant indices in a chain of |
| // preceding GetElementPtr instructions (if any), and return the |
| // pointer value of the first instruction in the chain. |
| // All folded instructions are marked so no code is generated for them. |
| // |
| // Return values: |
| // Returns the pointer Value to use. |
| // Returns the resulting IndexVector in idxVec. |
| // Returns true/false in allConstantIndices if all indices are/aren't const. |
| //--------------------------------------------------------------------------- |
| |
| static Value* |
| GetMemInstArgs(InstructionNode* memInstrNode, |
| std::vector<Value*>& idxVec, |
| bool& allConstantIndices) |
| { |
| allConstantIndices = false; |
| Instruction* memInst = memInstrNode->getInstruction(); |
| assert(idxVec.size() == 0 && "Need empty vector to return indices"); |
| |
| // If there is a GetElemPtr instruction to fold in to this instr, |
| // it must be in the left child for Load and GetElemPtr, and in the |
| // right child for Store instructions. |
| InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store |
| ? memInstrNode->rightChild() |
| : memInstrNode->leftChild()); |
| |
| // Default pointer is the one from the current instruction. |
| Value* ptrVal = ptrChild->getValue(); |
| |
| // Find the "last" GetElemPtr instruction: this one or the immediate child. |
| // There will be none if this is a load or a store from a scalar pointer. |
| InstructionNode* gepNode = NULL; |
| if (isa<GetElementPtrInst>(memInst)) |
| gepNode = memInstrNode; |
| else if (isa<InstructionNode>(ptrChild) && isa<GetElementPtrInst>(ptrVal)) { |
| // Child of load/store is a GEP and memInst is its only use. |
| // Use its indices and mark it as folded. |
| gepNode = cast<InstructionNode>(ptrChild); |
| gepNode->markFoldedIntoParent(); |
| } |
| |
| // If there are no indices, return the current pointer. |
| // Else extract the pointer from the GEP and fold the indices. |
| return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices) |
| : ptrVal; |
| } |
| |
| |
| //************************ Internal Functions ******************************/ |
| |
| |
| static inline MachineOpCode |
| ChooseBprInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode; |
| |
| Instruction* setCCInstr = |
| ((InstructionNode*) instrNode->leftChild())->getInstruction(); |
| |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::BRZ; break; |
| case Instruction::SetNE: opCode = V9::BRNZ; break; |
| case Instruction::SetLE: opCode = V9::BRLEZ; break; |
| case Instruction::SetGE: opCode = V9::BRGEZ; break; |
| case Instruction::SetLT: opCode = V9::BRLZ; break; |
| case Instruction::SetGT: opCode = V9::BRGZ; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| opCode = V9::INVALID_OPCODE; |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseBpccInstruction(const InstructionNode* instrNode, |
| const BinaryOperator* setCCInstr) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); |
| |
| if (isSigned) { |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::BE; break; |
| case Instruction::SetNE: opCode = V9::BNE; break; |
| case Instruction::SetLE: opCode = V9::BLE; break; |
| case Instruction::SetGE: opCode = V9::BGE; break; |
| case Instruction::SetLT: opCode = V9::BL; break; |
| case Instruction::SetGT: opCode = V9::BG; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| } else { |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::BE; break; |
| case Instruction::SetNE: opCode = V9::BNE; break; |
| case Instruction::SetLE: opCode = V9::BLEU; break; |
| case Instruction::SetGE: opCode = V9::BCC; break; |
| case Instruction::SetLT: opCode = V9::BCS; break; |
| case Instruction::SetGT: opCode = V9::BGU; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineOpCode |
| ChooseBFpccInstruction(const InstructionNode* instrNode, |
| const BinaryOperator* setCCInstr) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| switch(setCCInstr->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::FBE; break; |
| case Instruction::SetNE: opCode = V9::FBNE; break; |
| case Instruction::SetLE: opCode = V9::FBLE; break; |
| case Instruction::SetGE: opCode = V9::FBGE; break; |
| case Instruction::SetLT: opCode = V9::FBL; break; |
| case Instruction::SetGT: opCode = V9::FBG; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // Create a unique TmpInstruction for a boolean value, |
| // representing the CC register used by a branch on that value. |
| // For now, hack this using a little static cache of TmpInstructions. |
| // Eventually the entire BURG instruction selection should be put |
| // into a separate class that can hold such information. |
| // The static cache is not too bad because the memory for these |
| // TmpInstructions will be freed along with the rest of the Function anyway. |
| // |
| static TmpInstruction* |
| GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType, |
| MachineCodeForInstruction& mcfi) |
| { |
| typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache; |
| static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction* |
| static const Function *lastFunction = 0;// Use to flush cache between funcs |
| |
| assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert"); |
| |
| if (lastFunction != F) { |
| lastFunction = F; |
| boolToTmpCache.clear(); |
| } |
| |
| // Look for tmpI and create a new one otherwise. The new value is |
| // directly written to map using the ref returned by operator[]. |
| TmpInstruction*& tmpI = boolToTmpCache[boolVal]; |
| if (tmpI == NULL) |
| tmpI = new TmpInstruction(mcfi, ccType, boolVal); |
| |
| return tmpI; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseBccInstruction(const InstructionNode* instrNode, |
| const Type*& setCCType) |
| { |
| InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); |
| assert(setCCNode->getOpLabel() == SetCCOp); |
| BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction()); |
| setCCType = setCCInstr->getOperand(0)->getType(); |
| |
| if (setCCType->isFloatingPoint()) |
| return ChooseBFpccInstruction(instrNode, setCCInstr); |
| else |
| return ChooseBpccInstruction(instrNode, setCCInstr); |
| } |
| |
| |
| // WARNING: since this function has only one caller, it always returns |
| // the opcode that expects an immediate and a register. If this function |
| // is ever used in cases where an opcode that takes two registers is required, |
| // then modify this function and use convertOpcodeFromRegToImm() where required. |
| // |
| // It will be necessary to expand convertOpcodeFromRegToImm() to handle the |
| // new cases of opcodes. |
| static inline MachineOpCode |
| ChooseMovFpcciInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| switch(instrNode->getInstruction()->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::MOVFEi; break; |
| case Instruction::SetNE: opCode = V9::MOVFNEi; break; |
| case Instruction::SetLE: opCode = V9::MOVFLEi; break; |
| case Instruction::SetGE: opCode = V9::MOVFGEi; break; |
| case Instruction::SetLT: opCode = V9::MOVFLi; break; |
| case Instruction::SetGT: opCode = V9::MOVFGi; break; |
| default: |
| assert(0 && "Unrecognized VM instruction!"); |
| break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // ChooseMovpcciForSetCC -- Choose a conditional-move instruction |
| // based on the type of SetCC operation. |
| // |
| // WARNING: since this function has only one caller, it always returns |
| // the opcode that expects an immediate and a register. If this function |
| // is ever used in cases where an opcode that takes two registers is required, |
| // then modify this function and use convertOpcodeFromRegToImm() where required. |
| // |
| // It will be necessary to expand convertOpcodeFromRegToImm() to handle the |
| // new cases of opcodes. |
| // |
| static MachineOpCode |
| ChooseMovpcciForSetCC(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| const Type* opType = instrNode->leftChild()->getValue()->getType(); |
| assert(opType->isIntegral() || isa<PointerType>(opType)); |
| bool noSign = opType->isUnsigned() || isa<PointerType>(opType); |
| |
| switch(instrNode->getInstruction()->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::MOVEi; break; |
| case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break; |
| case Instruction::SetGE: opCode = noSign? V9::MOVCCi : V9::MOVGEi; break; |
| case Instruction::SetLT: opCode = noSign? V9::MOVCSi : V9::MOVLi; break; |
| case Instruction::SetGT: opCode = noSign? V9::MOVGUi : V9::MOVGi; break; |
| case Instruction::SetNE: opCode = V9::MOVNEi; break; |
| default: assert(0 && "Unrecognized LLVM instr!"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value |
| // instruction based on the type of SetCC operation. These instructions |
| // compare a register with 0 and perform the move is the comparison is true. |
| // |
| // WARNING: like the previous function, this function it always returns |
| // the opcode that expects an immediate and a register. See above. |
| // |
| static MachineOpCode |
| ChooseMovpregiForSetCC(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| switch(instrNode->getInstruction()->getOpcode()) |
| { |
| case Instruction::SetEQ: opCode = V9::MOVRZi; break; |
| case Instruction::SetLE: opCode = V9::MOVRLEZi; break; |
| case Instruction::SetGE: opCode = V9::MOVRGEZi; break; |
| case Instruction::SetLT: opCode = V9::MOVRLZi; break; |
| case Instruction::SetGT: opCode = V9::MOVRGZi; break; |
| case Instruction::SetNE: opCode = V9::MOVRNZi; break; |
| default: assert(0 && "Unrecognized VM instr!"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseConvertToFloatInstr(const TargetMachine& target, |
| OpLabel vopCode, const Type* opType) |
| { |
| assert((vopCode == ToFloatTy || vopCode == ToDoubleTy) && |
| "Unrecognized convert-to-float opcode!"); |
| assert((opType->isIntegral() || opType->isFloatingPoint() || |
| isa<PointerType>(opType)) |
| && "Trying to convert a non-scalar type to FLOAT/DOUBLE?"); |
| |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| unsigned opSize = target.getTargetData().getTypeSize(opType); |
| |
| if (opType == Type::FloatTy) |
| opCode = (vopCode == ToFloatTy? V9::NOP : V9::FSTOD); |
| else if (opType == Type::DoubleTy) |
| opCode = (vopCode == ToFloatTy? V9::FDTOS : V9::NOP); |
| else if (opSize <= 4) |
| opCode = (vopCode == ToFloatTy? V9::FITOS : V9::FITOD); |
| else { |
| assert(opSize == 8 && "Unrecognized type size > 4 and < 8!"); |
| opCode = (vopCode == ToFloatTy? V9::FXTOS : V9::FXTOD); |
| } |
| |
| return opCode; |
| } |
| |
| static inline MachineOpCode |
| ChooseConvertFPToIntInstr(const TargetMachine& target, |
| const Type* destType, const Type* opType) |
| { |
| assert((opType == Type::FloatTy || opType == Type::DoubleTy) |
| && "This function should only be called for FLOAT or DOUBLE"); |
| assert((destType->isIntegral() || isa<PointerType>(destType)) |
| && "Trying to convert FLOAT/DOUBLE to a non-scalar type?"); |
| |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| unsigned destSize = target.getTargetData().getTypeSize(destType); |
| |
| if (destType == Type::UIntTy) |
| assert(destType != Type::UIntTy && "Expand FP-to-uint beforehand."); |
| else if (destSize <= 4) |
| opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI; |
| else { |
| assert(destSize == 8 && "Unrecognized type size > 4 and < 8!"); |
| opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX; |
| } |
| |
| return opCode; |
| } |
| |
| static MachineInstr* |
| CreateConvertFPToIntInstr(const TargetMachine& target, |
| Value* srcVal, |
| Value* destVal, |
| const Type* destType) |
| { |
| MachineOpCode opCode = ChooseConvertFPToIntInstr(target, destType, |
| srcVal->getType()); |
| assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!"); |
| return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal); |
| } |
| |
| // CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned integer |
| // The FP value must be converted to the dest type in an FP register, |
| // and the result is then copied from FP to int register via memory. |
| // SPARC does not have a float-to-uint conversion, only a float-to-int (fdtoi). |
| // Since fdtoi converts to signed integers, any FP value V between MAXINT+1 |
| // and MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly. |
| // Therefore, for converting an FP value to uint32_t, we first need to convert |
