| //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the pass which converts floating point instructions from |
| // virtual registers into register stack instructions. This pass uses live |
| // variable information to indicate where the FPn registers are used and their |
| // lifetimes. |
| // |
| // This pass is hampered by the lack of decent CFG manipulation routines for |
| // machine code. In particular, this wants to be able to split critical edges |
| // as necessary, traverse the machine basic block CFG in depth-first order, and |
| // allow there to be multiple machine basic blocks for each LLVM basicblock |
| // (needed for critical edge splitting). |
| // |
| // In particular, this pass currently barfs on critical edges. Because of this, |
| // it requires the instruction selector to insert FP_REG_KILL instructions on |
| // the exits of any basic block that has critical edges going from it, or which |
| // branch to a critical basic block. |
| // |
| // FIXME: this is not implemented yet. The stackifier pass only works on local |
| // basic blocks. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "x86-codegen" |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumFXCH, "Number of fxch instructions inserted"); |
| STATISTIC(NumFP , "Number of floating point instructions"); |
| |
| namespace { |
| struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass { |
| static char ID; |
| FPS() : MachineFunctionPass(&ID) {} |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addPreservedID(MachineLoopInfoID); |
| AU.addPreservedID(MachineDominatorsID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual const char *getPassName() const { return "X86 FP Stackifier"; } |
| |
| private: |
| const TargetInstrInfo *TII; // Machine instruction info. |
| MachineBasicBlock *MBB; // Current basic block |
| unsigned Stack[8]; // FP<n> Registers in each stack slot... |
| unsigned RegMap[8]; // Track which stack slot contains each register |
| unsigned StackTop; // The current top of the FP stack. |
| |
| void dumpStack() const { |
| cerr << "Stack contents:"; |
| for (unsigned i = 0; i != StackTop; ++i) { |
| cerr << " FP" << Stack[i]; |
| assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); |
| } |
| cerr << "\n"; |
| } |
| private: |
| /// isStackEmpty - Return true if the FP stack is empty. |
| bool isStackEmpty() const { |
| return StackTop == 0; |
| } |
| |
| // getSlot - Return the stack slot number a particular register number is |
| // in. |
| unsigned getSlot(unsigned RegNo) const { |
| assert(RegNo < 8 && "Regno out of range!"); |
| return RegMap[RegNo]; |
| } |
| |
| // getStackEntry - Return the X86::FP<n> register in register ST(i). |
| unsigned getStackEntry(unsigned STi) const { |
| assert(STi < StackTop && "Access past stack top!"); |
| return Stack[StackTop-1-STi]; |
| } |
| |
| // getSTReg - Return the X86::ST(i) register which contains the specified |
| // FP<RegNo> register. |
| unsigned getSTReg(unsigned RegNo) const { |
| return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0; |
| } |
| |
| // pushReg - Push the specified FP<n> register onto the stack. |
| void pushReg(unsigned Reg) { |
| assert(Reg < 8 && "Register number out of range!"); |
| assert(StackTop < 8 && "Stack overflow!"); |
| Stack[StackTop] = Reg; |
| RegMap[Reg] = StackTop++; |
| } |
| |
| bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } |
| void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { |
| if (isAtTop(RegNo)) return; |
| |
| unsigned STReg = getSTReg(RegNo); |
| unsigned RegOnTop = getStackEntry(0); |
| |
| // Swap the slots the regs are in. |
| std::swap(RegMap[RegNo], RegMap[RegOnTop]); |
| |
| // Swap stack slot contents. |
| assert(RegMap[RegOnTop] < StackTop); |
| std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); |
| |
| // Emit an fxch to update the runtime processors version of the state. |
| BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(STReg); |
| NumFXCH++; |
| } |
| |
| void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) { |
| unsigned STReg = getSTReg(RegNo); |
| pushReg(AsReg); // New register on top of stack |
| |
| BuildMI(*MBB, I, TII->get(X86::LD_Frr)).addReg(STReg); |
| } |
| |
| // popStackAfter - Pop the current value off of the top of the FP stack |
| // after the specified instruction. |
| void popStackAfter(MachineBasicBlock::iterator &I); |
| |
| // freeStackSlotAfter - Free the specified register from the register stack, |
| // so that it is no longer in a register. If the register is currently at |
| // the top of the stack, we just pop the current instruction, otherwise we |
| // store the current top-of-stack into the specified slot, then pop the top |
| // of stack. |
| void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); |
| |
| bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); |
| |
| void handleZeroArgFP(MachineBasicBlock::iterator &I); |
| void handleOneArgFP(MachineBasicBlock::iterator &I); |
| void handleOneArgFPRW(MachineBasicBlock::iterator &I); |
| void handleTwoArgFP(MachineBasicBlock::iterator &I); |
| void handleCompareFP(MachineBasicBlock::iterator &I); |
| void handleCondMovFP(MachineBasicBlock::iterator &I); |
| void handleSpecialFP(MachineBasicBlock::iterator &I); |
| }; |
| char FPS::ID = 0; |
