| //===-- Writer.cpp - Library for converting LLVM code to C ----------------===// |
| // |
| // This library converts LLVM code to C code, compilable by GCC. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Assembly/CWriter.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/SymbolTable.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Analysis/FindUsedTypes.h" |
| #include "llvm/Analysis/ConstantsScanner.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Support/InstIterator.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Support/Mangler.h" |
| #include "Support/StringExtras.h" |
| #include "Support/STLExtras.h" |
| #include <algorithm> |
| #include <sstream> |
| |
| namespace { |
| class CWriter : public Pass, public InstVisitor<CWriter> { |
| std::ostream &Out; |
| Mangler *Mang; |
| const Module *TheModule; |
| std::map<const Type *, std::string> TypeNames; |
| std::set<const Value*> MangledGlobals; |
| bool needsMalloc, emittedInvoke; |
| |
| std::map<const ConstantFP *, unsigned> FPConstantMap; |
| public: |
| CWriter(std::ostream &o) : Out(o) {} |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<FindUsedTypes>(); |
| } |
| |
| virtual bool run(Module &M) { |
| // Initialize |
| TheModule = &M; |
| |
| // Ensure that all structure types have names... |
| bool Changed = nameAllUsedStructureTypes(M); |
| Mang = new Mangler(M); |
| |
| // Run... |
| printModule(&M); |
| |
| // Free memory... |
| delete Mang; |
| TypeNames.clear(); |
| MangledGlobals.clear(); |
| return false; |
| } |
| |
| std::ostream &printType(std::ostream &Out, const Type *Ty, |
| const std::string &VariableName = "", |
| bool IgnoreName = false, bool namedContext = true); |
| |
| void writeOperand(Value *Operand); |
| void writeOperandInternal(Value *Operand); |
| |
| private : |
| bool nameAllUsedStructureTypes(Module &M); |
| void printModule(Module *M); |
| void printSymbolTable(const SymbolTable &ST); |
| void printContainedStructs(const Type *Ty, std::set<const StructType *> &); |
| void printFunctionSignature(const Function *F, bool Prototype); |
| |
| void printFunction(Function *); |
| |
| void printConstant(Constant *CPV); |
| void printConstantArray(ConstantArray *CPA); |
| |
| // isInlinableInst - Attempt to inline instructions into their uses to build |
| // trees as much as possible. To do this, we have to consistently decide |
| // what is acceptable to inline, so that variable declarations don't get |
| // printed and an extra copy of the expr is not emitted. |
| // |
| static bool isInlinableInst(const Instruction &I) { |
| // Must be an expression, must be used exactly once. If it is dead, we |
| // emit it inline where it would go. |
| if (I.getType() == Type::VoidTy || I.use_size() != 1 || |
| isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || |
| isa<LoadInst>(I) || isa<VarArgInst>(I)) |
| // Don't inline a load across a store or other bad things! |
| return false; |
| |
| // Only inline instruction it it's use is in the same BB as the inst. |
| return I.getParent() == cast<Instruction>(I.use_back())->getParent(); |
| } |
| |
| // isDirectAlloca - Define fixed sized allocas in the entry block as direct |
| // variables which are accessed with the & operator. This causes GCC to |
| // generate significantly better code than to emit alloca calls directly. |
| // |
| static const AllocaInst *isDirectAlloca(const Value *V) { |
| const AllocaInst *AI = dyn_cast<AllocaInst>(V); |
| if (!AI) return false; |
| if (AI->isArrayAllocation()) |
| return 0; // FIXME: we can also inline fixed size array allocas! |
| if (AI->getParent() != &AI->getParent()->getParent()->getEntryNode()) |
| return 0; |
| return AI; |
| } |
| |
| // Instruction visitation functions |
| friend class InstVisitor<CWriter>; |
| |
| void visitReturnInst(ReturnInst &I); |
| void visitBranchInst(BranchInst &I); |
| void visitSwitchInst(SwitchInst &I); |
| void visitInvokeInst(InvokeInst &I); |
| void visitUnwindInst(UnwindInst &I); |
| |
| void visitPHINode(PHINode &I); |
| void visitBinaryOperator(Instruction &I); |
| |
| void visitCastInst (CastInst &I); |
| void visitCallInst (CallInst &I); |
| void visitCallSite (CallSite CS); |
| void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } |
| |
| void visitMallocInst(MallocInst &I); |
| void visitAllocaInst(AllocaInst &I); |
| void visitFreeInst (FreeInst &I); |
| void visitLoadInst (LoadInst &I); |
| void visitStoreInst (StoreInst &I); |
| void visitGetElementPtrInst(GetElementPtrInst &I); |
| void visitVarArgInst(VarArgInst &I); |
| |
| void visitInstruction(Instruction &I) { |
| std::cerr << "C Writer does not know about " << I; |
| abort(); |
| } |
| |
| void outputLValue(Instruction *I) { |
| Out << " " << Mang->getValueName(I) << " = "; |
| } |
| void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, |
| unsigned Indent); |
| void printIndexingExpression(Value *Ptr, User::op_iterator I, |
| User::op_iterator E); |
| }; |
| } |
| |
| // A pointer type should not use parens around *'s alone, e.g., (**) |
| inline bool ptrTypeNameNeedsParens(const std::string &NameSoFar) { |
| return (NameSoFar.find_last_not_of('*') != std::string::npos); |
| } |
| |
| // Pass the Type* and the variable name and this prints out the variable |
| // declaration. |
| // |
| std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty, |
| const std::string &NameSoFar, |
| bool IgnoreName, bool namedContext) { |
| if (Ty->isPrimitiveType()) |
| switch (Ty->getPrimitiveID()) { |