| // to uint64_t and then to uint32_t. |
| // |
| static void |
| CreateCodeToConvertFloatToInt(const TargetMachine& target, |
| Value* opVal, |
| Instruction* destI, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) |
| { |
| Function* F = destI->getParent()->getParent(); |
| |
| // Create a temporary to represent the FP register into which the |
| // int value will placed after conversion. The type of this temporary |
| // depends on the type of FP register to use: single-prec for a 32-bit |
| // int or smaller; double-prec for a 64-bit int. |
| // |
| size_t destSize = target.getTargetData().getTypeSize(destI->getType()); |
| |
| const Type* castDestType = destI->getType(); // type for the cast instr result |
| const Type* castDestRegType; // type for cast instruction result reg |
| TmpInstruction* destForCast; // dest for cast instruction |
| Instruction* fpToIntCopyDest = destI; // dest for fp-reg-to-int-reg copy instr |
| |
| // For converting an FP value to uint32_t, we first need to convert to |
| // uint64_t and then to uint32_t, as explained above. |
| if (destI->getType() == Type::UIntTy) { |
| castDestType = Type::ULongTy; // use this instead of type of destI |
| castDestRegType = Type::DoubleTy; // uint64_t needs 64-bit FP register. |
| destForCast = new TmpInstruction(mcfi, castDestRegType, opVal); |
| fpToIntCopyDest = new TmpInstruction(mcfi, castDestType, destForCast); |
| } |
| else { |
| castDestRegType = (destSize > 4)? Type::DoubleTy : Type::FloatTy; |
| destForCast = new TmpInstruction(mcfi, castDestRegType, opVal); |
| } |
| |
| // Create the fp-to-int conversion instruction (src and dest regs are FP regs) |
| mvec.push_back(CreateConvertFPToIntInstr(target, opVal, destForCast, |
| castDestType)); |
| |
| // Create the fpreg-to-intreg copy code |
| target.getInstrInfo().CreateCodeToCopyFloatToInt(target, F, destForCast, |
| fpToIntCopyDest, mvec, mcfi); |
| |
| // Create the uint64_t to uint32_t conversion, if needed |
| if (destI->getType() == Type::UIntTy) |
| target.getInstrInfo(). |
| CreateZeroExtensionInstructions(target, F, fpToIntCopyDest, destI, |
| /*numLowBits*/ 32, mvec, mcfi); |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseAddInstruction(const InstructionNode* instrNode) |
| { |
| return ChooseAddInstructionByType(instrNode->getInstruction()->getType()); |
| } |
| |
| |
| static inline MachineInstr* |
| CreateMovFloatInstruction(const InstructionNode* instrNode, |
| const Type* resultType) |
| { |
| return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2) |
| .addReg(instrNode->leftChild()->getValue()) |
| .addRegDef(instrNode->getValue()); |
| } |
| |
| static inline MachineInstr* |
| CreateAddConstInstruction(const InstructionNode* instrNode) |
| { |
| MachineInstr* minstr = NULL; |
| |
| Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| assert(isa<Constant>(constOp)); |
| |
| // Cases worth optimizing are: |
| // (1) Add with 0 for float or double: use an FMOV of appropriate type, |
| // instead of an FADD (1 vs 3 cycles). There is no integer MOV. |
| // |
| if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { |
| double dval = FPC->getValue(); |
| if (dval == 0.0) |
| minstr = CreateMovFloatInstruction(instrNode, |
| instrNode->getInstruction()->getType()); |
| } |
| |
| return minstr; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseSubInstructionByType(const Type* resultType) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| if (resultType->isInteger() || isa<PointerType>(resultType)) { |
| opCode = V9::SUBr; |
| } else { |
| switch(resultType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = V9::FSUBS; break; |
| case Type::DoubleTyID: opCode = V9::FSUBD; break; |
| default: assert(0 && "Invalid type for SUB instruction"); break; |
| } |
| } |
| |
| return opCode; |
| } |
| |
| |
| static inline MachineInstr* |
| CreateSubConstInstruction(const InstructionNode* instrNode) |
| { |
| MachineInstr* minstr = NULL; |
| |
| Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| assert(isa<Constant>(constOp)); |
| |
| // Cases worth optimizing are: |
| // (1) Sub with 0 for float or double: use an FMOV of appropriate type, |
| // instead of an FSUB (1 vs 3 cycles). There is no integer MOV. |
| // |
| if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { |
| double dval = FPC->getValue(); |
| if (dval == 0.0) |
| minstr = CreateMovFloatInstruction(instrNode, |
| instrNode->getInstruction()->getType()); |
| } |
| |
| return minstr; |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseFcmpInstruction(const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); |
| switch(operand->getType()->getPrimitiveID()) { |
| case Type::FloatTyID: opCode = V9::FCMPS; break; |
| case Type::DoubleTyID: opCode = V9::FCMPD; break; |
| default: assert(0 && "Invalid type for FCMP instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // Assumes that leftArg and rightArg are both cast instructions. |
| // |
| static inline bool |
| BothFloatToDouble(const InstructionNode* instrNode) |
| { |
| InstrTreeNode* leftArg = instrNode->leftChild(); |
| InstrTreeNode* rightArg = instrNode->rightChild(); |
| InstrTreeNode* leftArgArg = leftArg->leftChild(); |
| InstrTreeNode* rightArgArg = rightArg->leftChild(); |
| assert(leftArg->getValue()->getType() == rightArg->getValue()->getType()); |
| |
| // Check if both arguments are floats cast to double |
| return (leftArg->getValue()->getType() == Type::DoubleTy && |
| leftArgArg->getValue()->getType() == Type::FloatTy && |
| rightArgArg->getValue()->getType() == Type::FloatTy); |
| } |
| |
| |
| static inline MachineOpCode |
| ChooseMulInstructionByType(const Type* resultType) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| if (resultType->isInteger()) |
| opCode = V9::MULXr; |
| else |
| switch(resultType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = V9::FMULS; break; |
| case Type::DoubleTyID: opCode = V9::FMULD; break; |
| default: assert(0 && "Invalid type for MUL instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| |
| static inline MachineInstr* |
| CreateIntNegInstruction(const TargetMachine& target, |
| Value* vreg) |
| { |
| return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo().getZeroRegNum()) |
| .addReg(vreg).addRegDef(vreg); |
| } |
| |
| |
| // Create instruction sequence for any shift operation. |
| // SLL or SLLX on an operand smaller than the integer reg. size (64bits) |
| // requires a second instruction for explicit sign-extension. |
| // Note that we only have to worry about a sign-bit appearing in the |
| // most significant bit of the operand after shifting (e.g., bit 32 of |
| // Int or bit 16 of Short), so we do not have to worry about results |
| // that are as large as a normal integer register. |
| // |
| static inline void |
| CreateShiftInstructions(const TargetMachine& target, |
| Function* F, |
| MachineOpCode shiftOpCode, |
| Value* argVal1, |
| Value* optArgVal2, /* Use optArgVal2 if not NULL */ |
| unsigned optShiftNum, /* else use optShiftNum */ |
| Instruction* destVal, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) |
| { |
| assert((optArgVal2 != NULL || optShiftNum <= 64) && |
| "Large shift sizes unexpected, but can be handled below: " |
| "You need to check whether or not it fits in immed field below"); |
| |
| // If this is a logical left shift of a type smaller than the standard |
| // integer reg. size, we have to extend the sign-bit into upper bits |
| // of dest, so we need to put the result of the SLL into a temporary. |
| // |
| Value* shiftDest = destVal; |
| unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType()); |
| |
| if ((shiftOpCode == V9::SLLr5 || shiftOpCode == V9::SLLXr6) && opSize < 8) { |
| // put SLL result into a temporary |
| shiftDest = new TmpInstruction(mcfi, argVal1, optArgVal2, "sllTmp"); |
| } |
| |
| MachineInstr* M = (optArgVal2 != NULL) |
| ? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2) |
| .addReg(shiftDest, MachineOperand::Def) |
| : BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum) |
| .addReg(shiftDest, MachineOperand::Def); |
| mvec.push_back(M); |
| |
| if (shiftDest != destVal) { |
| // extend the sign-bit of the result into all upper bits of dest |
| assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?"); |
| target.getInstrInfo(). |
| CreateSignExtensionInstructions(target, F, shiftDest, destVal, |
| 8*opSize, mvec, mcfi); |
| } |
| } |
| |
| |
| // Does not create any instructions if we cannot exploit constant to |
| // create a cheaper instruction. |
| // This returns the approximate cost of the instructions generated, |
| // which is used to pick the cheapest when both operands are constant. |
| static unsigned |
| CreateMulConstInstruction(const TargetMachine &target, Function* F, |
| Value* lval, Value* rval, Instruction* destVal, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) |
| { |
| /* Use max. multiply cost, viz., cost of MULX */ |
| unsigned cost = target.getInstrInfo().minLatency(V9::MULXr); |
| unsigned firstNewInstr = mvec.size(); |
| |
| Value* constOp = rval; |
| if (! isa<Constant>(constOp)) |
| return cost; |
| |
| // Cases worth optimizing are: |
| // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV) |
| // (2) Multiply by 2^x for integer types: replace with Shift |
| // |
| const Type* resultType = destVal->getType(); |
| |
| if (resultType->isInteger() || isa<PointerType>(resultType)) { |
| bool isValidConst; |
| int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target, |
| constOp, constOp->getType(), isValidConst); |
| if (isValidConst) { |
| unsigned pow; |
| bool needNeg = false; |
| if (C < 0) { |
| needNeg = true; |
| C = -C; |
| } |
| |
| if (C == 0 || C == 1) { |
| cost = target.getInstrInfo().minLatency(V9::ADDr); |
| unsigned Zero = target.getRegInfo().getZeroRegNum(); |
| MachineInstr* M; |
| if (C == 0) |
| M =BuildMI(V9::ADDr,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal); |
| else |
| M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal); |
| mvec.push_back(M); |
| } else if (isPowerOf2(C, pow)) { |
| unsigned opSize = target.getTargetData().getTypeSize(resultType); |
| MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6; |
| CreateShiftInstructions(target, F, opCode, lval, NULL, pow, |
| destVal, mvec, mcfi); |
| } |
| |
| if (mvec.size() > 0 && needNeg) { |
| // insert <reg = SUB 0, reg> after the instr to flip the sign |
| MachineInstr* M = CreateIntNegInstruction(target, destVal); |
| mvec.push_back(M); |
| } |
| } |
| } else { |
| if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { |
| double dval = FPC->getValue(); |
| if (fabs(dval) == 1) { |
| MachineOpCode opCode = (dval < 0) |
| ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD) |
| : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD); |
| mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal)); |
| } |
| } |
| } |
| |
| if (firstNewInstr < mvec.size()) { |
| cost = 0; |
| for (unsigned i=firstNewInstr; i < mvec.size(); ++i) |
| cost += target.getInstrInfo().minLatency(mvec[i]->getOpcode()); |
| } |
| |
| return cost; |
| } |
| |
| |
| // Does not create any instructions if we cannot exploit constant to |
| // create a cheaper instruction. |
| // |
| static inline void |
| CreateCheapestMulConstInstruction(const TargetMachine &target, |
| Function* F, |
| Value* lval, Value* rval, |
| Instruction* destVal, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi) |
| { |
| Value* constOp; |
| if (isa<Constant>(lval) && isa<Constant>(rval)) { |
| // both operands are constant: evaluate and "set" in dest |
| Constant* P = ConstantExpr::get(Instruction::Mul, |
| cast<Constant>(lval), |
| cast<Constant>(rval)); |
| target.getInstrInfo().CreateCodeToLoadConst(target,F,P,destVal,mvec,mcfi); |
| } |
| else if (isa<Constant>(rval)) // rval is constant, but not lval |
| CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi); |
| else if (isa<Constant>(lval)) // lval is constant, but not rval |
| CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi); |
| |
| // else neither is constant |
| return; |
| } |
| |
| // Return NULL if we cannot exploit constant to create a cheaper instruction |
| static inline void |
| CreateMulInstruction(const TargetMachine &target, Function* F, |