| } |
| |
| FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } |
| |
| /// getFPReg - Return the X86::FPx register number for the specified operand. |
| /// For example, this returns 3 for X86::FP3. |
| static unsigned getFPReg(const MachineOperand &MO) { |
| assert(MO.isRegister() && "Expected an FP register!"); |
| unsigned Reg = MO.getReg(); |
| assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); |
| return Reg - X86::FP0; |
| } |
| |
| |
| /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP |
| /// register references into FP stack references. |
| /// |
| bool FPS::runOnMachineFunction(MachineFunction &MF) { |
| // We only need to run this pass if there are any FP registers used in this |
| // function. If it is all integer, there is nothing for us to do! |
| bool FPIsUsed = false; |
| |
| assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!"); |
| for (unsigned i = 0; i <= 6; ++i) |
| if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) { |
| FPIsUsed = true; |
| break; |
| } |
| |
| // Early exit. |
| if (!FPIsUsed) return false; |
| |
| TII = MF.getTarget().getInstrInfo(); |
| StackTop = 0; |
| |
| // Process the function in depth first order so that we process at least one |
| // of the predecessors for every reachable block in the function. |
| SmallPtrSet<MachineBasicBlock*, 8> Processed; |
| MachineBasicBlock *Entry = MF.begin(); |
| |
| bool Changed = false; |
| for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> > |
| I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed); |
| I != E; ++I) |
| Changed |= processBasicBlock(MF, **I); |
| |
| return Changed; |
| } |
| |
| /// processBasicBlock - Loop over all of the instructions in the basic block, |
| /// transforming FP instructions into their stack form. |
| /// |
| bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { |
| bool Changed = false; |
| MBB = &BB; |
| |
| for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { |
| MachineInstr *MI = I; |
| unsigned Flags = MI->getDesc().TSFlags; |
| |
| unsigned FPInstClass = Flags & X86II::FPTypeMask; |
| if (MI->getOpcode() == TargetInstrInfo::INLINEASM) |
| FPInstClass = X86II::SpecialFP; |
| |
| if (FPInstClass == X86II::NotFP) |
| continue; // Efficiently ignore non-fp insts! |
| |
| MachineInstr *PrevMI = 0; |
| if (I != BB.begin()) |
| PrevMI = prior(I); |
| |
| ++NumFP; // Keep track of # of pseudo instrs |
| DOUT << "\nFPInst:\t" << *MI; |
| |
| // Get dead variables list now because the MI pointer may be deleted as part |
| // of processing! |
| SmallVector<unsigned, 8> DeadRegs; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isRegister() && MO.isDead()) |
| DeadRegs.push_back(MO.getReg()); |
| } |
| |
| switch (FPInstClass) { |
| case X86II::ZeroArgFP: handleZeroArgFP(I); break; |
| case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) |
| case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) |
| case X86II::TwoArgFP: handleTwoArgFP(I); break; |
| case X86II::CompareFP: handleCompareFP(I); break; |
| case X86II::CondMovFP: handleCondMovFP(I); break; |
| case X86II::SpecialFP: handleSpecialFP(I); break; |
| default: assert(0 && "Unknown FP Type!"); |
| } |
| |
| // Check to see if any of the values defined by this instruction are dead |
| // after definition. If so, pop them. |
| for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) { |
| unsigned Reg = DeadRegs[i]; |
| if (Reg >= X86::FP0 && Reg <= X86::FP6) { |
| DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n"; |
| freeStackSlotAfter(I, Reg-X86::FP0); |
| } |
| } |
| |
| // Print out all of the instructions expanded to if -debug |
| DEBUG( |
| MachineBasicBlock::iterator PrevI(PrevMI); |
| if (I == PrevI) { |
| cerr << "Just deleted pseudo instruction\n"; |
| } else { |
| MachineBasicBlock::iterator Start = I; |
| // Rewind to first instruction newly inserted. |
| while (Start != BB.begin() && prior(Start) != PrevI) --Start; |
| cerr << "Inserted instructions:\n\t"; |
| Start->print(*cerr.stream(), &MF.getTarget()); |
| while (++Start != next(I)) {} |
| } |
| dumpStack(); |
| ); |
| |
| Changed = true; |
| } |
| |
| assert(isStackEmpty() && "Stack not empty at end of basic block?"); |
| return Changed; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Efficient Lookup Table Support |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| struct TableEntry { |
| unsigned from; |
| unsigned to; |
| bool operator<(const TableEntry &TE) const { return from < TE.from; } |
| friend bool operator<(const TableEntry &TE, unsigned V) { |
| return TE.from < V; |
| } |
| friend bool operator<(unsigned V, const TableEntry &TE) { |
| return V < TE.from; |
| } |
| }; |
| } |
| |
| #ifndef NDEBUG |
| static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { |
| for (unsigned i = 0; i != NumEntries-1; ++i) |
| if (!(Table[i] < Table[i+1])) return false; |
| return true; |
| } |
| #endif |
| |
| static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) { |
| const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); |
| if (I != Table+N && I->from == Opcode) |
| return I->to; |
| return -1; |
| } |
| |
| #ifdef NDEBUG |
| #define ASSERT_SORTED(TABLE) |
| #else |
| #define ASSERT_SORTED(TABLE) \ |
| { static bool TABLE##Checked = false; \ |
| if (!TABLE##Checked) { \ |
| assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \ |
| "All lookup tables must be sorted for efficient access!"); \ |
| TABLE##Checked = true; \ |
| } \ |
| } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // Register File -> Register Stack Mapping Methods |
| //===----------------------------------------------------------------------===// |
| |
| // OpcodeTable - Sorted map of register instructions to their stack version. |
| // The first element is an register file pseudo instruction, the second is the |
| // concrete X86 instruction which uses the register stack. |
| // |
| static const TableEntry OpcodeTable[] = { |
| { X86::ABS_Fp32 , X86::ABS_F }, |
| { X86::ABS_Fp64 , X86::ABS_F }, |
| { X86::ABS_Fp80 , X86::ABS_F }, |
| { X86::ADD_Fp32m , X86::ADD_F32m }, |
| { X86::ADD_Fp64m , X86::ADD_F64m }, |
| { X86::ADD_Fp64m32 , X86::ADD_F32m }, |
| { X86::ADD_Fp80m32 , X86::ADD_F32m }, |
| { X86::ADD_Fp80m64 , X86::ADD_F64m }, |
| { X86::ADD_FpI16m32 , X86::ADD_FI16m }, |
| { X86::ADD_FpI16m64 , X86::ADD_FI16m }, |
| { X86::ADD_FpI16m80 , X86::ADD_FI16m }, |
| { X86::ADD_FpI32m32 , X86::ADD_FI32m }, |
| { X86::ADD_FpI32m64 , X86::ADD_FI32m }, |
| { X86::ADD_FpI32m80 , X86::ADD_FI32m }, |
| { X86::CHS_Fp32 , X86::CHS_F }, |
| { X86::CHS_Fp64 , X86::CHS_F }, |
| { X86::CHS_Fp80 , X86::CHS_F }, |
| { X86::CMOVBE_Fp32 , X86::CMOVBE_F }, |
| { X86::CMOVBE_Fp64 , X86::CMOVBE_F }, |
| { X86::CMOVBE_Fp80 , X86::CMOVBE_F }, |
| { X86::CMOVB_Fp32 , X86::CMOVB_F }, |
| { X86::CMOVB_Fp64 , X86::CMOVB_F }, |
| { X86::CMOVB_Fp80 , X86::CMOVB_F }, |
| { X86::CMOVE_Fp32 , X86::CMOVE_F }, |
| { X86::CMOVE_Fp64 , X86::CMOVE_F }, |
| { X86::CMOVE_Fp80 , X86::CMOVE_F }, |
| { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, |
| { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, |
| { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, |
| { X86::CMOVNB_Fp32 , X86::CMOVNB_F }, |
| { X86::CMOVNB_Fp64 , X86::CMOVNB_F }, |
| { X86::CMOVNB_Fp80 , X86::CMOVNB_F }, |
| { X86::CMOVNE_Fp32 , X86::CMOVNE_F }, |
| { X86::CMOVNE_Fp64 , X86::CMOVNE_F }, |
| { X86::CMOVNE_Fp80 , X86::CMOVNE_F }, |
| { X86::CMOVNP_Fp32 , X86::CMOVNP_F }, |
| { X86::CMOVNP_Fp64 , X86::CMOVNP_F }, |
| { X86::CMOVNP_Fp80 , X86::CMOVNP_F }, |
| { X86::CMOVP_Fp32 , X86::CMOVP_F }, |
| { X86::CMOVP_Fp64 , X86::CMOVP_F }, |
| { X86::CMOVP_Fp80 , X86::CMOVP_F }, |
| { X86::COS_Fp32 , X86::COS_F }, |
| { X86::COS_Fp64 , X86::COS_F }, |
| { X86::COS_Fp80 , X86::COS_F }, |
| { X86::DIVR_Fp32m , X86::DIVR_F32m }, |
| { X86::DIVR_Fp64m , X86::DIVR_F64m }, |
| { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, |
| { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, |
| { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, |
| { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, |
| { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, |
| { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, |
| { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, |
| { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, |
| { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, |
| { X86::DIV_Fp32m , X86::DIV_F32m }, |
| { X86::DIV_Fp64m , X86::DIV_F64m }, |
| { X86::DIV_Fp64m32 , X86::DIV_F32m }, |
| { X86::DIV_Fp80m32 , X86::DIV_F32m }, |
| { X86::DIV_Fp80m64 , X86::DIV_F64m }, |
| { X86::DIV_FpI16m32 , X86::DIV_FI16m }, |
| { X86::DIV_FpI16m64 , X86::DIV_FI16m }, |
| { X86::DIV_FpI16m80 , X86::DIV_FI16m }, |
| { X86::DIV_FpI32m32 , X86::DIV_FI32m }, |
| { X86::DIV_FpI32m64 , X86::DIV_FI32m }, |
| { X86::DIV_FpI32m80 , X86::DIV_FI32m }, |
| { X86::ILD_Fp16m32 , X86::ILD_F16m }, |
| { X86::ILD_Fp16m64 , X86::ILD_F16m }, |
| { X86::ILD_Fp16m80 , X86::ILD_F16m }, |
| { X86::ILD_Fp32m32 , X86::ILD_F32m }, |
| { X86::ILD_Fp32m64 , X86::ILD_F32m }, |
| { X86::ILD_Fp32m80 , X86::ILD_F32m }, |
| { X86::ILD_Fp64m32 , X86::ILD_F64m }, |
| { X86::ILD_Fp64m64 , X86::ILD_F64m }, |
| { X86::ILD_Fp64m80 , X86::ILD_F64m }, |
| { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, |
| { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, |
| { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, |
| { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, |
| { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, |
| { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, |
| { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, |
| { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, |
| { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, |
| { X86::IST_Fp16m32 , X86::IST_F16m }, |
| { X86::IST_Fp16m64 , X86::IST_F16m }, |
| { X86::IST_Fp16m80 , X86::IST_F16m }, |
| { X86::IST_Fp32m32 , X86::IST_F32m }, |
| { X86::IST_Fp32m64 , X86::IST_F32m }, |
| { X86::IST_Fp32m80 , X86::IST_F32m }, |
| { X86::IST_Fp64m32 , X86::IST_FP64m }, |
| { X86::IST_Fp64m64 , X86::IST_FP64m }, |
| { X86::IST_Fp64m80 , X86::IST_FP64m }, |
| { X86::LD_Fp032 , X86::LD_F0 }, |
| { X86::LD_Fp064 , X86::LD_F0 }, |
| { X86::LD_Fp080 , X86::LD_F0 }, |
| { X86::LD_Fp132 , X86::LD_F1 }, |
| { X86::LD_Fp164 , X86::LD_F1 }, |
| { X86::LD_Fp180 , X86::LD_F1 }, |
| { X86::LD_Fp32m , X86::LD_F32m }, |
| { X86::LD_Fp32m64 , X86::LD_F32m }, |
| { X86::LD_Fp32m80 , X86::LD_F32m }, |
| { X86::LD_Fp64m , X86::LD_F64m }, |
| { X86::LD_Fp64m80 , X86::LD_F64m }, |
| { X86::LD_Fp80m , X86::LD_F80m }, |