| case Type::VoidTyID: return Out << "void " << NameSoFar; |
| case Type::BoolTyID: return Out << "bool " << NameSoFar; |
| case Type::UByteTyID: return Out << "unsigned char " << NameSoFar; |
| case Type::SByteTyID: return Out << "signed char " << NameSoFar; |
| case Type::UShortTyID: return Out << "unsigned short " << NameSoFar; |
| case Type::ShortTyID: return Out << "short " << NameSoFar; |
| case Type::UIntTyID: return Out << "unsigned " << NameSoFar; |
| case Type::IntTyID: return Out << "int " << NameSoFar; |
| case Type::ULongTyID: return Out << "unsigned long long " << NameSoFar; |
| case Type::LongTyID: return Out << "signed long long " << NameSoFar; |
| case Type::FloatTyID: return Out << "float " << NameSoFar; |
| case Type::DoubleTyID: return Out << "double " << NameSoFar; |
| default : |
| std::cerr << "Unknown primitive type: " << Ty << "\n"; |
| abort(); |
| } |
| |
| // Check to see if the type is named. |
| if (!IgnoreName || isa<OpaqueType>(Ty)) { |
| std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty); |
| if (I != TypeNames.end()) return Out << I->second << " " << NameSoFar; |
| } |
| |
| switch (Ty->getPrimitiveID()) { |
| case Type::FunctionTyID: { |
| const FunctionType *MTy = cast<FunctionType>(Ty); |
| std::stringstream FunctionInnards; |
| FunctionInnards << " (" << NameSoFar << ") ("; |
| for (FunctionType::ParamTypes::const_iterator |
| I = MTy->getParamTypes().begin(), |
| E = MTy->getParamTypes().end(); I != E; ++I) { |
| if (I != MTy->getParamTypes().begin()) |
| FunctionInnards << ", "; |
| printType(FunctionInnards, *I, ""); |
| } |
| if (MTy->isVarArg()) { |
| if (!MTy->getParamTypes().empty()) |
| FunctionInnards << ", ..."; |
| } else if (MTy->getParamTypes().empty()) { |
| FunctionInnards << "void"; |
| } |
| FunctionInnards << ")"; |
| std::string tstr = FunctionInnards.str(); |
| printType(Out, MTy->getReturnType(), tstr); |
| return Out; |
| } |
| case Type::StructTyID: { |
| const StructType *STy = cast<StructType>(Ty); |
| Out << NameSoFar + " {\n"; |
| unsigned Idx = 0; |
| for (StructType::ElementTypes::const_iterator |
| I = STy->getElementTypes().begin(), |
| E = STy->getElementTypes().end(); I != E; ++I) { |
| Out << " "; |
| printType(Out, *I, "field" + utostr(Idx++)); |
| Out << ";\n"; |
| } |
| return Out << "}"; |
| } |
| |
| case Type::PointerTyID: { |
| const PointerType *PTy = cast<PointerType>(Ty); |
| std::string ptrName = "*" + NameSoFar; |
| |
| // Do not need parens around "* NameSoFar" if NameSoFar consists only |
| // of zero or more '*' chars *and* this is not an unnamed pointer type |
| // such as the result type in a cast statement. Otherwise, enclose in ( ). |
| if (ptrTypeNameNeedsParens(NameSoFar) || !namedContext || |
| PTy->getElementType()->getPrimitiveID() == Type::ArrayTyID) |
| ptrName = "(" + ptrName + ")"; // |
| |
| return printType(Out, PTy->getElementType(), ptrName); |
| } |
| |
| case Type::ArrayTyID: { |
| const ArrayType *ATy = cast<ArrayType>(Ty); |
| unsigned NumElements = ATy->getNumElements(); |
| return printType(Out, ATy->getElementType(), |
| NameSoFar + "[" + utostr(NumElements) + "]"); |
| } |
| |
| case Type::OpaqueTyID: { |
| static int Count = 0; |
| std::string TyName = "struct opaque_" + itostr(Count++); |
| assert(TypeNames.find(Ty) == TypeNames.end()); |
| TypeNames[Ty] = TyName; |
| return Out << TyName << " " << NameSoFar; |
| } |
| default: |
| assert(0 && "Unhandled case in getTypeProps!"); |
| abort(); |
| } |
| |
| return Out; |
| } |
| |
| void CWriter::printConstantArray(ConstantArray *CPA) { |
| |
| // As a special case, print the array as a string if it is an array of |
| // ubytes or an array of sbytes with positive values. |
| // |
| const Type *ETy = CPA->getType()->getElementType(); |
| bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); |
| |
| // Make sure the last character is a null char, as automatically added by C |
| if (isString && (CPA->getNumOperands() == 0 || |
| !cast<Constant>(*(CPA->op_end()-1))->isNullValue())) |
| isString = false; |
| |
| if (isString) { |
| Out << "\""; |
| // Keep track of whether the last number was a hexadecimal escape |
| bool LastWasHex = false; |
| |
| // Do not include the last character, which we know is null |
| for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { |
| unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getRawValue(); |
| |
| // Print it out literally if it is a printable character. The only thing |
| // to be careful about is when the last letter output was a hex escape |
| // code, in which case we have to be careful not to print out hex digits |
| // explicitly (the C compiler thinks it is a continuation of the previous |
| // character, sheesh...) |
| // |
| if (isprint(C) && (!LastWasHex || !isxdigit(C))) { |
| LastWasHex = false; |
| if (C == '"' || C == '\\') |
| Out << "\\" << C; |
| else |
| Out << C; |
| } else { |
| LastWasHex = false; |
| switch (C) { |
| case '\n': Out << "\\n"; break; |
| case '\t': Out << "\\t"; break; |
| case '\r': Out << "\\r"; break; |
| case '\v': Out << "\\v"; break; |
| case '\a': Out << "\\a"; break; |
| case '\"': Out << "\\\""; break; |
| case '\'': Out << "\\\'"; break; |
| default: |
| Out << "\\x"; |
| Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); |
| Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); |
| LastWasHex = true; |
| break; |
| } |
| } |
| } |
| Out << "\""; |
| } else { |
| Out << "{"; |
| if (CPA->getNumOperands()) { |
| Out << " "; |