| Value* lval, Value* rval, Instruction* destVal, |
| std::vector<MachineInstr*>& mvec, |
| MachineCodeForInstruction& mcfi, |
| MachineOpCode forceMulOp = -1) |
| { |
| unsigned L = mvec.size(); |
| CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi); |
| if (mvec.size() == L) { |
| // no instructions were added so create MUL reg, reg, reg. |
| // Use FSMULD if both operands are actually floats cast to doubles. |
| // Otherwise, use the default opcode for the appropriate type. |
| MachineOpCode mulOp = ((forceMulOp != -1) |
| ? forceMulOp |
| : ChooseMulInstructionByType(destVal->getType())); |
| mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval) |
| .addRegDef(destVal)); |
| } |
| } |
| |
| |
| // Generate a divide instruction for Div or Rem. |
| // For Rem, this assumes that the operand type will be signed if the result |
| // type is signed. This is correct because they must have the same sign. |
| // |
| static inline MachineOpCode |
| ChooseDivInstruction(TargetMachine &target, |
| const InstructionNode* instrNode) |
| { |
| MachineOpCode opCode = V9::INVALID_OPCODE; |
| |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType->isInteger()) |
| opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr; |
| else |
| switch(resultType->getPrimitiveID()) |
| { |
| case Type::FloatTyID: opCode = V9::FDIVS; break; |
| case Type::DoubleTyID: opCode = V9::FDIVD; break; |
| default: assert(0 && "Invalid type for DIV instruction"); break; |
| } |
| |
| return opCode; |
| } |
| |
| |
| // Return if we cannot exploit constant to create a cheaper instruction |
| static void |
| CreateDivConstInstruction(TargetMachine &target, |
| const InstructionNode* instrNode, |
| std::vector<MachineInstr*>& mvec) |
| { |
| Value* LHS = instrNode->leftChild()->getValue(); |
| Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); |
| if (!isa<Constant>(constOp)) |
| return; |
| |
| Instruction* destVal = instrNode->getInstruction(); |
| unsigned ZeroReg = target.getRegInfo().getZeroRegNum(); |
| |
| // Cases worth optimizing are: |
| // (1) Divide by 1 for any type: replace with copy (ADD or FMOV) |
| // (2) Divide by 2^x for integer types: replace with SR[L or A]{X} |
| // |
| const Type* resultType = instrNode->getInstruction()->getType(); |
| |
| if (resultType->isInteger()) { |
| unsigned pow; |
| bool isValidConst; |
| int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target, |
| constOp, constOp->getType(), isValidConst); |
| if (isValidConst) { |
| bool needNeg = false; |
| if (C < 0) { |
| needNeg = true; |
| C = -C; |
| } |
| |
| if (C == 1) { |
| mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addMReg(ZeroReg) |
| .addRegDef(destVal)); |
| } else if (isPowerOf2(C, pow)) { |
| unsigned opCode; |
| Value* shiftOperand; |
| unsigned opSize = target.getTargetData().getTypeSize(resultType); |
| |
| if (resultType->isSigned()) { |
| // For N / 2^k, if the operand N is negative, |
| // we need to add (2^k - 1) before right-shifting by k, i.e., |
| // |
| // (N / 2^k) = N >> k, if N >= 0; |
| // (N + 2^k - 1) >> k, if N < 0 |
| // |
| // If N is <= 32 bits, use: |
| // sra N, 31, t1 // t1 = ~0, if N < 0, 0 else |
| // srl t1, 32-k, t2 // t2 = 2^k - 1, if N < 0, 0 else |
| // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else |
| // sra t3, k, result // result = N / 2^k |
| // |
| // If N is 64 bits, use: |
| // srax N, k-1, t1 // t1 = sign bit in high k positions |
| // srlx t1, 64-k, t2 // t2 = 2^k - 1, if N < 0, 0 else |
| // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else |
| // sra t3, k, result // result = N / 2^k |
| // |
| TmpInstruction *sraTmp, *srlTmp, *addTmp; |
| MachineCodeForInstruction& mcfi |
| = MachineCodeForInstruction::get(destVal); |
| sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign"); |
| srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1"); |
| addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg"); |
| |
| // Create the SRA or SRAX instruction to get the sign bit |
| mvec.push_back(BuildMI((opSize > 4)? V9::SRAXi6 : V9::SRAi5, 3) |
| .addReg(LHS) |
| .addSImm((resultType==Type::LongTy)? pow-1 : 31) |
| .addRegDef(sraTmp)); |
| |
| // Create the SRL or SRLX instruction to get the sign bit |
| mvec.push_back(BuildMI((opSize > 4)? V9::SRLXi6 : V9::SRLi5, 3) |
| .addReg(sraTmp) |
| .addSImm((resultType==Type::LongTy)? 64-pow : 32-pow) |
| .addRegDef(srlTmp)); |
| |
| // Create the ADD instruction to add 2^pow-1 for negative values |
| mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp) |
| .addRegDef(addTmp)); |
| |
| // Get the shift operand and "right-shift" opcode to do the divide |
| shiftOperand = addTmp; |
| opCode = (opSize > 4)? V9::SRAXi6 : V9::SRAi5; |
| } else { |
| // Get the shift operand and "right-shift" opcode to do the divide |
| shiftOperand = LHS; |
| opCode = (opSize > 4)? V9::SRLXi6 : V9::SRLi5; |
| } |
| |
| // Now do the actual shift! |
| mvec.push_back(BuildMI(opCode, 3).addReg(shiftOperand).addZImm(pow) |
| .addRegDef(destVal)); |
| } |
| |
| if (needNeg && (C == 1 || isPowerOf2(C, pow))) { |
| // insert <reg = SUB 0, reg> after the instr to flip the sign |
| mvec.push_back(CreateIntNegInstruction(target, destVal)); |
| } |
| } |
| } else { |
| if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) { |
| double dval = FPC->getValue(); |
| if (fabs(dval) == 1) { |
| unsigned opCode = |
| (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD) |
| : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD); |
| |
| mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(destVal)); |
| } |
| } |
| } |
| } |
| |
| |
| static void |
| CreateCodeForVariableSizeAlloca(const TargetMachine& target, |
| Instruction* result, |
| unsigned tsize, |
| Value* numElementsVal, |
| std::vector<MachineInstr*>& getMvec) |
| { |
| Value* totalSizeVal; |
| MachineInstr* M; |
| MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result); |
| Function *F = result->getParent()->getParent(); |
| |
| // Enforce the alignment constraints on the stack pointer at |
| // compile time if the total size is a known constant. |
| if (isa<Constant>(numElementsVal)) { |
| bool isValid; |
| int64_t numElem = (int64_t) target.getInstrInfo(). |
| ConvertConstantToIntType(target, numElementsVal, |
| numElementsVal->getType(), isValid); |
| assert(isValid && "Unexpectedly large array dimension in alloca!"); |
| int64_t total = numElem * tsize; |
| if (int extra= total % target.getFrameInfo().getStackFrameSizeAlignment()) |
| total += target.getFrameInfo().getStackFrameSizeAlignment() - extra; |
| totalSizeVal = ConstantSInt::get(Type::IntTy, total); |
| } else { |
| // The size is not a constant. Generate code to compute it and |
| // code to pad the size for stack alignment. |
| // Create a Value to hold the (constant) element size |
| Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize); |
| |
| // Create temporary values to hold the result of MUL, SLL, SRL |
| // To pad `size' to next smallest multiple of 16: |
| // size = (size + 15) & (-16 = 0xfffffffffffffff0) |
| // |
| TmpInstruction* tmpProd = new TmpInstruction(mcfi,numElementsVal, tsizeVal); |
| TmpInstruction* tmpAdd15= new TmpInstruction(mcfi,numElementsVal, tmpProd); |
| TmpInstruction* tmpAndf0= new TmpInstruction(mcfi,numElementsVal, tmpAdd15); |
| |
| // Instruction 1: mul numElements, typeSize -> tmpProd |
| // This will optimize the MUL as far as possible. |
| CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd, getMvec, |
| mcfi, -1); |
| |
| // Instruction 2: andn tmpProd, 0x0f -> tmpAndn |
| getMvec.push_back(BuildMI(V9::ADDi, 3).addReg(tmpProd).addSImm(15) |
| .addReg(tmpAdd15, MachineOperand::Def)); |
| |
| // Instruction 3: add tmpAndn, 0x10 -> tmpAdd16 |
| getMvec.push_back(BuildMI(V9::ANDi, 3).addReg(tmpAdd15).addSImm(-16) |
| .addReg(tmpAndf0, MachineOperand::Def)); |
| |
| totalSizeVal = tmpAndf0; |
| } |
| |
| // Get the constant offset from SP for dynamically allocated storage |
| // and create a temporary Value to hold it. |
| MachineFunction& mcInfo = MachineFunction::get(F); |
| bool growUp; |
| ConstantSInt* dynamicAreaOffset = |
| ConstantSInt::get(Type::IntTy, |
| target.getFrameInfo().getDynamicAreaOffset(mcInfo,growUp)); |
| assert(! growUp && "Has SPARC v9 stack frame convention changed?"); |
| |
| unsigned SPReg = target.getRegInfo().getStackPointer(); |
| |
| // Instruction 2: sub %sp, totalSizeVal -> %sp |
| getMvec.push_back(BuildMI(V9::SUBr, 3).addMReg(SPReg).addReg(totalSizeVal) |
| .addMReg(SPReg,MachineOperand::Def)); |
| |
| // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result |
| getMvec.push_back(BuildMI(V9::ADDr,3).addMReg(SPReg).addReg(dynamicAreaOffset) |
| .addRegDef(result)); |
| } |
| |
| |
| static void |
| CreateCodeForFixedSizeAlloca(const TargetMachine& target, |
| Instruction* result, |
| unsigned tsize, |
| unsigned numElements, |
| std::vector<MachineInstr*>& getMvec) |
| { |
| assert(result && result->getParent() && |
| "Result value is not part of a function?"); |
| Function *F = result->getParent()->getParent(); |
| MachineFunction &mcInfo = MachineFunction::get(F); |
| |
| // If the alloca is of zero bytes (which is perfectly legal) we bump it up to |
| // one byte. This is unnecessary, but I really don't want to break any |
| // fragile logic in this code. FIXME. |
| if (tsize == 0) |
| tsize = 1; |
| |
| |
| // Put the variable in the dynamically sized area of the frame if either: |
| // (a) The offset is too large to use as an immediate in load/stores |
| // (check LDX because all load/stores have the same-size immed. field). |
| // (b) The object is "large", so it could cause many other locals, |
| // spills, and temporaries to have large offsets. |
| // NOTE: We use LARGE = 8 * argSlotSize = 64 bytes. |
| // You've gotta love having only 13 bits for constant offset values :-|. |
| // |
| unsigned paddedSize; |
| int offsetFromFP = mcInfo.getInfo()->computeOffsetforLocalVar(result, |
| paddedSize, |
| tsize * numElements); |
| |
| if (((int)paddedSize) > 8 * target.getFrameInfo().getSizeOfEachArgOnStack() || |
| ! target.getInstrInfo().constantFitsInImmedField(V9::LDXi,offsetFromFP)) { |
| CreateCodeForVariableSizeAlloca(target, result, tsize, |
| ConstantSInt::get(Type::IntTy,numElements), |
| getMvec); |
| return; |
| } |
| |
| // else offset fits in immediate field so go ahead and allocate it. |
| offsetFromFP = mcInfo.getInfo()->allocateLocalVar(result, tsize *numElements); |
| |
| // Create a temporary Value to hold the constant offset. |
| // This is needed because it may not fit in the immediate field. |
| ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP); |
| |
| // Instruction 1: add %fp, offsetFromFP -> result |
| unsigned FPReg = target.getRegInfo().getFramePointer(); |
| getMvec.push_back(BuildMI(V9::ADDr, 3).addMReg(FPReg).addReg(offsetVal) |
| .addRegDef(result)); |
| } |
| |
| |
| //------------------------------------------------------------------------ |
| // Function SetOperandsForMemInstr |
| // |
| // Choose addressing mode for the given load or store instruction. |
| // Use [reg+reg] if it is an indexed reference, and the index offset is |
| // not a constant or if it cannot fit in the offset field. |
| // Use [reg+offset] in all other cases. |
| // |
| // This assumes that all array refs are "lowered" to one of these forms: |
| // %x = load (subarray*) ptr, constant ; single constant offset |
| // %x = load (subarray*) ptr, offsetVal ; single non-constant offset |
| // Generally, this should happen via strength reduction + LICM. |
| // Also, strength reduction should take care of using the same register for |
| // the loop index variable and an array index, when that is profitable. |
| //------------------------------------------------------------------------ |
| |
| static void |
| SetOperandsForMemInstr(unsigned Opcode, |
| std::vector<MachineInstr*>& mvec, |
| InstructionNode* vmInstrNode, |
| const TargetMachine& target) |
| { |
| Instruction* memInst = vmInstrNode->getInstruction(); |
| // Index vector, ptr value, and flag if all indices are const. |
| std::vector<Value*> idxVec; |
| bool allConstantIndices; |
| Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices); |
| |
| // Now create the appropriate operands for the machine instruction. |
| // First, initialize so we default to storing the offset in a register. |