| { X86::MUL_Fp32m , X86::MUL_F32m }, |
| { X86::MUL_Fp64m , X86::MUL_F64m }, |
| { X86::MUL_Fp64m32 , X86::MUL_F32m }, |
| { X86::MUL_Fp80m32 , X86::MUL_F32m }, |
| { X86::MUL_Fp80m64 , X86::MUL_F64m }, |
| { X86::MUL_FpI16m32 , X86::MUL_FI16m }, |
| { X86::MUL_FpI16m64 , X86::MUL_FI16m }, |
| { X86::MUL_FpI16m80 , X86::MUL_FI16m }, |
| { X86::MUL_FpI32m32 , X86::MUL_FI32m }, |
| { X86::MUL_FpI32m64 , X86::MUL_FI32m }, |
| { X86::MUL_FpI32m80 , X86::MUL_FI32m }, |
| { X86::SIN_Fp32 , X86::SIN_F }, |
| { X86::SIN_Fp64 , X86::SIN_F }, |
| { X86::SIN_Fp80 , X86::SIN_F }, |
| { X86::SQRT_Fp32 , X86::SQRT_F }, |
| { X86::SQRT_Fp64 , X86::SQRT_F }, |
| { X86::SQRT_Fp80 , X86::SQRT_F }, |
| { X86::ST_Fp32m , X86::ST_F32m }, |
| { X86::ST_Fp64m , X86::ST_F64m }, |
| { X86::ST_Fp64m32 , X86::ST_F32m }, |
| { X86::ST_Fp80m32 , X86::ST_F32m }, |
| { X86::ST_Fp80m64 , X86::ST_F64m }, |
| { X86::ST_FpP80m , X86::ST_FP80m }, |
| { X86::SUBR_Fp32m , X86::SUBR_F32m }, |
| { X86::SUBR_Fp64m , X86::SUBR_F64m }, |
| { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, |
| { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, |
| { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, |
| { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, |
| { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, |
| { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, |
| { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, |
| { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, |
| { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, |
| { X86::SUB_Fp32m , X86::SUB_F32m }, |
| { X86::SUB_Fp64m , X86::SUB_F64m }, |
| { X86::SUB_Fp64m32 , X86::SUB_F32m }, |
| { X86::SUB_Fp80m32 , X86::SUB_F32m }, |
| { X86::SUB_Fp80m64 , X86::SUB_F64m }, |
| { X86::SUB_FpI16m32 , X86::SUB_FI16m }, |
| { X86::SUB_FpI16m64 , X86::SUB_FI16m }, |
| { X86::SUB_FpI16m80 , X86::SUB_FI16m }, |
| { X86::SUB_FpI32m32 , X86::SUB_FI32m }, |
| { X86::SUB_FpI32m64 , X86::SUB_FI32m }, |
| { X86::SUB_FpI32m80 , X86::SUB_FI32m }, |
| { X86::TST_Fp32 , X86::TST_F }, |
| { X86::TST_Fp64 , X86::TST_F }, |
| { X86::TST_Fp80 , X86::TST_F }, |
| { X86::UCOM_FpIr32 , X86::UCOM_FIr }, |
| { X86::UCOM_FpIr64 , X86::UCOM_FIr }, |
| { X86::UCOM_FpIr80 , X86::UCOM_FIr }, |
| { X86::UCOM_Fpr32 , X86::UCOM_Fr }, |
| { X86::UCOM_Fpr64 , X86::UCOM_Fr }, |
| { X86::UCOM_Fpr80 , X86::UCOM_Fr }, |
| }; |
| |
| static unsigned getConcreteOpcode(unsigned Opcode) { |
| ASSERT_SORTED(OpcodeTable); |
| int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode); |
| assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); |
| return Opc; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Methods |
| //===----------------------------------------------------------------------===// |
| |
| // PopTable - Sorted map of instructions to their popping version. The first |
| // element is an instruction, the second is the version which pops. |
| // |
| static const TableEntry PopTable[] = { |
| { X86::ADD_FrST0 , X86::ADD_FPrST0 }, |
| |
| { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, |
| { X86::DIV_FrST0 , X86::DIV_FPrST0 }, |
| |
| { X86::IST_F16m , X86::IST_FP16m }, |
| { X86::IST_F32m , X86::IST_FP32m }, |
| |
| { X86::MUL_FrST0 , X86::MUL_FPrST0 }, |
| |
| { X86::ST_F32m , X86::ST_FP32m }, |
| { X86::ST_F64m , X86::ST_FP64m }, |
| { X86::ST_Frr , X86::ST_FPrr }, |
| |
| { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, |
| { X86::SUB_FrST0 , X86::SUB_FPrST0 }, |
| |
| { X86::UCOM_FIr , X86::UCOM_FIPr }, |
| |
| { X86::UCOM_FPr , X86::UCOM_FPPr }, |
| { X86::UCOM_Fr , X86::UCOM_FPr }, |
| }; |
| |
| /// popStackAfter - Pop the current value off of the top of the FP stack after |
| /// the specified instruction. This attempts to be sneaky and combine the pop |
| /// into the instruction itself if possible. The iterator is left pointing to |
| /// the last instruction, be it a new pop instruction inserted, or the old |
| /// instruction if it was modified in place. |
| /// |
| void FPS::popStackAfter(MachineBasicBlock::iterator &I) { |
| ASSERT_SORTED(PopTable); |
| assert(StackTop > 0 && "Cannot pop empty stack!"); |
| RegMap[Stack[--StackTop]] = ~0; // Update state |
| |
| // Check to see if there is a popping version of this instruction... |
| int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode()); |
| if (Opcode != -1) { |
| I->setDesc(TII->get(Opcode)); |
| if (Opcode == X86::UCOM_FPPr) |
| I->RemoveOperand(0); |
| } else { // Insert an explicit pop |
| I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(X86::ST0); |
| } |
| } |
| |
| /// freeStackSlotAfter - Free the specified register from the register stack, so |
| /// that it is no longer in a register. If the register is currently at the top |
| /// of the stack, we just pop the current instruction, otherwise we store the |
| /// current top-of-stack into the specified slot, then pop the top of stack. |
| void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { |
| if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. |
| popStackAfter(I); |
| return; |
| } |
| |
| // Otherwise, store the top of stack into the dead slot, killing the operand |
| // without having to add in an explicit xchg then pop. |
| // |
| unsigned STReg = getSTReg(FPRegNo); |
| unsigned OldSlot = getSlot(FPRegNo); |