| printConstant(cast<Constant>(CPA->getOperand(0))); |
| for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { |
| Out << ", "; |
| printConstant(cast<Constant>(CPA->getOperand(i))); |
| } |
| } |
| Out << " }"; |
| } |
| } |
| |
| /// FPCSafeToPrint - Returns true if we may assume that CFP may be |
| /// written out textually as a double (rather than as a reference to a |
| /// stack-allocated variable). We decide this by converting CFP to a |
| /// string and back into a double, and then checking whether the |
| /// conversion results in a bit-equal double to the original value of |
| /// CFP. This depends on us and the target C compiler agreeing on the |
| /// conversion process (which is pretty likely since we only deal in |
| /// IEEE FP.) This is adapted from similar code in |
| /// lib/VMCore/AsmWriter.cpp:WriteConstantInt(). |
| static bool FPCSafeToPrint (const ConstantFP *CFP) { |
| std::string StrVal = ftostr(CFP->getValue()); |
| // Check to make sure that the stringized number is not some string like |
| // "Inf" or NaN, that atof will accept, but the lexer will not. Check that |
| // the string matches the "[-+]?[0-9]" regex. |
| if ((StrVal[0] >= '0' && StrVal[0] <= '9') || |
| ((StrVal[0] == '-' || StrVal[0] == '+') && |
| (StrVal[1] >= '0' && StrVal[1] <= '9'))) |
| // Reparse stringized version! |
| return (atof(StrVal.c_str()) == CFP->getValue()); |
| return false; |
| } |
| |
| // printConstant - The LLVM Constant to C Constant converter. |
| void CWriter::printConstant(Constant *CPV) { |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { |
| switch (CE->getOpcode()) { |
| case Instruction::Cast: |
| Out << "(("; |
| printType(Out, CPV->getType()); |
| Out << ")"; |
| printConstant(CE->getOperand(0)); |
| Out << ")"; |
| return; |
| |
| case Instruction::GetElementPtr: |
| Out << "(&("; |
| printIndexingExpression(CE->getOperand(0), |
| CPV->op_begin()+1, CPV->op_end()); |
| Out << "))"; |
| return; |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::Div: |
| case Instruction::Rem: |
| case Instruction::SetEQ: |
| case Instruction::SetNE: |
| case Instruction::SetLT: |
| case Instruction::SetLE: |
| case Instruction::SetGT: |
| case Instruction::SetGE: |
| Out << "("; |
| printConstant(CE->getOperand(0)); |
| switch (CE->getOpcode()) { |
| case Instruction::Add: Out << " + "; break; |
| case Instruction::Sub: Out << " - "; break; |
| case Instruction::Mul: Out << " * "; break; |
| case Instruction::Div: Out << " / "; break; |
| case Instruction::Rem: Out << " % "; break; |
| case Instruction::SetEQ: Out << " == "; break; |
| case Instruction::SetNE: Out << " != "; break; |
| case Instruction::SetLT: Out << " < "; break; |
| case Instruction::SetLE: Out << " <= "; break; |
| case Instruction::SetGT: Out << " > "; break; |
| case Instruction::SetGE: Out << " >= "; break; |
| default: assert(0 && "Illegal opcode here!"); |
| } |
| printConstant(CE->getOperand(1)); |
| Out << ")"; |
| return; |
| |
| default: |
| std::cerr << "CWriter Error: Unhandled constant expression: " |
| << CE << "\n"; |
| abort(); |
| } |
| } |
| |
| switch (CPV->getType()->getPrimitiveID()) { |
| case Type::BoolTyID: |
| Out << (CPV == ConstantBool::False ? "0" : "1"); break; |
| case Type::SByteTyID: |
| case Type::ShortTyID: |
| Out << cast<ConstantSInt>(CPV)->getValue(); break; |
| case Type::IntTyID: |
| if ((int)cast<ConstantSInt>(CPV)->getValue() == (int)0x80000000) |
| Out << "((int)0x80000000)"; // Handle MININT specially to avoid warning |
| else |
| Out << cast<ConstantSInt>(CPV)->getValue(); |
| break; |
| |
| case Type::LongTyID: |
| Out << cast<ConstantSInt>(CPV)->getValue() << "ll"; break; |
| |
| case Type::UByteTyID: |
| case Type::UShortTyID: |
| Out << cast<ConstantUInt>(CPV)->getValue(); break; |
| case Type::UIntTyID: |
| Out << cast<ConstantUInt>(CPV)->getValue() << "u"; break; |
| case Type::ULongTyID: |
| Out << cast<ConstantUInt>(CPV)->getValue() << "ull"; break; |
| |
| case Type::FloatTyID: |
| case Type::DoubleTyID: { |
| ConstantFP *FPC = cast<ConstantFP>(CPV); |
| std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC); |
| if (I != FPConstantMap.end()) { |
| // Because of FP precision problems we must load from a stack allocated |
| // value that holds the value in hex. |
| Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double") |
| << "*)&FloatConstant" << I->second << ")"; |
| } else { |
| if (FPCSafeToPrint (FPC)) { |
| Out << ftostr (FPC->getValue ()); |
| } else { |
| Out << FPC->getValue(); // Who knows? Give it our best shot... |
| } |
| } |
| break; |
| } |
| |
| case Type::ArrayTyID: |
| printConstantArray(cast<ConstantArray>(CPV)); |
| break; |
| |
| case Type::StructTyID: { |
| Out << "{"; |
| if (CPV->getNumOperands()) { |
| Out << " "; |
| printConstant(cast<Constant>(CPV->getOperand(0))); |
| for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { |
| Out << ", "; |
| printConstant(cast<Constant>(CPV->getOperand(i))); |
| } |
| } |
| Out << " }"; |
| break; |
| } |
| |
| case Type::PointerTyID: |
| if (isa<ConstantPointerNull>(CPV)) { |
| Out << "(("; |
| printType(Out, CPV->getType()); |
| Out << ")/*NULL*/0)"; |
| break; |
| } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CPV)) { |
| writeOperand(CPR->getValue()); |
| break; |
| } |
| // FALL THROUGH |
| default: |
| std::cerr << "Unknown constant type: " << CPV << "\n"; |
| abort(); |
| } |
| } |
| |
| void CWriter::writeOperandInternal(Value *Operand) { |
| if (Instruction *I = dyn_cast<Instruction>(Operand)) |