| int64_t smallConstOffset = 0; |
| Value* valueForRegOffset = NULL; |
| MachineOperand::MachineOperandType offsetOpType = |
| MachineOperand::MO_VirtualRegister; |
| |
| // Check if there is an index vector and if so, compute the |
| // right offset for structures and for arrays |
| // |
| if (!idxVec.empty()) { |
| const PointerType* ptrType = cast<PointerType>(ptrVal->getType()); |
| |
| // If all indices are constant, compute the combined offset directly. |
| if (allConstantIndices) { |
| // Compute the offset value using the index vector. Create a |
| // virtual reg. for it since it may not fit in the immed field. |
| uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec); |
| valueForRegOffset = ConstantSInt::get(Type::LongTy, offset); |
| } else { |
| // There is at least one non-constant offset. Therefore, this must |
| // be an array ref, and must have been lowered to a single non-zero |
| // offset. (An extra leading zero offset, if any, can be ignored.) |
| // Generate code sequence to compute address from index. |
| // |
| bool firstIdxIsZero = IsZero(idxVec[0]); |
| assert(idxVec.size() == 1U + firstIdxIsZero |
| && "Array refs must be lowered before Instruction Selection"); |
| |
| Value* idxVal = idxVec[firstIdxIsZero]; |
| |
| std::vector<MachineInstr*> mulVec; |
| Instruction* addr = |
| new TmpInstruction(MachineCodeForInstruction::get(memInst), |
| Type::ULongTy, memInst); |
| |
| // Get the array type indexed by idxVal, and compute its element size. |
| // The call to getTypeSize() will fail if size is not constant. |
| const Type* vecType = (firstIdxIsZero |
| ? GetElementPtrInst::getIndexedType(ptrType, |
| std::vector<Value*>(1U, idxVec[0]), |
| /*AllowCompositeLeaf*/ true) |
| : ptrType); |
| const Type* eltType = cast<SequentialType>(vecType)->getElementType(); |
| ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy, |
| target.getTargetData().getTypeSize(eltType)); |
| |
| // CreateMulInstruction() folds constants intelligently enough. |
| CreateMulInstruction(target, memInst->getParent()->getParent(), |
| idxVal, /* lval, not likely to be const*/ |
| eltSizeVal, /* rval, likely to be constant */ |
| addr, /* result */ |
| mulVec, MachineCodeForInstruction::get(memInst), |
| -1); |
| |
| assert(mulVec.size() > 0 && "No multiply code created?"); |
| mvec.insert(mvec.end(), mulVec.begin(), mulVec.end()); |
| |
| valueForRegOffset = addr; |
| } |
| } else { |
| offsetOpType = MachineOperand::MO_SignExtendedImmed; |
| smallConstOffset = 0; |
| } |
| |
| // For STORE: |
| // Operand 0 is value, operand 1 is ptr, operand 2 is offset |
| // For LOAD or GET_ELEMENT_PTR, |
| // Operand 0 is ptr, operand 1 is offset, operand 2 is result. |
| // |
| unsigned offsetOpNum, ptrOpNum; |
| MachineInstr *MI; |
| if (memInst->getOpcode() == Instruction::Store) { |
| if (offsetOpType == MachineOperand::MO_VirtualRegister) { |
| MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue()) |
| .addReg(ptrVal).addReg(valueForRegOffset); |
| } else { |
| Opcode = convertOpcodeFromRegToImm(Opcode); |
| MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue()) |
| .addReg(ptrVal).addSImm(smallConstOffset); |
| } |
| } else { |
| if (offsetOpType == MachineOperand::MO_VirtualRegister) { |
| MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset) |
| .addRegDef(memInst); |
| } else { |
| Opcode = convertOpcodeFromRegToImm(Opcode); |
| MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset) |
| .addRegDef(memInst); |
| } |
| } |
| mvec.push_back(MI); |
| } |
| |
| |
| // |
| // Substitute operand `operandNum' of the instruction in node `treeNode' |
| // in place of the use(s) of that instruction in node `parent'. |
| // Check both explicit and implicit operands! |
| // Also make sure to skip over a parent who: |
| // (1) is a list node in the Burg tree, or |
| // (2) itself had its results forwarded to its parent |
| // |
| static void |
| ForwardOperand(InstructionNode* treeNode, |
| InstrTreeNode* parent, |
| int operandNum) |
| { |
| assert(treeNode && parent && "Invalid invocation of ForwardOperand"); |
| |
| Instruction* unusedOp = treeNode->getInstruction(); |
| Value* fwdOp = unusedOp->getOperand(operandNum); |
| |
| // The parent itself may be a list node, so find the real parent instruction |
| while (parent->getNodeType() != InstrTreeNode::NTInstructionNode) |
| { |
| parent = parent->parent(); |
| assert(parent && "ERROR: Non-instruction node has no parent in tree."); |
| } |
| InstructionNode* parentInstrNode = (InstructionNode*) parent; |
| |
| Instruction* userInstr = parentInstrNode->getInstruction(); |
| MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr); |
| |
| // The parent's mvec would be empty if it was itself forwarded. |
| // Recursively call ForwardOperand in that case... |
| // |
| if (mvec.size() == 0) { |
| assert(parent->parent() != NULL && |
| "Parent could not have been forwarded, yet has no instructions?"); |
| ForwardOperand(treeNode, parent->parent(), operandNum); |
| } else { |
| for (unsigned i=0, N=mvec.size(); i < N; i++) { |
| MachineInstr* minstr = mvec[i]; |
| for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) { |
| const MachineOperand& mop = minstr->getOperand(i); |
| if (mop.getType() == MachineOperand::MO_VirtualRegister && |
| mop.getVRegValue() == unusedOp) |
| { |
| minstr->SetMachineOperandVal(i, MachineOperand::MO_VirtualRegister, |
| fwdOp); |
| } |
| } |
| |
| for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i) |
| if (minstr->getImplicitRef(i) == unusedOp) |
| minstr->setImplicitRef(i, fwdOp); |
| } |
| } |
| } |
| |
| |
| inline bool |
| AllUsesAreBranches(const Instruction* setccI) |
| { |
| for (Value::use_const_iterator UI=setccI->use_begin(), UE=setccI->use_end(); |
| UI != UE; ++UI) |
| if (! isa<TmpInstruction>(*UI) // ignore tmp instructions here |
| && cast<Instruction>(*UI)->getOpcode() != Instruction::Br) |
| return false; |
| return true; |
| } |
| |
| // Generate code for any intrinsic that needs a special code sequence |
| // instead of a regular call. If not that kind of intrinsic, do nothing. |
| // Returns true if code was generated, otherwise false. |
| // |
| static bool CodeGenIntrinsic(Intrinsic::ID iid, CallInst &callInstr, |
| TargetMachine &target, |
| std::vector<MachineInstr*>& mvec) { |
| switch (iid) { |
| default: |
| assert(0 && "Unknown intrinsic function call should have been lowered!"); |
| case Intrinsic::vastart: { |
| // Get the address of the first incoming vararg argument on the stack |
| bool ignore; |
| Function* func = cast<Function>(callInstr.getParent()->getParent()); |
| int numFixedArgs = func->getFunctionType()->getNumParams(); |
| int fpReg = target.getFrameInfo().getIncomingArgBaseRegNum(); |
| int argSize = target.getFrameInfo().getSizeOfEachArgOnStack(); |
| int firstVarArgOff = numFixedArgs * argSize + target.getFrameInfo(). |
| getFirstIncomingArgOffset(MachineFunction::get(func), ignore); |
| mvec.push_back(BuildMI(V9::ADDi, 3).addMReg(fpReg).addSImm(firstVarArgOff). |
| addRegDef(&callInstr)); |
| return true; |
| } |
| |
| case Intrinsic::vaend: |
| return true; // no-op on SparcV9 |
| |
| case Intrinsic::vacopy: |
| // Simple copy of current va_list (arg1) to new va_list (result) |
| mvec.push_back(BuildMI(V9::ORr, 3). |
| addMReg(target.getRegInfo().getZeroRegNum()). |
| addReg(callInstr.getOperand(1)). |
| addRegDef(&callInstr)); |
| return true; |
| } |
| } |
| |
| //******************* Externally Visible Functions *************************/ |
| |
| //------------------------------------------------------------------------ |
| // External Function: ThisIsAChainRule |
| // |
| // Purpose: |
| // Check if a given BURG rule is a chain rule. |
| //------------------------------------------------------------------------ |
| |
| extern bool |
| ThisIsAChainRule(int eruleno) |
| { |
| switch(eruleno) |
| { |
| case 111: // stmt: reg |
| case 123: |
| case 124: |
| case 125: |
| case 126: |
| case 127: |
| case 128: |
| case 129: |
| case 130: |
| case 131: |
| case 132: |
| case 133: |
| case 155: |
| case 221: |
| case 222: |
| case 241: |
| case 242: |
| case 243: |
| case 244: |
| case 245: |
| case 321: |
| return true; break; |
| |
| default: |
| return false; break; |
| } |
| } |
| |
| |
| //------------------------------------------------------------------------ |
| // External Function: GetInstructionsByRule |
| // |
| // Purpose: |
| // Choose machine instructions for the SPARC according to the |
| // patterns chosen by the BURG-generated parser. |
| //------------------------------------------------------------------------ |
| |
| void |
| GetInstructionsByRule(InstructionNode* subtreeRoot, |
| int ruleForNode, |
| short* nts, |
| TargetMachine &target, |
| std::vector<MachineInstr*>& mvec) |
| { |
| bool checkCast = false; // initialize here to use fall-through |
| bool maskUnsignedResult = false; |
| int nextRule; |
| int forwardOperandNum = -1; |
| unsigned allocaSize = 0; |
| MachineInstr* M, *M2; |
| unsigned L; |
| bool foldCase = false; |
| |
| mvec.clear(); |
| |
| // If the code for this instruction was folded into the parent (user), |
| // then do nothing! |
| if (subtreeRoot->isFoldedIntoParent()) |
| return; |
| |
| // |
| // Let's check for chain rules outside the switch so that we don't have |
| // to duplicate the list of chain rule production numbers here again |
| // |
| if (ThisIsAChainRule(ruleForNode)) { |
| // Chain rules have a single nonterminal on the RHS. |
| // Get the rule that matches the RHS non-terminal and use that instead. |
| // |
| assert(nts[0] && ! nts[1] |
| && "A chain rule should have only one RHS non-terminal!"); |
| nextRule = burm_rule(subtreeRoot->state, nts[0]); |
| nts = burm_nts[nextRule]; |
| GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec); |
| } else { |
| switch(ruleForNode) { |
| case 1: // stmt: Ret |
| case 2: // stmt: RetValue(reg) |
| { // NOTE: Prepass of register allocation is responsible |
| // for moving return value to appropriate register. |
| // Copy the return value to the required return register. |
| // Mark the return Value as an implicit ref of the RET instr.. |
| // Mark the return-address register as a hidden virtual reg. |
| // Finally put a NOP in the delay slot. |
| ReturnInst *returnInstr=cast<ReturnInst>(subtreeRoot->getInstruction()); |
| Value* retVal = returnInstr->getReturnValue(); |
| MachineCodeForInstruction& mcfi = |
| MachineCodeForInstruction::get(returnInstr); |
| |
| // Create a hidden virtual reg to represent the return address register |
| // used by the machine instruction but not represented in LLVM. |
| // |
| Instruction* returnAddrTmp = new TmpInstruction(mcfi, returnInstr); |
| |
| MachineInstr* retMI = |
| BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8) |
| .addMReg(target.getRegInfo().getZeroRegNum(), MachineOperand::Def); |
| |
| // If there is a value to return, we need to: |
| // (a) Sign-extend the value if it is smaller than 8 bytes (reg size) |
| // (b) Insert a copy to copy the return value to the appropriate reg. |
| // -- For FP values, create a FMOVS or FMOVD instruction |
| // -- For non-FP values, create an add-with-0 instruction |
| // |
| if (retVal != NULL) { |
| const SparcV9RegInfo& regInfo = |
| (SparcV9RegInfo&) target.getRegInfo(); |
| const Type* retType = retVal->getType(); |
| unsigned regClassID = regInfo.getRegClassIDOfType(retType); |
| unsigned retRegNum = (retType->isFloatingPoint() |
| ? (unsigned) SparcV9FloatRegClass::f0 |
| : (unsigned) SparcV9IntRegClass::i0); |
| retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum); |
| |
| // () Insert sign-extension instructions for small signed values. |
| // |
| Value* retValToUse = retVal; |
| if (retType->isIntegral() && retType->isSigned()) { |
| unsigned retSize = target.getTargetData().getTypeSize(retType); |
| if (retSize <= 4) { |
| // create a temporary virtual reg. to hold the sign-extension |
| retValToUse = new TmpInstruction(mcfi, retVal); |
| |
| // sign-extend retVal and put the result in the temporary reg. |
| target.getInstrInfo().CreateSignExtensionInstructions |
| (target, returnInstr->getParent()->getParent(), |
| retVal, retValToUse, 8*retSize, mvec, mcfi); |
| } |
| } |
| |
| // (b) Now, insert a copy to to the appropriate register: |