| unsigned TopReg = Stack[StackTop-1]; |
| Stack[OldSlot] = TopReg; |
| RegMap[TopReg] = OldSlot; |
| RegMap[FPRegNo] = ~0; |
| Stack[--StackTop] = ~0; |
| I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(STReg); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction transformation implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> |
| /// |
| void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { |
| MachineInstr *MI = I; |
| unsigned DestReg = getFPReg(MI->getOperand(0)); |
| |
| // Change from the pseudo instruction to the concrete instruction. |
| MI->RemoveOperand(0); // Remove the explicit ST(0) operand |
| MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); |
| |
| // Result gets pushed on the stack. |
| pushReg(DestReg); |
| } |
| |
| /// handleOneArgFP - fst <mem>, ST(0) |
| /// |
| void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { |
| MachineInstr *MI = I; |
| unsigned NumOps = MI->getDesc().getNumOperands(); |
| assert((NumOps == 5 || NumOps == 1) && |
| "Can only handle fst* & ftst instructions!"); |
| |
| // Is this the last use of the source register? |
| unsigned Reg = getFPReg(MI->getOperand(NumOps-1)); |
| bool KillsSrc = MI->killsRegister(X86::FP0+Reg); |
| |
| // FISTP64m is strange because there isn't a non-popping versions. |
| // If we have one _and_ we don't want to pop the operand, duplicate the value |
| // on the stack instead of moving it. This ensure that popping the value is |
| // always ok. |
| // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. |
| // |
| if (!KillsSrc && |
| (MI->getOpcode() == X86::IST_Fp64m32 || |
| MI->getOpcode() == X86::ISTT_Fp16m32 || |
| MI->getOpcode() == X86::ISTT_Fp32m32 || |
| MI->getOpcode() == X86::ISTT_Fp64m32 || |
| MI->getOpcode() == X86::IST_Fp64m64 || |
| MI->getOpcode() == X86::ISTT_Fp16m64 || |
| MI->getOpcode() == X86::ISTT_Fp32m64 || |
| MI->getOpcode() == X86::ISTT_Fp64m64 || |
| MI->getOpcode() == X86::IST_Fp64m80 || |
| MI->getOpcode() == X86::ISTT_Fp16m80 || |
| MI->getOpcode() == X86::ISTT_Fp32m80 || |
| MI->getOpcode() == X86::ISTT_Fp64m80 || |
| MI->getOpcode() == X86::ST_FpP80m)) { |
| duplicateToTop(Reg, 7 /*temp register*/, I); |
| } else { |
| moveToTop(Reg, I); // Move to the top of the stack... |
| } |
| |
| // Convert from the pseudo instruction to the concrete instruction. |
| MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand |
| MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); |
| |
| if (MI->getOpcode() == X86::IST_FP64m || |
| MI->getOpcode() == X86::ISTT_FP16m || |
| MI->getOpcode() == X86::ISTT_FP32m || |
| MI->getOpcode() == X86::ISTT_FP64m || |
| MI->getOpcode() == X86::ST_FP80m) { |
| assert(StackTop > 0 && "Stack empty??"); |
| --StackTop; |
| } else if (KillsSrc) { // Last use of operand? |
| popStackAfter(I); |
| } |
| } |
| |
| |
| /// handleOneArgFPRW: Handle instructions that read from the top of stack and |
| /// replace the value with a newly computed value. These instructions may have |
| /// non-fp operands after their FP operands. |
| /// |
| /// Examples: |
| /// R1 = fchs R2 |
| /// R1 = fadd R2, [mem] |
| /// |
| void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { |
| MachineInstr *MI = I; |
| #ifndef NDEBUG |
| unsigned NumOps = MI->getDesc().getNumOperands(); |
| assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); |
| #endif |
| |
| // Is this the last use of the source register? |
| unsigned Reg = getFPReg(MI->getOperand(1)); |
| bool KillsSrc = MI->killsRegister(X86::FP0+Reg); |
| |
| if (KillsSrc) { |
| // If this is the last use of the source register, just make sure it's on |
| // the top of the stack. |
| moveToTop(Reg, I); |
| assert(StackTop > 0 && "Stack cannot be empty!"); |
| --StackTop; |
| pushReg(getFPReg(MI->getOperand(0))); |
| } else { |
| // If this is not the last use of the source register, _copy_ it to the top |
| // of the stack. |
| duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I); |
| } |
| |
| // Change from the pseudo instruction to the concrete instruction. |
| MI->RemoveOperand(1); // Drop the source operand. |
| MI->RemoveOperand(0); // Drop the destination operand. |
| MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Define tables of various ways to map pseudo instructions |
| // |
| |
| // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) |
| static const TableEntry ForwardST0Table[] = { |
| { X86::ADD_Fp32 , X86::ADD_FST0r }, |
| { X86::ADD_Fp64 , X86::ADD_FST0r }, |
| { X86::ADD_Fp80 , X86::ADD_FST0r }, |
| { X86::DIV_Fp32 , X86::DIV_FST0r }, |
| { X86::DIV_Fp64 , X86::DIV_FST0r }, |
| { X86::DIV_Fp80 , X86::DIV_FST0r }, |
| { X86::MUL_Fp32 , X86::MUL_FST0r }, |
| { X86::MUL_Fp64 , X86::MUL_FST0r }, |
| { X86::MUL_Fp80 , X86::MUL_FST0r }, |
| { X86::SUB_Fp32 , X86::SUB_FST0r }, |
| { X86::SUB_Fp64 , X86::SUB_FST0r }, |
| { X86::SUB_Fp80 , X86::SUB_FST0r }, |
| }; |
| |
| // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) |
| static const TableEntry ReverseST0Table[] = { |
| { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative |
| { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative |
| { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative |
| { X86::DIV_Fp32 , X86::DIVR_FST0r }, |
| { X86::DIV_Fp64 , X86::DIVR_FST0r }, |
| { X86::DIV_Fp80 , X86::DIVR_FST0r }, |
| { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative |
| { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative |
| { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative |
| { X86::SUB_Fp32 , X86::SUBR_FST0r }, |
| { X86::SUB_Fp64 , X86::SUBR_FST0r }, |
| { X86::SUB_Fp80 , X86::SUBR_FST0r }, |
| }; |
| |
| // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) |
| static const TableEntry ForwardSTiTable[] = { |
| { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative |
| { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative |
| { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative |
| { X86::DIV_Fp32 , X86::DIVR_FrST0 }, |
| { X86::DIV_Fp64 , X86::DIVR_FrST0 }, |
| { X86::DIV_Fp80 , X86::DIVR_FrST0 }, |
| { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative |
| { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative |
| { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative |
| { X86::SUB_Fp32 , X86::SUBR_FrST0 }, |
| { X86::SUB_Fp64 , X86::SUBR_FrST0 }, |
| { X86::SUB_Fp80 , X86::SUBR_FrST0 }, |
| }; |
| |
| // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) |
| static const TableEntry ReverseSTiTable[] = { |
| { X86::ADD_Fp32 , X86::ADD_FrST0 }, |
| { X86::ADD_Fp64 , X86::ADD_FrST0 }, |
| { X86::ADD_Fp80 , X86::ADD_FrST0 }, |
| { X86::DIV_Fp32 , X86::DIV_FrST0 }, |
| { X86::DIV_Fp64 , X86::DIV_FrST0 }, |
| { X86::DIV_Fp80 , X86::DIV_FrST0 }, |
| { X86::MUL_Fp32 , X86::MUL_FrST0 }, |
| { X86::MUL_Fp64 , X86::MUL_FrST0 }, |
| { X86::MUL_Fp80 , X86::MUL_FrST0 }, |
| { X86::SUB_Fp32 , X86::SUB_FrST0 }, |
| { X86::SUB_Fp64 , X86::SUB_FrST0 }, |
| { X86::SUB_Fp80 , X86::SUB_FrST0 }, |
| }; |
| |
| |
| /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual |
| /// instructions which need to be simplified and possibly transformed. |
| /// |
| /// Result: ST(0) = fsub ST(0), ST(i) |
| /// ST(i) = fsub ST(0), ST(i) |
| /// ST(0) = fsubr ST(0), ST(i) |
| /// ST(i) = fsubr ST(0), ST(i) |
| /// |
| void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { |
| ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); |
| ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); |
| MachineInstr *MI = I; |
| |
| unsigned NumOperands = MI->getDesc().getNumOperands(); |
| assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); |
| unsigned Dest = getFPReg(MI->getOperand(0)); |
| unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); |
| unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); |
| bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); |
| bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); |
| |
| unsigned TOS = getStackEntry(0); |
| |
| // One of our operands must be on the top of the stack. If neither is yet, we |
| // need to move one. |
| if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? |
| // We can choose to move either operand to the top of the stack. If one of |
| // the operands is killed by this instruction, we want that one so that we |
| // can update right on top of the old version. |
| if (KillsOp0) { |
| moveToTop(Op0, I); // Move dead operand to TOS. |
| TOS = Op0; |
| } else if (KillsOp1) { |
| moveToTop(Op1, I); |
| TOS = Op1; |
| } else { |
| // All of the operands are live after this instruction executes, so we |
| // cannot update on top of any operand. Because of this, we must |
| // duplicate one of the stack elements to the top. It doesn't matter |
| // which one we pick. |
| // |
| duplicateToTop(Op0, Dest, I); |
| Op0 = TOS = Dest; |
| KillsOp0 = true; |
| } |
| } else if (!KillsOp0 && !KillsOp1) { |
| // If we DO have one of our operands at the top of the stack, but we don't |
| // have a dead operand, we must duplicate one of the operands to a new slot |
| // on the stack. |
| duplicateToTop(Op0, Dest, I); |
| Op0 = TOS = Dest; |
| KillsOp0 = true; |
| } |
| |
| // Now we know that one of our operands is on the top of the stack, and at |
| // least one of our operands is killed by this instruction. |
| assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && |
| "Stack conditions not set up right!"); |
| |
| // We decide which form to use based on what is on the top of the stack, and |
| // which operand is killed by this instruction. |
| const TableEntry *InstTable; |
| bool isForward = TOS == Op0; |
| bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); |
| if (updateST0) { |
| if (isForward) |
| InstTable = ForwardST0Table; |
| else |
| InstTable = ReverseST0Table; |
| } else { |
| if (isForward) |
| InstTable = ForwardSTiTable; |
| else |
| InstTable = ReverseSTiTable; |
| } |
| |
| int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table), |
| MI->getOpcode()); |
| assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); |
| |
| // NotTOS - The register which is not on the top of stack... |
| unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; |
| |
| // Replace the old instruction with a new instruction |
| MBB->remove(I++); |
| I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS)); |
| |
| // If both operands are killed, pop one off of the stack in addition to |
| // overwriting the other one. |
| if (KillsOp0 && KillsOp1 && Op0 != Op1) { |
| assert(!updateST0 && "Should have updated other operand!"); |
| popStackAfter(I); // Pop the top of stack |