| if (isInlinableInst(*I) && !isDirectAlloca(I)) { |
| // Should we inline this instruction to build a tree? |
| Out << "("; |
| visit(*I); |
| Out << ")"; |
| return; |
| } |
| |
| if (Constant *CPV = dyn_cast<Constant>(Operand)) { |
| printConstant(CPV); |
| } else { |
| Out << Mang->getValueName(Operand); |
| } |
| } |
| |
| void CWriter::writeOperand(Value *Operand) { |
| if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand)) |
| Out << "(&"; // Global variables are references as their addresses by llvm |
| |
| writeOperandInternal(Operand); |
| |
| if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand)) |
| Out << ")"; |
| } |
| |
| // nameAllUsedStructureTypes - If there are structure types in the module that |
| // are used but do not have names assigned to them in the symbol table yet then |
| // we assign them names now. |
| // |
| bool CWriter::nameAllUsedStructureTypes(Module &M) { |
| // Get a set of types that are used by the program... |
| std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes(); |
| |
| // Loop over the module symbol table, removing types from UT that are already |
| // named. |
| // |
| SymbolTable &MST = M.getSymbolTable(); |
| if (MST.find(Type::TypeTy) != MST.end()) |
| for (SymbolTable::type_iterator I = MST.type_begin(Type::TypeTy), |
| E = MST.type_end(Type::TypeTy); I != E; ++I) |
| UT.erase(cast<Type>(I->second)); |
| |
| // UT now contains types that are not named. Loop over it, naming structure |
| // types. |
| // |
| bool Changed = false; |
| for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end(); |
| I != E; ++I) |
| if (const StructType *ST = dyn_cast<StructType>(*I)) { |
| ((Value*)ST)->setName("unnamed", &MST); |
| Changed = true; |
| } |
| return Changed; |
| } |
| |
| // generateCompilerSpecificCode - This is where we add conditional compilation |
| // directives to cater to specific compilers as need be. |
| // |
| static void generateCompilerSpecificCode(std::ostream& Out) { |
| // Alloca is hard to get, and we don't want to include stdlib.h here... |
| Out << "/* get a declaration for alloca */\n" |
| << "#ifdef sun\n" |
| << "extern void *__builtin_alloca(unsigned long);\n" |
| << "#define alloca(x) __builtin_alloca(x)\n" |
| << "#else\n" |
| << "#ifndef __FreeBSD__\n" |
| << "#include <alloca.h>\n" |
| << "#endif\n" |
| << "#endif\n\n"; |
| |
| // We output GCC specific attributes to preserve 'linkonce'ness on globals. |
| // If we aren't being compiled with GCC, just drop these attributes. |
| Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n" |
| << "#define __attribute__(X)\n" |
| << "#endif\n"; |
| } |
| |
| void CWriter::printModule(Module *M) { |
| // Calculate which global values have names that will collide when we throw |
| // away type information. |
| { // Scope to delete the FoundNames set when we are done with it... |
| std::set<std::string> FoundNames; |
| for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) |
| if (I->hasName()) // If the global has a name... |
| if (FoundNames.count(I->getName())) // And the name is already used |
| MangledGlobals.insert(I); // Mangle the name |
| else |
| FoundNames.insert(I->getName()); // Otherwise, keep track of name |
| |
| for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) |
| if (I->hasName()) // If the global has a name... |
| if (FoundNames.count(I->getName())) // And the name is already used |
| MangledGlobals.insert(I); // Mangle the name |
| else |
| FoundNames.insert(I->getName()); // Otherwise, keep track of name |
| } |
| |
| // get declaration for alloca |
| Out << "/* Provide Declarations */\n"; |
| Out << "#include <stdarg.h>\n"; |
| Out << "#include <setjmp.h>\n"; |
| generateCompilerSpecificCode(Out); |
| |
| // Provide a definition for `bool' if not compiling with a C++ compiler. |
| Out << "\n" |
| << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" |
| |
| << "\n\n/* Support for floating point constants */\n" |
| << "typedef unsigned long long ConstantDoubleTy;\n" |
| << "typedef unsigned int ConstantFloatTy;\n" |
| |
| << "\n\n/* Support for the invoke instruction */\n" |
| << "extern struct __llvm_jmpbuf_list_t {\n" |
| << " jmp_buf buf; struct __llvm_jmpbuf_list_t *next;\n" |
| << "} *__llvm_jmpbuf_list;\n" |
| |
| << "\n\n/* Global Declarations */\n"; |
| |
| // First output all the declarations for the program, because C requires |
| // Functions & globals to be declared before they are used. |
| // |
| |
| // Loop over the symbol table, emitting all named constants... |
| printSymbolTable(M->getSymbolTable()); |
| |
| // Global variable declarations... |
| if (!M->gempty()) { |
| Out << "\n/* External Global Variable Declarations */\n"; |
| for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) { |
| if (I->hasExternalLinkage()) { |
| Out << "extern "; |
| printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); |
| Out << ";\n"; |
| } |
| } |
| } |
| |
| // Function declarations |
| if (!M->empty()) { |
| Out << "\n/* Function Declarations */\n"; |
| needsMalloc = true; |
| for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) { |
| // If the function is external and the name collides don't print it. |
| // Sometimes the bytecode likes to have multiple "declarations" for |
| // external functions |
| if ((I->hasInternalLinkage() || !MangledGlobals.count(I)) && |
| !I->getIntrinsicID()) { |
| printFunctionSignature(I, true); |
| Out << ";\n"; |
| } |
| } |
| } |
| |
| // Print Malloc prototype if needed |
| if (needsMalloc) { |