| // -- For FP values, create a FMOVS or FMOVD instruction |
| // -- For non-FP values, create an add-with-0 instruction |
| // |
| // First, create a virtual register to represent the register and |
| // mark this vreg as being an implicit operand of the ret MI. |
| TmpInstruction* retVReg = |
| new TmpInstruction(mcfi, retValToUse, NULL, "argReg"); |
| |
| retMI->addImplicitRef(retVReg); |
| |
| if (retType->isFloatingPoint()) |
| M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) |
| .addReg(retValToUse).addReg(retVReg, MachineOperand::Def)); |
| else |
| M = (BuildMI(ChooseAddInstructionByType(retType), 3) |
| .addReg(retValToUse).addSImm((int64_t) 0) |
| .addReg(retVReg, MachineOperand::Def)); |
| |
| // Mark the operand with the register it should be assigned |
| M->SetRegForOperand(M->getNumOperands()-1, retRegNum); |
| retMI->SetRegForImplicitRef(retMI->getNumImplicitRefs()-1, retRegNum); |
| |
| mvec.push_back(M); |
| } |
| |
| // Now insert the RET instruction and a NOP for the delay slot |
| mvec.push_back(retMI); |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| break; |
| } |
| |
| case 3: // stmt: Store(reg,reg) |
| case 4: // stmt: Store(reg,ptrreg) |
| SetOperandsForMemInstr(ChooseStoreInstruction( |
| subtreeRoot->leftChild()->getValue()->getType()), |
| mvec, subtreeRoot, target); |
| break; |
| |
| case 5: // stmt: BrUncond |
| { |
| BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction()); |
| mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0))); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 206: // stmt: BrCond(setCCconst) |
| { // setCCconst => boolean was computed with `%b = setCC type reg1 const' |
| // If the constant is ZERO, we can use the branch-on-integer-register |
| // instructions and avoid the SUBcc instruction entirely. |
| // Otherwise this is just the same as case 5, so just fall through. |
| // |
| InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); |
| assert(constNode && |
| constNode->getNodeType() ==InstrTreeNode::NTConstNode); |
| Constant *constVal = cast<Constant>(constNode->getValue()); |
| bool isValidConst; |
| |
| if ((constVal->getType()->isInteger() |
| || isa<PointerType>(constVal->getType())) |
| && target.getInstrInfo().ConvertConstantToIntType(target, |
| constVal, constVal->getType(), isValidConst) == 0 |
| && isValidConst) |
| { |
| // That constant is a zero after all... |
| // Use the left child of setCC as the first argument! |
| // Mark the setCC node so that no code is generated for it. |
| InstructionNode* setCCNode = (InstructionNode*) |
| subtreeRoot->leftChild(); |
| assert(setCCNode->getOpLabel() == SetCCOp); |
| setCCNode->markFoldedIntoParent(); |
| |
| BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction()); |
| |
| M = BuildMI(ChooseBprInstruction(subtreeRoot), 2) |
| .addReg(setCCNode->leftChild()->getValue()) |
| .addPCDisp(brInst->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| // false branch |
| mvec.push_back(BuildMI(V9::BA, 1) |
| .addPCDisp(brInst->getSuccessor(1))); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| // ELSE FALL THROUGH |
| } |
| |
| case 6: // stmt: BrCond(setCC) |
| { // bool => boolean was computed with SetCC. |
| // The branch to use depends on whether it is FP, signed, or unsigned. |
| // If it is an integer CC, we also need to find the unique |
| // TmpInstruction representing that CC. |
| // |
| BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction()); |
| const Type* setCCType; |
| unsigned Opcode = ChooseBccInstruction(subtreeRoot, setCCType); |
| Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(), |
| brInst->getParent()->getParent(), |
| setCCType, |
| MachineCodeForInstruction::get(brInst)); |
| M = BuildMI(Opcode, 2).addCCReg(ccValue) |
| .addPCDisp(brInst->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| // false branch |
| mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1))); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 208: // stmt: BrCond(boolconst) |
| { |
| // boolconst => boolean is a constant; use BA to first or second label |
| Constant* constVal = |
| cast<Constant>(subtreeRoot->leftChild()->getValue()); |
| unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1; |
| |
| M = BuildMI(V9::BA, 1).addPCDisp( |
| cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 8: // stmt: BrCond(boolreg) |
| { // boolreg => boolean is recorded in an integer register. |
| // Use branch-on-integer-register instruction. |
| // |
| BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction()); |
| M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue()) |
| .addPCDisp(BI->getSuccessor(0)); |
| mvec.push_back(M); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| // false branch |
| mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1))); |
| |
| // delay slot |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| break; |
| } |
| |
| case 9: // stmt: Switch(reg) |
| assert(0 && "*** SWITCH instruction is not implemented yet."); |
| break; |
| |
| case 10: // reg: VRegList(reg, reg) |
| assert(0 && "VRegList should never be the topmost non-chain rule"); |
| break; |
| |
| case 21: // bool: Not(bool,reg): Compute with a conditional-move-on-reg |
| { // First find the unary operand. It may be left or right, usually right. |
| Instruction* notI = subtreeRoot->getInstruction(); |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(subtreeRoot->getInstruction())); |
| unsigned ZeroReg = target.getRegInfo().getZeroRegNum(); |
| |
| // Unconditionally set register to 0 |
| mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI)); |
| |
| // Now conditionally move 1 into the register. |
| // Mark the register as a use (as well as a def) because the old |
| // value will be retained if the condition is false. |
| mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1) |
| .addReg(notI, MachineOperand::UseAndDef)); |
| |
| break; |
| } |
| |
| case 421: // reg: BNot(reg,reg): Compute as reg = reg XOR-NOT 0 |
| { // First find the unary operand. It may be left or right, usually right. |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(subtreeRoot->getInstruction())); |
| unsigned ZeroReg = target.getRegInfo().getZeroRegNum(); |
| mvec.push_back(BuildMI(V9::XNORr, 3).addReg(notArg).addMReg(ZeroReg) |
| .addRegDef(subtreeRoot->getValue())); |
| break; |
| } |
| |
| case 322: // reg: Not(tobool, reg): |
| // Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool |
| foldCase = true; |
| // Just fall through! |
| |
| case 22: // reg: ToBoolTy(reg): |
| { |
| Instruction* castI = subtreeRoot->getInstruction(); |
| Value* opVal = subtreeRoot->leftChild()->getValue(); |
| assert(opVal->getType()->isIntegral() || |
| isa<PointerType>(opVal->getType())); |
| |
| // Unconditionally set register to 0 |
| mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI)); |
| |
| // Now conditionally move 1 into the register. |
| // Mark the register as a use (as well as a def) because the old |
| // value will be retained if the condition is false. |
| MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi; |
| mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1) |
| .addReg(castI, MachineOperand::UseAndDef)); |
| |
| break; |
| } |
| |
| case 23: // reg: ToUByteTy(reg) |
| case 24: // reg: ToSByteTy(reg) |
| case 25: // reg: ToUShortTy(reg) |
| case 26: // reg: ToShortTy(reg) |
| case 27: // reg: ToUIntTy(reg) |
| case 28: // reg: ToIntTy(reg) |
| case 29: // reg: ToULongTy(reg) |
| case 30: // reg: ToLongTy(reg) |
| { |
| //====================================================================== |
| // Rules for integer conversions: |
| // |
| //-------- |
| // From ISO 1998 C++ Standard, Sec. 4.7: |
| // |
| // 2. If the destination type is unsigned, the resulting value is |
| // the least unsigned integer congruent to the source integer |
| // (modulo 2n where n is the number of bits used to represent the |
| // unsigned type). [Note: In a two s complement representation, |
| // this conversion is conceptual and there is no change in the |
| // bit pattern (if there is no truncation). ] |
| // |
| // 3. If the destination type is signed, the value is unchanged if |
| // it can be represented in the destination type (and bitfield width); |
| // otherwise, the value is implementation-defined. |
| //-------- |
| // |
| // Since we assume 2s complement representations, this implies: |
| // |
| // -- If operand is smaller than destination, zero-extend or sign-extend |
| // according to the signedness of the *operand*: source decides: |
| // (1) If operand is signed, sign-extend it. |
| // If dest is unsigned, zero-ext the result! |
| // (2) If operand is unsigned, our current invariant is that |
| // it's high bits are correct, so zero-extension is not needed. |
| // |
| // -- If operand is same size as or larger than destination, |
| // zero-extend or sign-extend according to the signedness of |
| // the *destination*: destination decides: |
| // (1) If destination is signed, sign-extend (truncating if needed) |
| // This choice is implementation defined. We sign-extend the |
| // operand, which matches both Sun's cc and gcc3.2. |
| // (2) If destination is unsigned, zero-extend (truncating if needed) |
| //====================================================================== |
| |
| Instruction* destI = subtreeRoot->getInstruction(); |
| Function* currentFunc = destI->getParent()->getParent(); |
| MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI); |
| |
| Value* opVal = subtreeRoot->leftChild()->getValue(); |
| const Type* opType = opVal->getType(); |
| const Type* destType = destI->getType(); |
| unsigned opSize = target.getTargetData().getTypeSize(opType); |
| unsigned destSize = target.getTargetData().getTypeSize(destType); |
| |
| bool isIntegral = opType->isIntegral() || isa<PointerType>(opType); |
| |
| if (opType == Type::BoolTy || |
| opType == destType || |
| isIntegral && opSize == destSize && opSize == 8) { |
| // nothing to do in all these cases |
| forwardOperandNum = 0; // forward first operand to user |
| |
| } else if (opType->isFloatingPoint()) { |
| |
| CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi); |
| if (destI->getType()->isUnsigned() && destI->getType() !=Type::UIntTy) |
| maskUnsignedResult = true; // not handled by fp->int code |
| |
| } else if (isIntegral) { |
| |
| bool opSigned = opType->isSigned(); |
| bool destSigned = destType->isSigned(); |
| unsigned extSourceInBits = 8 * std::min<unsigned>(opSize, destSize); |
| |
| assert(! (opSize == destSize && opSigned == destSigned) && |
| "How can different int types have same size and signedness?"); |
| |
| bool signExtend = (opSize < destSize && opSigned || |
| opSize >= destSize && destSigned); |
| |
| bool signAndZeroExtend = (opSize < destSize && destSize < 8u && |
| opSigned && !destSigned); |
| assert(!signAndZeroExtend || signExtend); |
| |
| bool zeroExtendOnly = opSize >= destSize && !destSigned; |
| assert(!zeroExtendOnly || !signExtend); |
| |
| if (signExtend) { |
| Value* signExtDest = (signAndZeroExtend |
| ? new TmpInstruction(mcfi, destType, opVal) |
| : destI); |
| |
| target.getInstrInfo().CreateSignExtensionInstructions |
| (target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi); |
| |
| if (signAndZeroExtend) |
| target.getInstrInfo().CreateZeroExtensionInstructions |
| (target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi); |
| } |
| else if (zeroExtendOnly) { |
| target.getInstrInfo().CreateZeroExtensionInstructions |
| (target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi); |
| } |
| else |
| forwardOperandNum = 0; // forward first operand to user |
| |
| } else |
| assert(0 && "Unrecognized operand type for convert-to-integer"); |
| |
| break; |
| } |
| |
| case 31: // reg: ToFloatTy(reg): |
| case 32: // reg: ToDoubleTy(reg): |
| case 232: // reg: ToDoubleTy(Constant): |
| |
| // If this instruction has a parent (a user) in the tree |
| // and the user is translated as an FsMULd instruction, |
| // then the cast is unnecessary. So check that first. |
| // In the future, we'll want to do the same for the FdMULq instruction, |
| // so do the check here instead of only for ToFloatTy(reg). |
| // |
| if (subtreeRoot->parent() != NULL) { |
| const MachineCodeForInstruction& mcfi = |