| } |
| |
| // Update stack information so that we know the destination register is now on |
| // the stack. |
| unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); |
| assert(UpdatedSlot < StackTop && Dest < 7); |
| Stack[UpdatedSlot] = Dest; |
| RegMap[Dest] = UpdatedSlot; |
| MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction |
| } |
| |
| /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP |
| /// register arguments and no explicit destinations. |
| /// |
| void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { |
| ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); |
| ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); |
| MachineInstr *MI = I; |
| |
| unsigned NumOperands = MI->getDesc().getNumOperands(); |
| assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); |
| unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); |
| unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); |
| bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); |
| bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); |
| |
| // Make sure the first operand is on the top of stack, the other one can be |
| // anywhere. |
| moveToTop(Op0, I); |
| |
| // Change from the pseudo instruction to the concrete instruction. |
| MI->getOperand(0).setReg(getSTReg(Op1)); |
| MI->RemoveOperand(1); |
| MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); |
| |
| // If any of the operands are killed by this instruction, free them. |
| if (KillsOp0) freeStackSlotAfter(I, Op0); |
| if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); |
| } |
| |
| /// handleCondMovFP - Handle two address conditional move instructions. These |
| /// instructions move a st(i) register to st(0) iff a condition is true. These |
| /// instructions require that the first operand is at the top of the stack, but |
| /// otherwise don't modify the stack at all. |
| void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { |
| MachineInstr *MI = I; |
| |
| unsigned Op0 = getFPReg(MI->getOperand(0)); |
| unsigned Op1 = getFPReg(MI->getOperand(2)); |
| bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); |
| |
| // The first operand *must* be on the top of the stack. |
| moveToTop(Op0, I); |
| |
| // Change the second operand to the stack register that the operand is in. |
| // Change from the pseudo instruction to the concrete instruction. |
| MI->RemoveOperand(0); |
| MI->RemoveOperand(1); |
| MI->getOperand(0).setReg(getSTReg(Op1)); |
| MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); |
| |
| // If we kill the second operand, make sure to pop it from the stack. |
| if (Op0 != Op1 && KillsOp1) { |
| // Get this value off of the register stack. |
| freeStackSlotAfter(I, Op1); |
| } |
| } |
| |
| |
| /// handleSpecialFP - Handle special instructions which behave unlike other |
| /// floating point instructions. This is primarily intended for use by pseudo |
| /// instructions. |
| /// |
| void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { |
| MachineInstr *MI = I; |
| switch (MI->getOpcode()) { |
| default: assert(0 && "Unknown SpecialFP instruction!"); |
| case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type! |
| case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type! |
| case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type! |
| assert(StackTop == 0 && "Stack should be empty after a call!"); |
| pushReg(getFPReg(MI->getOperand(0))); |
| break; |
| case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type! |
| case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type! |
| case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type! |
| // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm. |
| // The pattern we expect is: |
| // CALL |
| // FP1 = FpGET_ST0 |
| // FP4 = FpGET_ST1 |
| // |
| // At this point, we've pushed FP1 on the top of stack, so it should be |
| // present if it isn't dead. If it was dead, we already emitted a pop to |
| // remove it from the stack and StackTop = 0. |
| |
| // Push FP4 as top of stack next. |
| pushReg(getFPReg(MI->getOperand(0))); |
| |
| // If StackTop was 0 before we pushed our operand, then ST(0) must have been |
| // dead. In this case, the ST(1) value is the only thing that is live, so |
| // it should be on the TOS (after the pop that was emitted) and is. Just |
| // continue in this case. |
| if (StackTop == 1) |
| break; |
| |
| // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top |
| // elements so that our accounting is correct. |
| unsigned RegOnTop = getStackEntry(0); |
| unsigned RegNo = getStackEntry(1); |
| |
| // Swap the slots the regs are in. |
| std::swap(RegMap[RegNo], RegMap[RegOnTop]); |
| |
| // Swap stack slot contents. |
| assert(RegMap[RegOnTop] < StackTop); |
| std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); |
| break; |
| } |
| case X86::FpSET_ST0_32: |
| case X86::FpSET_ST0_64: |
| case X86::FpSET_ST0_80: |
| assert(StackTop == 1 && "Stack should have one element on it to return!"); |
| --StackTop; // "Forget" we have something on the top of stack! |
| break; |
| case X86::MOV_Fp3232: |
| case X86::MOV_Fp3264: |
| case X86::MOV_Fp6432: |
| case X86::MOV_Fp6464: |
| case X86::MOV_Fp3280: |
| case X86::MOV_Fp6480: |
| case X86::MOV_Fp8032: |
| case X86::MOV_Fp8064: |
| case X86::MOV_Fp8080: { |