| Out << "\n/* Malloc to make sun happy */\n"; |
| Out << "extern void * malloc();\n\n"; |
| } |
| |
| // Output the global variable declarations |
| if (!M->gempty()) { |
| Out << "\n\n/* Global Variable Declarations */\n"; |
| for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) |
| if (!I->isExternal()) { |
| Out << "extern "; |
| printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); |
| |
| Out << ";\n"; |
| } |
| } |
| |
| // Output the global variable definitions and contents... |
| if (!M->gempty()) { |
| Out << "\n\n/* Global Variable Definitions and Initialization */\n"; |
| for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) |
| if (!I->isExternal()) { |
| if (I->hasInternalLinkage()) |
| Out << "static "; |
| printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); |
| if (I->hasLinkOnceLinkage()) |
| Out << " __attribute__((common))"; |
| if (!I->getInitializer()->isNullValue()) { |
| Out << " = " ; |
| writeOperand(I->getInitializer()); |
| } |
| Out << ";\n"; |
| } |
| } |
| |
| // Output all of the functions... |
| emittedInvoke = false; |
| if (!M->empty()) { |
| Out << "\n\n/* Function Bodies */\n"; |
| for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) |
| printFunction(I); |
| } |
| |
| // If the program included an invoke instruction, we need to output the |
| // support code for it here! |
| if (emittedInvoke) { |
| Out << "\n/* More support for the invoke instruction */\n" |
| << "struct __llvm_jmpbuf_list_t *__llvm_jmpbuf_list " |
| << "__attribute__((common)) = 0;\n"; |
| } |
| } |
| |
| |
| /// printSymbolTable - Run through symbol table looking for type names. If a |
| /// type name is found, emit it's declaration... |
| /// |
| void CWriter::printSymbolTable(const SymbolTable &ST) { |
| // If there are no type names, exit early. |
| if (ST.find(Type::TypeTy) == ST.end()) |
| return; |
| |
| // We are only interested in the type plane of the symbol table... |
| SymbolTable::type_const_iterator I = ST.type_begin(Type::TypeTy); |
| SymbolTable::type_const_iterator End = ST.type_end(Type::TypeTy); |
| |
| // Print out forward declarations for structure types before anything else! |
| Out << "/* Structure forward decls */\n"; |
| for (; I != End; ++I) |
| if (const Type *STy = dyn_cast<StructType>(I->second)) { |
| std::string Name = "struct l_" + Mangler::makeNameProper(I->first); |
| Out << Name << ";\n"; |
| TypeNames.insert(std::make_pair(STy, Name)); |
| } |
| |
| Out << "\n"; |
| |
| // Now we can print out typedefs... |
| Out << "/* Typedefs */\n"; |
| for (I = ST.type_begin(Type::TypeTy); I != End; ++I) { |
| const Type *Ty = cast<Type>(I->second); |
| std::string Name = "l_" + Mangler::makeNameProper(I->first); |
| Out << "typedef "; |
| printType(Out, Ty, Name); |
| Out << ";\n"; |
| } |
| |
| Out << "\n"; |
| |
| // Keep track of which structures have been printed so far... |
| std::set<const StructType *> StructPrinted; |
| |
| // Loop over all structures then push them into the stack so they are |
| // printed in the correct order. |
| // |
| Out << "/* Structure contents */\n"; |
| for (I = ST.type_begin(Type::TypeTy); I != End; ++I) |
| if (const StructType *STy = dyn_cast<StructType>(I->second)) |
| printContainedStructs(STy, StructPrinted); |
| } |
| |
| // Push the struct onto the stack and recursively push all structs |
| // this one depends on. |
| void CWriter::printContainedStructs(const Type *Ty, |
| std::set<const StructType*> &StructPrinted){ |
| if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| //Check to see if we have already printed this struct |
| if (StructPrinted.count(STy) == 0) { |
| // Print all contained types first... |
| for (StructType::ElementTypes::const_iterator |
| I = STy->getElementTypes().begin(), |
| E = STy->getElementTypes().end(); I != E; ++I) { |
| const Type *Ty1 = I->get(); |
| if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1)) |
| printContainedStructs(*I, StructPrinted); |
| } |
| |
| //Print structure type out.. |
| StructPrinted.insert(STy); |
| std::string Name = TypeNames[STy]; |
| printType(Out, STy, Name, true); |
| Out << ";\n\n"; |
| } |
| |
| // If it is an array, check contained types and continue |
| } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)){ |
| const Type *Ty1 = ATy->getElementType(); |
| if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1)) |
| printContainedStructs(Ty1, StructPrinted); |
| } |
| } |
| |
| |
| void CWriter::printFunctionSignature(const Function *F, bool Prototype) { |
| // If the program provides its own malloc prototype we don't need |
| // to include the general one. |
| if (Mang->getValueName(F) == "malloc") |
| needsMalloc = false; |
| |
| if (F->hasInternalLinkage()) Out << "static "; |
| if (F->hasLinkOnceLinkage()) Out << "inline "; |
| |
| // Loop over the arguments, printing them... |
| const FunctionType *FT = cast<FunctionType>(F->getFunctionType()); |
| |
| std::stringstream FunctionInnards; |
| |
| // Print out the name... |
| FunctionInnards << Mang->getValueName(F) << "("; |
| |
| if (!F->isExternal()) { |
| if (!F->aempty()) { |
| std::string ArgName; |
| if (F->abegin()->hasName() || !Prototype) |
| ArgName = Mang->getValueName(F->abegin()); |
| printType(FunctionInnards, F->afront().getType(), ArgName); |
| for (Function::const_aiterator I = ++F->abegin(), E = F->aend(); |
| I != E; ++I) { |
| FunctionInnards << ", "; |
| if (I->hasName() || !Prototype) |
| ArgName = Mang->getValueName(I); |
| else |
| ArgName = ""; |