| MachineCodeForInstruction::get( |
| cast<InstructionNode>(subtreeRoot->parent())->getInstruction()); |
| if (mcfi.size() == 0 || mcfi.front()->getOpcode() == V9::FSMULD) |
| forwardOperandNum = 0; // forward first operand to user |
| } |
| |
| if (forwardOperandNum != 0) { // we do need the cast |
| Value* leftVal = subtreeRoot->leftChild()->getValue(); |
| const Type* opType = leftVal->getType(); |
| MachineOpCode opCode=ChooseConvertToFloatInstr(target, |
| subtreeRoot->getOpLabel(), opType); |
| if (opCode == V9::NOP) { // no conversion needed |
| forwardOperandNum = 0; // forward first operand to user |
| } else { |
| // If the source operand is a non-FP type it must be |
| // first copied from int to float register via memory! |
| Instruction *dest = subtreeRoot->getInstruction(); |
| Value* srcForCast; |
| int n = 0; |
| if (! opType->isFloatingPoint()) { |
| // Create a temporary to represent the FP register |
| // into which the integer will be copied via memory. |
| // The type of this temporary will determine the FP |
| // register used: single-prec for a 32-bit int or smaller, |
| // double-prec for a 64-bit int. |
| // |
| uint64_t srcSize = |
| target.getTargetData().getTypeSize(leftVal->getType()); |
| Type* tmpTypeToUse = |
| (srcSize <= 4)? Type::FloatTy : Type::DoubleTy; |
| MachineCodeForInstruction &destMCFI = |
| MachineCodeForInstruction::get(dest); |
| srcForCast = new TmpInstruction(destMCFI, tmpTypeToUse, dest); |
| |
| target.getInstrInfo().CreateCodeToCopyIntToFloat(target, |
| dest->getParent()->getParent(), |
| leftVal, cast<Instruction>(srcForCast), |
| mvec, destMCFI); |
| } else |
| srcForCast = leftVal; |
| |
| M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest); |
| mvec.push_back(M); |
| } |
| } |
| break; |
| |
| case 19: // reg: ToArrayTy(reg): |
| case 20: // reg: ToPointerTy(reg): |
| forwardOperandNum = 0; // forward first operand to user |
| break; |
| |
| case 233: // reg: Add(reg, Constant) |
| maskUnsignedResult = true; |
| M = CreateAddConstInstruction(subtreeRoot); |
| if (M != NULL) { |
| mvec.push_back(M); |
| break; |
| } |
| // ELSE FALL THROUGH |
| |
| case 33: // reg: Add(reg, reg) |
| maskUnsignedResult = true; |
| Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec); |
| break; |
| |
| case 234: // reg: Sub(reg, Constant) |
| maskUnsignedResult = true; |
| M = CreateSubConstInstruction(subtreeRoot); |
| if (M != NULL) { |
| mvec.push_back(M); |
| break; |
| } |
| // ELSE FALL THROUGH |
| |
| case 34: // reg: Sub(reg, reg) |
| maskUnsignedResult = true; |
| Add3OperandInstr(ChooseSubInstructionByType( |
| subtreeRoot->getInstruction()->getType()), |
| subtreeRoot, mvec); |
| break; |
| |
| case 135: // reg: Mul(todouble, todouble) |
| checkCast = true; |
| // FALL THROUGH |
| |
| case 35: // reg: Mul(reg, reg) |
| { |
| maskUnsignedResult = true; |
| MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) |
| ? (MachineOpCode)V9::FSMULD |
| : -1); |
| Instruction* mulInstr = subtreeRoot->getInstruction(); |
| CreateMulInstruction(target, mulInstr->getParent()->getParent(), |
| subtreeRoot->leftChild()->getValue(), |
| subtreeRoot->rightChild()->getValue(), |
| mulInstr, mvec, |
| MachineCodeForInstruction::get(mulInstr),forceOp); |
| break; |
| } |
| case 335: // reg: Mul(todouble, todoubleConst) |
| checkCast = true; |
| // FALL THROUGH |
| |
| case 235: // reg: Mul(reg, Constant) |
| { |
| maskUnsignedResult = true; |
| MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) |
| ? (MachineOpCode)V9::FSMULD |
| : -1); |
| Instruction* mulInstr = subtreeRoot->getInstruction(); |
| CreateMulInstruction(target, mulInstr->getParent()->getParent(), |
| subtreeRoot->leftChild()->getValue(), |
| subtreeRoot->rightChild()->getValue(), |
| mulInstr, mvec, |
| MachineCodeForInstruction::get(mulInstr), |
| forceOp); |
| break; |
| } |
| case 236: // reg: Div(reg, Constant) |
| maskUnsignedResult = true; |
| L = mvec.size(); |
| CreateDivConstInstruction(target, subtreeRoot, mvec); |
| if (mvec.size() > L) |
| break; |
| // ELSE FALL THROUGH |
| |
| case 36: // reg: Div(reg, reg) |
| { |
| maskUnsignedResult = true; |
| |
| // If either operand of divide is smaller than 64 bits, we have |
| // to make sure the unused top bits are correct because they affect |
| // the result. These bits are already correct for unsigned values. |
| // They may be incorrect for signed values, so sign extend to fill in. |
| Instruction* divI = subtreeRoot->getInstruction(); |
| Value* divOp1 = subtreeRoot->leftChild()->getValue(); |
| Value* divOp2 = subtreeRoot->rightChild()->getValue(); |
| Value* divOp1ToUse = divOp1; |
| Value* divOp2ToUse = divOp2; |
| if (divI->getType()->isSigned()) { |
| unsigned opSize=target.getTargetData().getTypeSize(divI->getType()); |
| if (opSize < 8) { |
| MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI); |
| divOp1ToUse = new TmpInstruction(mcfi, divOp1); |
| divOp2ToUse = new TmpInstruction(mcfi, divOp2); |
| target.getInstrInfo(). |
| CreateSignExtensionInstructions(target, |
| divI->getParent()->getParent(), |
| divOp1, divOp1ToUse, |
| 8*opSize, mvec, mcfi); |
| target.getInstrInfo(). |
| CreateSignExtensionInstructions(target, |
| divI->getParent()->getParent(), |
| divOp2, divOp2ToUse, |
| 8*opSize, mvec, mcfi); |
| } |
| } |
| |
| mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3) |
| .addReg(divOp1ToUse) |
| .addReg(divOp2ToUse) |
| .addRegDef(divI)); |
| |
| break; |
| } |
| |
| case 37: // reg: Rem(reg, reg) |
| case 237: // reg: Rem(reg, Constant) |
| { |
| maskUnsignedResult = true; |
| |
| Instruction* remI = subtreeRoot->getInstruction(); |
| Value* divOp1 = subtreeRoot->leftChild()->getValue(); |
| Value* divOp2 = subtreeRoot->rightChild()->getValue(); |
| |
| MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI); |
| |
| // If second operand of divide is smaller than 64 bits, we have |
| // to make sure the unused top bits are correct because they affect |
| // the result. These bits are already correct for unsigned values. |
| // They may be incorrect for signed values, so sign extend to fill in. |
| // |
| Value* divOpToUse = divOp2; |
| if (divOp2->getType()->isSigned()) { |
| unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType()); |
| if (opSize < 8) { |
| divOpToUse = new TmpInstruction(mcfi, divOp2); |
| target.getInstrInfo(). |
| CreateSignExtensionInstructions(target, |
| remI->getParent()->getParent(), |
| divOp2, divOpToUse, |
| 8*opSize, mvec, mcfi); |
| } |
| } |
| |
| // Now compute: result = rem V1, V2 as: |
| // result = V1 - (V1 / signExtend(V2)) * signExtend(V2) |
| // |
| TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse); |
| TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse); |
| |
| mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3) |
| .addReg(divOp1).addReg(divOpToUse).addRegDef(quot)); |
| |
| mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3) |
| .addReg(quot).addReg(divOpToUse).addRegDef(prod)); |
| |
| mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3) |
| .addReg(divOp1).addReg(prod).addRegDef(remI)); |
| |
| break; |
| } |
| |
| case 38: // bool: And(bool, bool) |
| case 138: // bool: And(bool, not) |
| case 238: // bool: And(bool, boolconst) |
| case 338: // reg : BAnd(reg, reg) |
| case 538: // reg : BAnd(reg, Constant) |
| Add3OperandInstr(V9::ANDr, subtreeRoot, mvec); |
| break; |
| |
| case 438: // bool: BAnd(bool, bnot) |
| { // Use the argument of NOT as the second argument! |
| // Mark the NOT node so that no code is generated for it. |
| // If the type is boolean, set 1 or 0 in the result register. |
| InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(notNode->getInstruction())); |
| notNode->markFoldedIntoParent(); |
| Value *lhs = subtreeRoot->leftChild()->getValue(); |
| Value *dest = subtreeRoot->getValue(); |
| mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg) |
| .addReg(dest, MachineOperand::Def)); |
| |
| if (notArg->getType() == Type::BoolTy) { |
| // set 1 in result register if result of above is non-zero |
| mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) |
| .addReg(dest, MachineOperand::UseAndDef)); |
| } |
| |
| break; |
| } |
| |
| case 39: // bool: Or(bool, bool) |
| case 139: // bool: Or(bool, not) |
| case 239: // bool: Or(bool, boolconst) |
| case 339: // reg : BOr(reg, reg) |
| case 539: // reg : BOr(reg, Constant) |
| Add3OperandInstr(V9::ORr, subtreeRoot, mvec); |
| break; |
| |
| case 439: // bool: BOr(bool, bnot) |
| { // Use the argument of NOT as the second argument! |
| // Mark the NOT node so that no code is generated for it. |
| // If the type is boolean, set 1 or 0 in the result register. |
| InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(notNode->getInstruction())); |
| notNode->markFoldedIntoParent(); |
| Value *lhs = subtreeRoot->leftChild()->getValue(); |
| Value *dest = subtreeRoot->getValue(); |
| |
| mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg) |
| .addReg(dest, MachineOperand::Def)); |
| |
| if (notArg->getType() == Type::BoolTy) { |
| // set 1 in result register if result of above is non-zero |
| mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) |
| .addReg(dest, MachineOperand::UseAndDef)); |
| } |
| |
| break; |
| } |
| |
| case 40: // bool: Xor(bool, bool) |
| case 140: // bool: Xor(bool, not) |
| case 240: // bool: Xor(bool, boolconst) |
| case 340: // reg : BXor(reg, reg) |
| case 540: // reg : BXor(reg, Constant) |
| Add3OperandInstr(V9::XORr, subtreeRoot, mvec); |
| break; |
| |
| case 440: // bool: BXor(bool, bnot) |
| { // Use the argument of NOT as the second argument! |
| // Mark the NOT node so that no code is generated for it. |
| // If the type is boolean, set 1 or 0 in the result register. |
| InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); |
| Value* notArg = BinaryOperator::getNotArgument( |
| cast<BinaryOperator>(notNode->getInstruction())); |
| notNode->markFoldedIntoParent(); |
| Value *lhs = subtreeRoot->leftChild()->getValue(); |
| Value *dest = subtreeRoot->getValue(); |
| mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg) |
| .addReg(dest, MachineOperand::Def)); |
| |
| if (notArg->getType() == Type::BoolTy) { |
| // set 1 in result register if result of above is non-zero |
| mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) |
| .addReg(dest, MachineOperand::UseAndDef)); |
| } |
| break; |
| } |
| |
| case 41: // setCCconst: SetCC(reg, Constant) |
| { // Comparison is with a constant: |
| // |
| // If the bool result must be computed into a register (see below), |
| // and the constant is int ZERO, we can use the MOVR[op] instructions |
| // and avoid the SUBcc instruction entirely. |
| // Otherwise this is just the same as case 42, so just fall through. |
| // |
| // The result of the SetCC must be computed and stored in a register if |
| // it is used outside the current basic block (so it must be computed |
| // as a boolreg) or it is used by anything other than a branch. |
| // We will use a conditional move to do this. |
| // |
| Instruction* setCCInstr = subtreeRoot->getInstruction(); |
| bool computeBoolVal = (subtreeRoot->parent() == NULL || |
| ! AllUsesAreBranches(setCCInstr)); |
| |
| if (computeBoolVal) { |
| InstrTreeNode* constNode = subtreeRoot->rightChild(); |
| assert(constNode && |
| constNode->getNodeType() ==InstrTreeNode::NTConstNode); |
| Constant *constVal = cast<Constant>(constNode->getValue()); |
| bool isValidConst; |
| |
| if ((constVal->getType()->isInteger() |
| || isa<PointerType>(constVal->getType())) |
| && target.getInstrInfo().ConvertConstantToIntType(target, |
| constVal, constVal->getType(), isValidConst) == 0 |
| && isValidConst) |
| { |
| // That constant is an integer zero after all... |
| // Use a MOVR[op] to compute the boolean result |
| // Unconditionally set register to 0 |
| mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0) |
| .addRegDef(setCCInstr)); |
| |
| // Now conditionally move 1 into the register. |
| // Mark the register as a use (as well as a def) because the old |
| // value will be retained if the condition is false. |
| MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot); |
| mvec.push_back(BuildMI(movOpCode, 3) |
| .addReg(subtreeRoot->leftChild()->getValue()) |
| .addZImm(1) |
| .addReg(setCCInstr, MachineOperand::UseAndDef)); |