| unsigned SrcReg = getFPReg(MI->getOperand(1)); |
| unsigned DestReg = getFPReg(MI->getOperand(0)); |
| |
| if (MI->killsRegister(X86::FP0+SrcReg)) { |
| // If the input operand is killed, we can just change the owner of the |
| // incoming stack slot into the result. |
| unsigned Slot = getSlot(SrcReg); |
| assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!"); |
| Stack[Slot] = DestReg; |
| RegMap[DestReg] = Slot; |
| |
| } else { |
| // For FMOV we just duplicate the specified value to a new stack slot. |
| // This could be made better, but would require substantial changes. |
| duplicateToTop(SrcReg, DestReg, I); |
| } |
| } |
| break; |
| case TargetInstrInfo::INLINEASM: { |
| // The inline asm MachineInstr currently only *uses* FP registers for the |
| // 'f' constraint. These should be turned into the current ST(x) register |
| // in the machine instr. Also, any kills should be explicitly popped after |
| // the inline asm. |
| unsigned Kills[7]; |
| unsigned NumKills = 0; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &Op = MI->getOperand(i); |
| if (!Op.isRegister() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
| continue; |
| assert(Op.isUse() && "Only handle inline asm uses right now"); |
| |
| unsigned FPReg = getFPReg(Op); |
| Op.setReg(getSTReg(FPReg)); |
| |
| // If we kill this operand, make sure to pop it from the stack after the |
| // asm. We just remember it for now, and pop them all off at the end in |
| // a batch. |
| if (Op.isKill()) |
| Kills[NumKills++] = FPReg; |
| } |
| |
| // If this asm kills any FP registers (is the last use of them) we must |
| // explicitly emit pop instructions for them. Do this now after the asm has |
| // executed so that the ST(x) numbers are not off (which would happen if we |
| // did this inline with operand rewriting). |
| // |
| // Note: this might be a non-optimal pop sequence. We might be able to do |
| // better by trying to pop in stack order or something. |
| MachineBasicBlock::iterator InsertPt = MI; |
| while (NumKills) |
| freeStackSlotAfter(InsertPt, Kills[--NumKills]); |
| |
| // Don't delete the inline asm! |
| return; |
| } |
| |
| case X86::RET: |
| case X86::RETI: |
| // If RET has an FP register use operand, pass the first one in ST(0) and |
| // the second one in ST(1). |
| if (isStackEmpty()) return; // Quick check to see if any are possible. |
| |
| // Find the register operands. |
| unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; |
| |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &Op = MI->getOperand(i); |
| if (!Op.isRegister() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) |
| continue; |
| // FP Register uses must be kills unless there are two uses of the same |
| // register, in which case only one will be a kill. |
| assert(Op.isUse() && |
| (Op.isKill() || // Marked kill. |
| getFPReg(Op) == FirstFPRegOp || // Second instance. |
| MI->killsRegister(Op.getReg())) && // Later use is marked kill. |
| "Ret only defs operands, and values aren't live beyond it"); |
| |
| if (FirstFPRegOp == ~0U) |
| FirstFPRegOp = getFPReg(Op); |
| else { |
| assert(SecondFPRegOp == ~0U && "More than two fp operands!"); |
| SecondFPRegOp = getFPReg(Op); |
| } |
| |
| // Remove the operand so that later passes don't see it. |
| MI->RemoveOperand(i); |
| --i, --e; |
| } |
| |
| // There are only four possibilities here: |
| // 1) we are returning a single FP value. In this case, it has to be in |
| // ST(0) already, so just declare success by removing the value from the |
| // FP Stack. |
| if (SecondFPRegOp == ~0U) { |
| // Assert that the top of stack contains the right FP register. |
| assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && |
| "Top of stack not the right register for RET!"); |
| |
| // Ok, everything is good, mark the value as not being on the stack |
| // anymore so that our assertion about the stack being empty at end of |
| // block doesn't fire. |
| StackTop = 0; |
| return; |
| } |
| |
| // Otherwise, we are returning two values: |
| // 2) If returning the same value for both, we only have one thing in the FP |
| // stack. Consider: RET FP1, FP1 |
| if (StackTop == 1) { |
| assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& |
| "Stack misconfiguration for RET!"); |
| |
| // Duplicate the TOS so that we return it twice. Just pick some other FPx |
| // register to hold it. |
| unsigned NewReg = (FirstFPRegOp+1)%7; |
| duplicateToTop(FirstFPRegOp, NewReg, MI); |
| FirstFPRegOp = NewReg; |
| } |
| |
| /// Okay we know we have two different FPx operands now: |
| assert(StackTop == 2 && "Must have two values live!"); |
| |
| /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently |
| /// in ST(1). In this case, emit an fxch. |
| if (getStackEntry(0) == SecondFPRegOp) { |
| assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live"); |
| moveToTop(FirstFPRegOp, MI); |
| } |
| |
| /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in |
| /// ST(1). Just remove both from our understanding of the stack and return. |
| assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live"); |
| assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live"); |
| StackTop = 0; |
| return; |
| } |
| |
| I = MBB->erase(I); // Remove the pseudo instruction |
| --I; |
| } |