| printType(FunctionInnards, I->getType(), ArgName); |
| } |
| } |
| } else { |
| // Loop over the arguments, printing them... |
| for (FunctionType::ParamTypes::const_iterator I = |
| FT->getParamTypes().begin(), |
| E = FT->getParamTypes().end(); I != E; ++I) { |
| if (I != FT->getParamTypes().begin()) FunctionInnards << ", "; |
| printType(FunctionInnards, *I); |
| } |
| } |
| |
| // Finish printing arguments... if this is a vararg function, print the ..., |
| // unless there are no known types, in which case, we just emit (). |
| // |
| if (FT->isVarArg() && !FT->getParamTypes().empty()) { |
| if (FT->getParamTypes().size()) FunctionInnards << ", "; |
| FunctionInnards << "..."; // Output varargs portion of signature! |
| } |
| FunctionInnards << ")"; |
| // Print out the return type and the entire signature for that matter |
| printType(Out, F->getReturnType(), FunctionInnards.str()); |
| } |
| |
| void CWriter::printFunction(Function *F) { |
| if (F->isExternal()) return; |
| |
| printFunctionSignature(F, false); |
| Out << " {\n"; |
| |
| // print local variable information for the function |
| for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) |
| if (const AllocaInst *AI = isDirectAlloca(*I)) { |
| Out << " "; |
| printType(Out, AI->getAllocatedType(), Mang->getValueName(AI)); |
| Out << "; /* Address exposed local */\n"; |
| } else if ((*I)->getType() != Type::VoidTy && !isInlinableInst(**I)) { |
| Out << " "; |
| printType(Out, (*I)->getType(), Mang->getValueName(*I)); |
| Out << ";\n"; |
| |
| if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well... |
| Out << " "; |
| printType(Out, (*I)->getType(), Mang->getValueName(*I)+"__PHI_TEMPORARY"); |
| Out << ";\n"; |
| } |
| } |
| |
| Out << "\n"; |
| |
| // Scan the function for floating point constants. If any FP constant is used |
| // in the function, we want to redirect it here so that we do not depend on |
| // the precision of the printed form, unless the printed form preserves |
| // precision. |
| // |
| unsigned FPCounter = 0; |
| for (constant_iterator I = constant_begin(F), E = constant_end(F); I != E;++I) |
| if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I)) |
| if ((!FPCSafeToPrint(FPC)) // Do not put in FPConstantMap if safe. |
| && (FPConstantMap.find(FPC) == FPConstantMap.end())) { |
| double Val = FPC->getValue(); |
| |
| FPConstantMap[FPC] = FPCounter; // Number the FP constants |
| |
| if (FPC->getType() == Type::DoubleTy) |
| Out << " const ConstantDoubleTy FloatConstant" << FPCounter++ |
| << " = 0x" << std::hex << *(unsigned long long*)&Val << std::dec |
| << "ULL; /* " << Val << " */\n"; |
| else if (FPC->getType() == Type::FloatTy) { |
| float fVal = Val; |
| Out << " const ConstantFloatTy FloatConstant" << FPCounter++ |
| << " = 0x" << std::hex << *(unsigned*)&fVal << std::dec |
| << "U; /* " << Val << " */\n"; |
| } else |
| assert(0 && "Unknown float type!"); |
| } |
| |
| Out << "\n"; |
| |
| // print the basic blocks |
| for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { |
| BasicBlock *Prev = BB->getPrev(); |
| |
| // Don't print the label for the basic block if there are no uses, or if the |
| // only terminator use is the predecessor basic block's terminator. We have |
| // to scan the use list because PHI nodes use basic blocks too but do not |
| // require a label to be generated. |
| // |
| bool NeedsLabel = false; |
| for (Value::use_iterator UI = BB->use_begin(), UE = BB->use_end(); |
| UI != UE; ++UI) |
| if (TerminatorInst *TI = dyn_cast<TerminatorInst>(*UI)) |
| if (TI != Prev->getTerminator() || |
| isa<SwitchInst>(Prev->getTerminator()) || |
| isa<InvokeInst>(Prev->getTerminator())) { |
| NeedsLabel = true; |
| break; |
| } |
| |
| if (NeedsLabel) Out << Mang->getValueName(BB) << ":\n"; |
| |
| // Output all of the instructions in the basic block... |
| for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ++II){ |
| if (!isInlinableInst(*II) && !isDirectAlloca(II)) { |
| if (II->getType() != Type::VoidTy) |
| outputLValue(II); |
| else |
| Out << " "; |
| visit(*II); |
| Out << ";\n"; |
| } |
| } |
| |
| // Don't emit prefix or suffix for the terminator... |
| visit(*BB->getTerminator()); |
| } |
| |
| Out << "}\n\n"; |
| FPConstantMap.clear(); |
| } |
| |
| // Specific Instruction type classes... note that all of the casts are |
| // necessary because we use the instruction classes as opaque types... |
| // |
| void CWriter::visitReturnInst(ReturnInst &I) { |
| // Don't output a void return if this is the last basic block in the function |
| if (I.getNumOperands() == 0 && |
| &*--I.getParent()->getParent()->end() == I.getParent() && |
| !I.getParent()->size() == 1) { |
| return; |
| } |
| |
| Out << " return"; |
| if (I.getNumOperands()) { |
| Out << " "; |
| writeOperand(I.getOperand(0)); |
| } |
| Out << ";\n"; |
| } |
| |
| void CWriter::visitSwitchInst(SwitchInst &SI) { |
| Out << " switch ("; |
| writeOperand(SI.getOperand(0)); |
| Out << ") {\n default:\n"; |
| printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); |
| Out << ";\n"; |
| for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) { |
| Out << " case "; |
| writeOperand(SI.getOperand(i)); |
| Out << ":\n"; |
| BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1)); |
| printBranchToBlock(SI.getParent(), Succ, 2); |
| if (Succ == SI.getParent()->getNext()) |
| Out << " break;\n"; |
| } |
| Out << " }\n"; |
| } |
| |
| void CWriter::visitInvokeInst(InvokeInst &II) { |
| Out << " {\n" |