| |
| break; |
| } |
| } |
| // ELSE FALL THROUGH |
| } |
| |
| case 42: // bool: SetCC(reg, reg): |
| { |
| // This generates a SUBCC instruction, putting the difference in a |
| // result reg. if needed, and/or setting a condition code if needed. |
| // |
| Instruction* setCCInstr = subtreeRoot->getInstruction(); |
| Value* leftVal = subtreeRoot->leftChild()->getValue(); |
| Value* rightVal = subtreeRoot->rightChild()->getValue(); |
| const Type* opType = leftVal->getType(); |
| bool isFPCompare = opType->isFloatingPoint(); |
| |
| // If the boolean result of the SetCC is used outside the current basic |
| // block (so it must be computed as a boolreg) or is used by anything |
| // other than a branch, the boolean must be computed and stored |
| // in a result register. We will use a conditional move to do this. |
| // |
| bool computeBoolVal = (subtreeRoot->parent() == NULL || |
| ! AllUsesAreBranches(setCCInstr)); |
| |
| // A TmpInstruction is created to represent the CC "result". |
| // Unlike other instances of TmpInstruction, this one is used |
| // by machine code of multiple LLVM instructions, viz., |
| // the SetCC and the branch. Make sure to get the same one! |
| // Note that we do this even for FP CC registers even though they |
| // are explicit operands, because the type of the operand |
| // needs to be a floating point condition code, not an integer |
| // condition code. Think of this as casting the bool result to |
| // a FP condition code register. |
| // Later, we mark the 4th operand as being a CC register, and as a def. |
| // |
| TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr, |
| setCCInstr->getParent()->getParent(), |
| leftVal->getType(), |
| MachineCodeForInstruction::get(setCCInstr)); |
| |
| // If the operands are signed values smaller than 4 bytes, then they |
| // must be sign-extended in order to do a valid 32-bit comparison |
| // and get the right result in the 32-bit CC register (%icc). |
| // |
| Value* leftOpToUse = leftVal; |
| Value* rightOpToUse = rightVal; |
| if (opType->isIntegral() && opType->isSigned()) { |
| unsigned opSize = target.getTargetData().getTypeSize(opType); |
| if (opSize < 4) { |
| MachineCodeForInstruction& mcfi = |
| MachineCodeForInstruction::get(setCCInstr); |
| |
| // create temporary virtual regs. to hold the sign-extensions |
| leftOpToUse = new TmpInstruction(mcfi, leftVal); |
| rightOpToUse = new TmpInstruction(mcfi, rightVal); |
| |
| // sign-extend each operand and put the result in the temporary reg. |
| target.getInstrInfo().CreateSignExtensionInstructions |
| (target, setCCInstr->getParent()->getParent(), |
| leftVal, leftOpToUse, 8*opSize, mvec, mcfi); |
| target.getInstrInfo().CreateSignExtensionInstructions |
| (target, setCCInstr->getParent()->getParent(), |
| rightVal, rightOpToUse, 8*opSize, mvec, mcfi); |
| } |
| } |
| |
| if (! isFPCompare) { |
| // Integer condition: set CC and discard result. |
| mvec.push_back(BuildMI(V9::SUBccr, 4) |
| .addReg(leftOpToUse) |
| .addReg(rightOpToUse) |
| .addMReg(target.getRegInfo() |
| .getZeroRegNum(), MachineOperand::Def) |
| .addCCReg(tmpForCC, MachineOperand::Def)); |
| } else { |
| // FP condition: dest of FCMP should be some FCCn register |
| mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3) |
| .addCCReg(tmpForCC, MachineOperand::Def) |
| .addReg(leftOpToUse) |
| .addReg(rightOpToUse)); |
| } |
| |
| if (computeBoolVal) { |
| MachineOpCode movOpCode = (isFPCompare |
| ? ChooseMovFpcciInstruction(subtreeRoot) |
| : ChooseMovpcciForSetCC(subtreeRoot)); |
| |
| // Unconditionally set register to 0 |
| M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr); |
| mvec.push_back(M); |
| |
| // Now conditionally move 1 into the register. |
| // Mark the register as a use (as well as a def) because the old |
| // value will be retained if the condition is false. |
| M = (BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(1) |
| .addReg(setCCInstr, MachineOperand::UseAndDef)); |
| mvec.push_back(M); |
| } |
| break; |
| } |
| |
| case 51: // reg: Load(reg) |
| case 52: // reg: Load(ptrreg) |
| SetOperandsForMemInstr(ChooseLoadInstruction( |
| subtreeRoot->getValue()->getType()), |
| mvec, subtreeRoot, target); |
| break; |
| |
| case 55: // reg: GetElemPtr(reg) |
| case 56: // reg: GetElemPtrIdx(reg,reg) |
| // If the GetElemPtr was folded into the user (parent), it will be |
| // caught above. For other cases, we have to compute the address. |
| SetOperandsForMemInstr(V9::ADDr, mvec, subtreeRoot, target); |
| break; |
| |
| case 57: // reg: Alloca: Implement as 1 instruction: |
| { // add %fp, offsetFromFP -> result |
| AllocationInst* instr = |
| cast<AllocationInst>(subtreeRoot->getInstruction()); |
| unsigned tsize = |
| target.getTargetData().getTypeSize(instr->getAllocatedType()); |
| assert(tsize != 0); |
| CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec); |
| break; |
| } |
| |
| case 58: // reg: Alloca(reg): Implement as 3 instructions: |
| // mul num, typeSz -> tmp |
| // sub %sp, tmp -> %sp |
| { // add %sp, frameSizeBelowDynamicArea -> result |
| AllocationInst* instr = |
| cast<AllocationInst>(subtreeRoot->getInstruction()); |
| const Type* eltType = instr->getAllocatedType(); |
| |
| // If #elements is constant, use simpler code for fixed-size allocas |
| int tsize = (int) target.getTargetData().getTypeSize(eltType); |
| Value* numElementsVal = NULL; |
| bool isArray = instr->isArrayAllocation(); |
| |
| if (!isArray || isa<Constant>(numElementsVal = instr->getArraySize())) { |
| // total size is constant: generate code for fixed-size alloca |
| unsigned numElements = isArray? |
| cast<ConstantUInt>(numElementsVal)->getValue() : 1; |
| CreateCodeForFixedSizeAlloca(target, instr, tsize, |
| numElements, mvec); |
| } else { |
| // total size is not constant. |
| CreateCodeForVariableSizeAlloca(target, instr, tsize, |
| numElementsVal, mvec); |
| } |
| break; |
| } |
| |
| case 61: // reg: Call |
| { // Generate a direct (CALL) or indirect (JMPL) call. |
| // Mark the return-address register, the indirection |
| // register (for indirect calls), the operands of the Call, |
| // and the return value (if any) as implicit operands |
| // of the machine instruction. |
| // |
| // If this is a varargs function, floating point arguments |
| // have to passed in integer registers so insert |
| // copy-float-to-int instructions for each float operand. |
| // |
| CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction()); |
| Value *callee = callInstr->getCalledValue(); |
| Function* calledFunc = dyn_cast<Function>(callee); |
| |
| // Check if this is an intrinsic function that needs a special code |
| // sequence (e.g., va_start). Indirect calls cannot be special. |
| // |
| bool specialIntrinsic = false; |
| Intrinsic::ID iid; |
| if (calledFunc && (iid=(Intrinsic::ID)calledFunc->getIntrinsicID())) |
| specialIntrinsic = CodeGenIntrinsic(iid, *callInstr, target, mvec); |
| |
| // If not, generate the normal call sequence for the function. |
| // This can also handle any intrinsics that are just function calls. |
| // |
| if (! specialIntrinsic) { |
| Function* currentFunc = callInstr->getParent()->getParent(); |
| MachineFunction& MF = MachineFunction::get(currentFunc); |
| MachineCodeForInstruction& mcfi = |
| MachineCodeForInstruction::get(callInstr); |
| const SparcV9RegInfo& regInfo = |
| (SparcV9RegInfo&) target.getRegInfo(); |
| const TargetFrameInfo& frameInfo = target.getFrameInfo(); |
| |
| // Create hidden virtual register for return address with type void* |
| TmpInstruction* retAddrReg = |
| new TmpInstruction(mcfi, PointerType::get(Type::VoidTy), callInstr); |
| |
| // Generate the machine instruction and its operands. |
| // Use CALL for direct function calls; this optimistically assumes |
| // the PC-relative address fits in the CALL address field (22 bits). |
| // Use JMPL for indirect calls. |
| // This will be added to mvec later, after operand copies. |
| // |
| MachineInstr* callMI; |
| if (calledFunc) // direct function call |
| callMI = BuildMI(V9::CALL, 1).addPCDisp(callee); |
| else // indirect function call |
| callMI = (BuildMI(V9::JMPLCALLi,3).addReg(callee) |
| .addSImm((int64_t)0).addRegDef(retAddrReg)); |
| |
| const FunctionType* funcType = |
| cast<FunctionType>(cast<PointerType>(callee->getType()) |
| ->getElementType()); |
| bool isVarArgs = funcType->isVarArg(); |
| bool noPrototype = isVarArgs && funcType->getNumParams() == 0; |
| |
| // Use a descriptor to pass information about call arguments |
| // to the register allocator. This descriptor will be "owned" |
| // and freed automatically when the MachineCodeForInstruction |
| // object for the callInstr goes away. |
| CallArgsDescriptor* argDesc = |
| new CallArgsDescriptor(callInstr, retAddrReg,isVarArgs,noPrototype); |
| assert(callInstr->getOperand(0) == callee |
| && "This is assumed in the loop below!"); |
| |
| // Insert sign-extension instructions for small signed values, |
| // if this is an unknown function (i.e., called via a funcptr) |
| // or an external one (i.e., which may not be compiled by llc). |
| // |
| if (calledFunc == NULL || calledFunc->isExternal()) { |
| for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) { |
| Value* argVal = callInstr->getOperand(i); |
| const Type* argType = argVal->getType(); |
| if (argType->isIntegral() && argType->isSigned()) { |
| unsigned argSize = target.getTargetData().getTypeSize(argType); |
| if (argSize <= 4) { |
| // create a temporary virtual reg. to hold the sign-extension |
| TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal); |
| |
| // sign-extend argVal and put the result in the temporary reg. |
| target.getInstrInfo().CreateSignExtensionInstructions |
| (target, currentFunc, argVal, argExtend, |
| 8*argSize, mvec, mcfi); |
| |
| // replace argVal with argExtend in CallArgsDescriptor |
| argDesc->getArgInfo(i-1).replaceArgVal(argExtend); |
| } |
| } |
| } |
| } |
| |
| // Insert copy instructions to get all the arguments into |
| // all the places that they need to be. |
| // |
| for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) { |
| int argNo = i-1; |
| CallArgInfo& argInfo = argDesc->getArgInfo(argNo); |
| Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here |
| const Type* argType = argVal->getType(); |
| unsigned regType = regInfo.getRegTypeForDataType(argType); |
| unsigned argSize = target.getTargetData().getTypeSize(argType); |
| int regNumForArg = TargetRegInfo::getInvalidRegNum(); |
| unsigned regClassIDOfArgReg; |
| |
| // Check for FP arguments to varargs functions. |
| // Any such argument in the first $K$ args must be passed in an |
| // integer register. If there is no prototype, it must also |
| // be passed as an FP register. |
| // K = #integer argument registers. |
| bool isFPArg = argVal->getType()->isFloatingPoint(); |
| if (isVarArgs && isFPArg) { |
| |
| if (noPrototype) { |
| // It is a function with no prototype: pass value |
| // as an FP value as well as a varargs value. The FP value |
| // may go in a register or on the stack. The copy instruction |
| // to the outgoing reg/stack is created by the normal argument |
| // handling code since this is the "normal" passing mode. |
| // |
| regNumForArg = regInfo.regNumForFPArg(regType, |
| false, false, argNo, |
| regClassIDOfArgReg); |
| if (regNumForArg == regInfo.getInvalidRegNum()) |
| argInfo.setUseStackSlot(); |
| else |
| argInfo.setUseFPArgReg(); |
| } |
| |
| // If this arg. is in the first $K$ regs, add special copy- |
| // float-to-int instructions to pass the value as an int. |
| // To check if it is in the first $K$, get the register |
| // number for the arg #i. These copy instructions are |
| // generated here because they are extra cases and not needed |
| // for the normal argument handling (some code reuse is |
| // possible though -- later). |
| // |
| int copyRegNum = regInfo.regNumForIntArg(false, false, argNo, |
| regClassIDOfArgReg); |
| if (copyRegNum != regInfo.getInvalidRegNum()) { |
| // Create a virtual register to represent copyReg. Mark |
| // this vreg as being an implicit operand of the call MI |
| const Type* loadTy = (argType == Type::FloatTy |
| ? Type::IntTy : Type::LongTy); |
| TmpInstruction* argVReg = new TmpInstruction(mcfi, loadTy, |