| << " struct __llvm_jmpbuf_list_t Entry;\n" |
| << " Entry.next = __llvm_jmpbuf_list;\n" |
| << " if (setjmp(Entry.buf)) {\n" |
| << " __llvm_jmpbuf_list = Entry.next;\n"; |
| printBranchToBlock(II.getParent(), II.getExceptionalDest(), 4); |
| Out << " }\n" |
| << " __llvm_jmpbuf_list = &Entry;\n" |
| << " "; |
| |
| if (II.getType() != Type::VoidTy) outputLValue(&II); |
| visitCallSite(&II); |
| Out << ";\n" |
| << " __llvm_jmpbuf_list = Entry.next;\n" |
| << " }\n"; |
| printBranchToBlock(II.getParent(), II.getNormalDest(), 0); |
| emittedInvoke = true; |
| } |
| |
| |
| void CWriter::visitUnwindInst(UnwindInst &I) { |
| // The unwind instructions causes a control flow transfer out of the current |
| // function, unwinding the stack until a caller who used the invoke |
| // instruction is found. In this context, we code generated the invoke |
| // instruction to add an entry to the top of the jmpbuf_list. Thus, here we |
| // just have to longjmp to the specified handler. |
| Out << " if (__llvm_jmpbuf_list == 0) { /* unwind */\n" |
| << " extern write();\n" |
| << " ((void (*)(int, void*, unsigned))write)(2,\n" |
| << " \"throw found with no handler!\\n\", 31); abort();\n" |
| << " }\n" |
| << " longjmp(__llvm_jmpbuf_list->buf, 1);\n"; |
| emittedInvoke = true; |
| } |
| |
| static bool isGotoCodeNeccessary(BasicBlock *From, BasicBlock *To) { |
| // If PHI nodes need copies, we need the copy code... |
| if (isa<PHINode>(To->front()) || |
| From->getNext() != To) // Not directly successor, need goto |
| return true; |
| |
| // Otherwise we don't need the code. |
| return false; |
| } |
| |
| void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, |
| unsigned Indent) { |
| for (BasicBlock::iterator I = Succ->begin(); |
| PHINode *PN = dyn_cast<PHINode>(I); ++I) { |
| // now we have to do the printing |
| Out << std::string(Indent, ' '); |
| Out << " " << Mang->getValueName(I) << "__PHI_TEMPORARY = "; |
| writeOperand(PN->getIncomingValue(PN->getBasicBlockIndex(CurBB))); |
| Out << "; /* for PHI node */\n"; |
| } |
| |
| if (CurBB->getNext() != Succ || isa<InvokeInst>(CurBB->getTerminator())) { |
| Out << std::string(Indent, ' ') << " goto "; |
| writeOperand(Succ); |
| Out << ";\n"; |
| } |
| } |
| |
| // Branch instruction printing - Avoid printing out a branch to a basic block |
| // that immediately succeeds the current one. |
| // |
| void CWriter::visitBranchInst(BranchInst &I) { |
| if (I.isConditional()) { |
| if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(0))) { |
| Out << " if ("; |
| writeOperand(I.getCondition()); |
| Out << ") {\n"; |
| |
| printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); |
| |
| if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(1))) { |
| Out << " } else {\n"; |
| printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); |
| } |
| } else { |
| // First goto not necessary, assume second one is... |
| Out << " if (!"; |
| writeOperand(I.getCondition()); |
| Out << ") {\n"; |
| |
| printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); |
| } |
| |
| Out << " }\n"; |
| } else { |
| printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); |
| } |
| Out << "\n"; |
| } |
| |
| // PHI nodes get copied into temporary values at the end of predecessor basic |
| // blocks. We now need to copy these temporary values into the REAL value for |
| // the PHI. |
| void CWriter::visitPHINode(PHINode &I) { |
| writeOperand(&I); |
| Out << "__PHI_TEMPORARY"; |
| } |
| |
| |
| void CWriter::visitBinaryOperator(Instruction &I) { |
| // binary instructions, shift instructions, setCond instructions. |
| assert(!isa<PointerType>(I.getType())); |
| |
| // We must cast the results of binary operations which might be promoted. |
| bool needsCast = false; |
| if ((I.getType() == Type::UByteTy) || (I.getType() == Type::SByteTy) |
| || (I.getType() == Type::UShortTy) || (I.getType() == Type::ShortTy) |
| || (I.getType() == Type::FloatTy)) { |
| needsCast = true; |
| Out << "(("; |
| printType(Out, I.getType(), "", false, false); |
| Out << ")("; |
| } |
| |
| writeOperand(I.getOperand(0)); |
| |
| switch (I.getOpcode()) { |
| case Instruction::Add: Out << " + "; break; |
| case Instruction::Sub: Out << " - "; break; |
| case Instruction::Mul: Out << "*"; break; |
| case Instruction::Div: Out << "/"; break; |
| case Instruction::Rem: Out << "%"; break; |
| case Instruction::And: Out << " & "; break; |
| case Instruction::Or: Out << " | "; break; |
| case Instruction::Xor: Out << " ^ "; break; |
| case Instruction::SetEQ: Out << " == "; break; |
| case Instruction::SetNE: Out << " != "; break; |
| case Instruction::SetLE: Out << " <= "; break; |
| case Instruction::SetGE: Out << " >= "; break; |
| case Instruction::SetLT: Out << " < "; break; |
| case Instruction::SetGT: Out << " > "; break; |
| case Instruction::Shl : Out << " << "; break; |
| case Instruction::Shr : Out << " >> "; break; |
| default: std::cerr << "Invalid operator type!" << I; abort(); |
| } |
| |
| writeOperand(I.getOperand(1)); |
| |
| if (needsCast) { |
| Out << "))"; |
| } |
| } |
| |
| void CWriter::visitCastInst(CastInst &I) { |
| if (I.getType() == Type::BoolTy) { |
| Out << "("; |
| writeOperand(I.getOperand(0)); |
| Out << " != 0)"; |
| return; |
| } |
| Out << "("; |
| printType(Out, I.getType(), "", /*ignoreName*/false, /*namedContext*/false); |
| Out << ")"; |
| if (isa<PointerType>(I.getType())&&I.getOperand(0)->getType()->isIntegral() || |
| isa<PointerType>(I.getOperand(0)->getType())&&I.getType()->isIntegral()) { |
| // Avoid "cast to pointer from integer of different size" warnings |
| Out << "(long)"; |
| } |
| |
| writeOperand(I.getOperand(0)); |
| } |
| |
| void CWriter::visitCallInst(CallInst &I) { |
| // Handle intrinsic function calls first... |
| if (Function *F = I.getCalledFunction()) |
| if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) { |
| switch (ID) { |
| default: assert(0 && "Unknown LLVM intrinsic!"); |
| case LLVMIntrinsic::va_start: |
| Out << "va_start(*(va_list*)"; |
| writeOperand(I.getOperand(1)); |
| Out << ", "; |
| // Output the last argument to the enclosing function... |
| writeOperand(&I.getParent()->getParent()->aback()); |
| Out << ")"; |
| return; |
| case LLVMIntrinsic::va_end: |
| Out << "va_end(*(va_list*)"; |
| writeOperand(I.getOperand(1)); |
| Out << ")"; |
| return; |
| case LLVMIntrinsic::va_copy: |
| Out << "va_copy(*(va_list*)"; |
| writeOperand(I.getOperand(1)); |
| Out << ", (va_list)"; |
| writeOperand(I.getOperand(2)); |
| Out << ")"; |
| return; |
| |
| case LLVMIntrinsic::setjmp: |
| case LLVMIntrinsic::sigsetjmp: |
| // This intrinsic should never exist in the program, but until we get |
| // setjmp/longjmp transformations going on, we should codegen it to |
| // something reasonable. This will allow code that never calls longjmp |
| // to work. |
| Out << "0"; |
| return; |
| case LLVMIntrinsic::longjmp: |
| case LLVMIntrinsic::siglongjmp: |
| // Longjmp is not implemented, and never will be. It would cause an |
| // exception throw. |
| Out << "abort()"; |
| return; |
| } |
| } |
| visitCallSite(&I); |
| } |
| |
| void CWriter::visitCallSite(CallSite CS) { |
| const PointerType *PTy = cast<PointerType>(CS.getCalledValue()->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| const Type *RetTy = FTy->getReturnType(); |
| |
| writeOperand(CS.getCalledValue()); |
| Out << "("; |
| |
| if (CS.arg_begin() != CS.arg_end()) { |
| CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); |
| writeOperand(*AI); |
| |
| for (++AI; AI != AE; ++AI) { |
| Out << ", "; |
| writeOperand(*AI); |
| } |
| } |
| Out << ")"; |
| } |
| |
| void CWriter::visitMallocInst(MallocInst &I) { |
| Out << "("; |
| printType(Out, I.getType()); |
| Out << ")malloc(sizeof("; |
| printType(Out, I.getType()->getElementType()); |
| Out << ")"; |
| |
| if (I.isArrayAllocation()) { |
| Out << " * " ; |
| writeOperand(I.getOperand(0)); |
| } |
| Out << ")"; |
| } |
| |
| void CWriter::visitAllocaInst(AllocaInst &I) { |
| Out << "("; |
| printType(Out, I.getType()); |
| Out << ") alloca(sizeof("; |
| printType(Out, I.getType()->getElementType()); |
| Out << ")"; |
| if (I.isArrayAllocation()) { |
| Out << " * " ; |
| writeOperand(I.getOperand(0)); |
| } |
| Out << ")"; |
| } |
| |
| void CWriter::visitFreeInst(FreeInst &I) { |
| Out << "free((char*)"; |
| writeOperand(I.getOperand(0)); |
| Out << ")"; |
| } |
| |
| void CWriter::printIndexingExpression(Value *Ptr, User::op_iterator I, |
| User::op_iterator E) { |
| bool HasImplicitAddress = false; |
| // If accessing a global value with no indexing, avoid *(&GV) syndrome |
| if (GlobalValue *V = dyn_cast<GlobalValue>(Ptr)) { |
| HasImplicitAddress = true; |
| } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr)) { |
| HasImplicitAddress = true; |
| Ptr = CPR->getValue(); // Get to the global... |
| } else if (isDirectAlloca(Ptr)) { |
| HasImplicitAddress = true; |
| } |
| |
| if (I == E) { |
| if (!HasImplicitAddress) |
| Out << "*"; // Implicit zero first argument: '*x' is equivalent to 'x[0]' |
| |
| writeOperandInternal(Ptr); |
| return; |
| } |
| |
| const Constant *CI = dyn_cast<Constant>(I); |
| if (HasImplicitAddress && (!CI || !CI->isNullValue())) |
| Out << "(&"; |
| |
| writeOperandInternal(Ptr); |
| |
| if (HasImplicitAddress && (!CI || !CI->isNullValue())) { |
| Out << ")"; |
| HasImplicitAddress = false; // HIA is only true if we haven't addressed yet |
| } |
| |
| assert(!HasImplicitAddress || (CI && CI->isNullValue()) && |
| "Can only have implicit address with direct accessing"); |
| |
| if (HasImplicitAddress) { |
| ++I; |
| } else if (CI && CI->isNullValue() && I+1 != E) { |
| // Print out the -> operator if possible... |
| if ((*(I+1))->getType() == Type::UByteTy) { |
| Out << (HasImplicitAddress ? "." : "->"); |
| Out << "field" << cast<ConstantUInt>(*(I+1))->getValue(); |
| I += 2; |
| } |
| } |
| |
| for (; I != E; ++I) |
| if ((*I)->getType() == Type::LongTy) { |
| Out << "["; |
| writeOperand(*I); |
| Out << "]"; |
| } else { |
| Out << ".field" << cast<ConstantUInt>(*I)->getValue(); |
| } |
| } |
| |
| void CWriter::visitLoadInst(LoadInst &I) { |
| Out << "*"; |
| writeOperand(I.getOperand(0)); |
| } |
| |
| void CWriter::visitStoreInst(StoreInst &I) { |
| Out << "*"; |
| writeOperand(I.getPointerOperand()); |
| Out << " = "; |
| writeOperand(I.getOperand(0)); |
| } |
| |
| void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { |
| Out << "&"; |
| printIndexingExpression(I.getPointerOperand(), I.idx_begin(), I.idx_end()); |
| } |
| |
| void CWriter::visitVarArgInst(VarArgInst &I) { |
| Out << "va_arg((va_list)*"; |
| writeOperand(I.getOperand(0)); |
| Out << ", "; |
| printType(Out, I.getType(), "", /*ignoreName*/false, /*namedContext*/false); |
| Out << ")"; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // External Interface declaration |
| //===----------------------------------------------------------------------===// |
| |
| Pass *createWriteToCPass(std::ostream &o) { return new CWriter(o); } |