| argVal, NULL, |
| "argRegCopy"); |
| callMI->addImplicitRef(argVReg); |
| |
| // Get a temp stack location to use to copy |
| // float-to-int via the stack. |
| // |
| // FIXME: For now, we allocate permanent space because |
| // the stack frame manager does not allow locals to be |
| // allocated (e.g., for alloca) after a temp is |
| // allocated! |
| // |
| // int tmpOffset = MF.getInfo()->pushTempValue(argSize); |
| int tmpOffset = MF.getInfo()->allocateLocalVar(argVReg); |
| |
| // Generate the store from FP reg to stack |
| unsigned StoreOpcode = ChooseStoreInstruction(argType); |
| M = BuildMI(convertOpcodeFromRegToImm(StoreOpcode), 3) |
| .addReg(argVal).addMReg(regInfo.getFramePointer()) |
| .addSImm(tmpOffset); |
| mvec.push_back(M); |
| |
| // Generate the load from stack to int arg reg |
| unsigned LoadOpcode = ChooseLoadInstruction(loadTy); |
| M = BuildMI(convertOpcodeFromRegToImm(LoadOpcode), 3) |
| .addMReg(regInfo.getFramePointer()).addSImm(tmpOffset) |
| .addReg(argVReg, MachineOperand::Def); |
| |
| // Mark operand with register it should be assigned |
| // both for copy and for the callMI |
| M->SetRegForOperand(M->getNumOperands()-1, copyRegNum); |
| callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1, |
| copyRegNum); |
| mvec.push_back(M); |
| |
| // Add info about the argument to the CallArgsDescriptor |
| argInfo.setUseIntArgReg(); |
| argInfo.setArgCopy(copyRegNum); |
| } else { |
| // Cannot fit in first $K$ regs so pass arg on stack |
| argInfo.setUseStackSlot(); |
| } |
| } else if (isFPArg) { |
| // Get the outgoing arg reg to see if there is one. |
| regNumForArg = regInfo.regNumForFPArg(regType, false, false, |
| argNo, regClassIDOfArgReg); |
| if (regNumForArg == regInfo.getInvalidRegNum()) |
| argInfo.setUseStackSlot(); |
| else { |
| argInfo.setUseFPArgReg(); |
| regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg, |
| regNumForArg); |
| } |
| } else { |
| // Get the outgoing arg reg to see if there is one. |
| regNumForArg = regInfo.regNumForIntArg(false,false, |
| argNo, regClassIDOfArgReg); |
| if (regNumForArg == regInfo.getInvalidRegNum()) |
| argInfo.setUseStackSlot(); |
| else { |
| argInfo.setUseIntArgReg(); |
| regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg, |
| regNumForArg); |
| } |
| } |
| |
| // |
| // Now insert copy instructions to stack slot or arg. register |
| // |
| if (argInfo.usesStackSlot()) { |
| // Get the stack offset for this argument slot. |
| // FP args on stack are right justified so adjust offset! |
| // int arguments are also right justified but they are |
| // always loaded as a full double-word so the offset does |
| // not need to be adjusted. |
| int argOffset = frameInfo.getOutgoingArgOffset(MF, argNo); |
| if (argType->isFloatingPoint()) { |
| unsigned slotSize = frameInfo.getSizeOfEachArgOnStack(); |
| assert(argSize <= slotSize && "Insufficient slot size!"); |
| argOffset += slotSize - argSize; |
| } |
| |
| // Now generate instruction to copy argument to stack |
| MachineOpCode storeOpCode = |
| (argType->isFloatingPoint() |
| ? ((argSize == 4)? V9::STFi : V9::STDFi) : V9::STXi); |
| |
| M = BuildMI(storeOpCode, 3).addReg(argVal) |
| .addMReg(regInfo.getStackPointer()).addSImm(argOffset); |
| mvec.push_back(M); |
| } |
| else if (regNumForArg != regInfo.getInvalidRegNum()) { |
| |
| // Create a virtual register to represent the arg reg. Mark |
| // this vreg as being an implicit operand of the call MI. |
| TmpInstruction* argVReg = |
| new TmpInstruction(mcfi, argVal, NULL, "argReg"); |
| |
| callMI->addImplicitRef(argVReg); |
| |
| // Generate the reg-to-reg copy into the outgoing arg reg. |
| // -- For FP values, create a FMOVS or FMOVD instruction |
| // -- For non-FP values, create an add-with-0 instruction |
| if (argType->isFloatingPoint()) |
| M=(BuildMI(argType==Type::FloatTy? V9::FMOVS :V9::FMOVD,2) |
| .addReg(argVal).addReg(argVReg, MachineOperand::Def)); |
| else |
| M = (BuildMI(ChooseAddInstructionByType(argType), 3) |
| .addReg(argVal).addSImm((int64_t) 0) |
| .addReg(argVReg, MachineOperand::Def)); |
| |
| // Mark the operand with the register it should be assigned |
| M->SetRegForOperand(M->getNumOperands()-1, regNumForArg); |
| callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1, |
| regNumForArg); |
| |
| mvec.push_back(M); |
| } |
| else |
| assert(argInfo.getArgCopy() != regInfo.getInvalidRegNum() && |
| "Arg. not in stack slot, primary or secondary register?"); |
| } |
| |
| // add call instruction and delay slot before copying return value |
| mvec.push_back(callMI); |
| mvec.push_back(BuildMI(V9::NOP, 0)); |
| |
| // Add the return value as an implicit ref. The call operands |
| // were added above. Also, add code to copy out the return value. |
| // This is always register-to-register for int or FP return values. |
| // |
| if (callInstr->getType() != Type::VoidTy) { |
| // Get the return value reg. |
| const Type* retType = callInstr->getType(); |
| |
| int regNum = (retType->isFloatingPoint() |
| ? (unsigned) SparcV9FloatRegClass::f0 |
| : (unsigned) SparcV9IntRegClass::o0); |
| unsigned regClassID = regInfo.getRegClassIDOfType(retType); |
| regNum = regInfo.getUnifiedRegNum(regClassID, regNum); |
| |
| // Create a virtual register to represent it and mark |
| // this vreg as being an implicit operand of the call MI |
| TmpInstruction* retVReg = |
| new TmpInstruction(mcfi, callInstr, NULL, "argReg"); |
| |
| callMI->addImplicitRef(retVReg, /*isDef*/ true); |
| |
| // Generate the reg-to-reg copy from the return value reg. |
| // -- For FP values, create a FMOVS or FMOVD instruction |
| // -- For non-FP values, create an add-with-0 instruction |
| if (retType->isFloatingPoint()) |
| M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) |
| .addReg(retVReg).addReg(callInstr, MachineOperand::Def)); |
| else |
| M = (BuildMI(ChooseAddInstructionByType(retType), 3) |
| .addReg(retVReg).addSImm((int64_t) 0) |
| .addReg(callInstr, MachineOperand::Def)); |
| |
| // Mark the operand with the register it should be assigned |
| // Also mark the implicit ref of the call defining this operand |
| M->SetRegForOperand(0, regNum); |
| callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,regNum); |
| |
| mvec.push_back(M); |
| } |
| |
| // For the CALL instruction, the ret. addr. reg. is also implicit |
| if (isa<Function>(callee)) |
| callMI->addImplicitRef(retAddrReg, /*isDef*/ true); |
| |
| MF.getInfo()->popAllTempValues(); // free temps used for this inst |
| } |
| |
| break; |
| } |
| |
| case 62: // reg: Shl(reg, reg) |
| { |
| Value* argVal1 = subtreeRoot->leftChild()->getValue(); |
| Value* argVal2 = subtreeRoot->rightChild()->getValue(); |
| Instruction* shlInstr = subtreeRoot->getInstruction(); |
| |
| const Type* opType = argVal1->getType(); |
| assert((opType->isInteger() || isa<PointerType>(opType)) && |
| "Shl unsupported for other types"); |
| unsigned opSize = target.getTargetData().getTypeSize(opType); |
| |
| CreateShiftInstructions(target, shlInstr->getParent()->getParent(), |
| (opSize > 4)? V9::SLLXr6:V9::SLLr5, |
| argVal1, argVal2, 0, shlInstr, mvec, |
| MachineCodeForInstruction::get(shlInstr)); |
| break; |
| } |
| |
| case 63: // reg: Shr(reg, reg) |
| { |
| const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); |
| assert((opType->isInteger() || isa<PointerType>(opType)) && |
| "Shr unsupported for other types"); |
| unsigned opSize = target.getTargetData().getTypeSize(opType); |
| Add3OperandInstr(opType->isSigned() |
| ? (opSize > 4? V9::SRAXr6 : V9::SRAr5) |
| : (opSize > 4? V9::SRLXr6 : V9::SRLr5), |
| subtreeRoot, mvec); |
| break; |
| } |
| |
| case 64: // reg: Phi(reg,reg) |
| break; // don't forward the value |
| |
| case 65: // reg: VANext(reg): the va_next(va_list, type) instruction |
| { // Increment the va_list pointer register according to the type. |
| // All LLVM argument types are <= 64 bits, so use one doubleword. |
| Instruction* vaNextI = subtreeRoot->getInstruction(); |
| assert(target.getTargetData().getTypeSize(vaNextI->getType()) <= 8 && |
| "We assumed that all LLVM parameter types <= 8 bytes!"); |
| int argSize = target.getFrameInfo().getSizeOfEachArgOnStack(); |
| mvec.push_back(BuildMI(V9::ADDi, 3).addReg(vaNextI->getOperand(0)). |
| addSImm(argSize).addRegDef(vaNextI)); |
| break; |
| } |
| |
| case 66: // reg: VAArg (reg): the va_arg instruction |
| { // Load argument from stack using current va_list pointer value. |
| // Use 64-bit load for all non-FP args, and LDDF or double for FP. |
| Instruction* vaArgI = subtreeRoot->getInstruction(); |
| MachineOpCode loadOp = (vaArgI->getType()->isFloatingPoint() |
| ? (vaArgI->getType() == Type::FloatTy |
| ? V9::LDFi : V9::LDDFi) |
| : V9::LDXi); |
| mvec.push_back(BuildMI(loadOp, 3).addReg(vaArgI->getOperand(0)). |
| addSImm(0).addRegDef(vaArgI)); |
| break; |
| } |
| |
| case 71: // reg: VReg |
| case 72: // reg: Constant |
| break; // don't forward the value |
| |
| default: |
| assert(0 && "Unrecognized BURG rule"); |
| break; |
| } |
| } |
| |
| if (forwardOperandNum >= 0) { |
| // We did not generate a machine instruction but need to use operand. |
| // If user is in the same tree, replace Value in its machine operand. |
| // If not, insert a copy instruction which should get coalesced away |
| // by register allocation. |
| if (subtreeRoot->parent() != NULL) |
| ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum); |
| else { |
| std::vector<MachineInstr*> minstrVec; |
| Instruction* instr = subtreeRoot->getInstruction(); |
| target.getInstrInfo(). |
| CreateCopyInstructionsByType(target, |
| instr->getParent()->getParent(), |
| instr->getOperand(forwardOperandNum), |
| instr, minstrVec, |
| MachineCodeForInstruction::get(instr)); |
| assert(minstrVec.size() > 0); |
| mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end()); |
| } |
| } |
| |
| if (maskUnsignedResult) { |
| // If result is unsigned and smaller than int reg size, |
| // we need to clear high bits of result value. |
| assert(forwardOperandNum < 0 && "Need mask but no instruction generated"); |
| Instruction* dest = subtreeRoot->getInstruction(); |
| if (dest->getType()->isUnsigned()) { |
| unsigned destSize=target.getTargetData().getTypeSize(dest->getType()); |
| if (destSize <= 4) { |
| // Mask high 64 - N bits, where N = 4*destSize. |
| |
| // Use a TmpInstruction to represent the |
| // intermediate result before masking. Since those instructions |
| // have already been generated, go back and substitute tmpI |
| // for dest in the result position of each one of them. |
| // |
| MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest); |
| TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(), |
| dest, NULL, "maskHi"); |
| Value* srlArgToUse = tmpI; |
| |
| unsigned numSubst = 0; |
| for (unsigned i=0, N=mvec.size(); i < N; ++i) { |
| |
| // Make sure we substitute all occurrences of dest in these instrs. |
| // Otherwise, we will have bogus code. |
| bool someArgsWereIgnored = false; |
| |
| // Make sure not to substitute an upwards-exposed use -- that would |
| // introduce a use of `tmpI' with no preceding def. Therefore, |
| // substitute a use or def-and-use operand only if a previous def |
| // operand has already been substituted (i.e., numSusbt > 0). |
| // |
| numSubst += mvec[i]->substituteValue(dest, tmpI, |
| /*defsOnly*/ numSubst == 0, |
| /*notDefsAndUses*/ numSubst > 0, |
| someArgsWereIgnored); |
| assert(!someArgsWereIgnored && |
| "Operand `dest' exists but not replaced: probably bogus!"); |
| } |
| assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!"); |
| |
| // Left shift 32-N if size (N) is less than 32 bits. |
| // Use another tmp. virtual register to represent this result. |
| if (destSize < 4) { |
| srlArgToUse = new TmpInstruction(mcfi, dest->getType(), |
| tmpI, NULL, "maskHi2"); |
| mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI) |
| .addZImm(8*(4-destSize)) |
| .addReg(srlArgToUse, MachineOperand::Def)); |
| } |
| |
| // Logical right shift 32-N to get zero extension in top 64-N bits. |
| mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse) |
| .addZImm(8*(4-destSize)) |
| .addReg(dest, MachineOperand::Def)); |
| |
| } else if (destSize < 8) { |
| assert(0 && "Unsupported type size: 32 < size < 64 bits"); |
| } |
| } |
| } |
| } |
| |
| } |