| //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "DAGISelMatcher.h" |
| #include "CodeGenDAGPatterns.h" |
| #include "Record.h" |
| #include "llvm/ADT/StringMap.h" |
| using namespace llvm; |
| |
| namespace { |
| class MatcherGen { |
| const PatternToMatch &Pattern; |
| const CodeGenDAGPatterns &CGP; |
| |
| /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts |
| /// out with all of the types removed. This allows us to insert type checks |
| /// as we scan the tree. |
| TreePatternNode *PatWithNoTypes; |
| |
| /// VariableMap - A map from variable names ('$dst') to the recorded operand |
| /// number that they were captured as. These are biased by 1 to make |
| /// insertion easier. |
| StringMap<unsigned> VariableMap; |
| unsigned NextRecordedOperandNo; |
| |
| MatcherNodeWithChild *Matcher; |
| MatcherNodeWithChild *CurPredicate; |
| public: |
| MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); |
| |
| ~MatcherGen() { |
| delete PatWithNoTypes; |
| } |
| |
| void EmitMatcherCode(); |
| |
| MatcherNodeWithChild *GetMatcher() const { return Matcher; } |
| MatcherNodeWithChild *GetCurPredicate() const { return CurPredicate; } |
| private: |
| void AddMatcherNode(MatcherNodeWithChild *NewNode); |
| void InferPossibleTypes(); |
| void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); |
| void EmitLeafMatchCode(const TreePatternNode *N); |
| void EmitOperatorMatchCode(const TreePatternNode *N, |
| TreePatternNode *NodeNoTypes); |
| }; |
| |
| } // end anon namespace. |
| |
| MatcherGen::MatcherGen(const PatternToMatch &pattern, |
| const CodeGenDAGPatterns &cgp) |
| : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), |
| Matcher(0), CurPredicate(0) { |
| // We need to produce the matcher tree for the patterns source pattern. To do |
| // this we need to match the structure as well as the types. To do the type |
| // matching, we want to figure out the fewest number of type checks we need to |
| // emit. For example, if there is only one integer type supported by a |
| // target, there should be no type comparisons at all for integer patterns! |
| // |
| // To figure out the fewest number of type checks needed, clone the pattern, |
| // remove the types, then perform type inference on the pattern as a whole. |
| // If there are unresolved types, emit an explicit check for those types, |
| // apply the type to the tree, then rerun type inference. Iterate until all |
| // types are resolved. |
| // |
| PatWithNoTypes = Pattern.getSrcPattern()->clone(); |
| PatWithNoTypes->RemoveAllTypes(); |
| |
| // If there are types that are manifestly known, infer them. |
| InferPossibleTypes(); |
| } |
| |
| /// InferPossibleTypes - As we emit the pattern, we end up generating type |
| /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we |
| /// want to propagate implied types as far throughout the tree as possible so |
| /// that we avoid doing redundant type checks. This does the type propagation. |
| void MatcherGen::InferPossibleTypes() { |
| // TP - Get *SOME* tree pattern, we don't care which. It is only used for |
| // diagnostics, which we know are impossible at this point. |
| TreePattern &TP = *CGP.pf_begin()->second; |
| |
| try { |
| bool MadeChange = true; |
| while (MadeChange) |
| MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, |
| true/*Ignore reg constraints*/); |
| } catch (...) { |
| errs() << "Type constraint application shouldn't fail!"; |
| abort(); |
| } |
| } |
| |
| |
| /// AddMatcherNode - Add a matcher node to the current graph we're building. |
| void MatcherGen::AddMatcherNode(MatcherNodeWithChild *NewNode) { |
| if (CurPredicate != 0) |
| CurPredicate->setChild(NewNode); |
| else |
| Matcher = NewNode; |
| CurPredicate = NewNode; |
| } |
| |
| |
| |
| /// EmitLeafMatchCode - Generate matching code for leaf nodes. |
| void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { |
| assert(N->isLeaf() && "Not a leaf?"); |
| // Direct match against an integer constant. |
| if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) |
| return AddMatcherNode(new CheckIntegerMatcherNode(II->getValue())); |
| |
| DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue()); |
| if (DI == 0) { |
| errs() << "Unknown leaf kind: " << *DI << "\n"; |
| abort(); |
| } |
| |
| Record *LeafRec = DI->getDef(); |
| if (// Handle register references. Nothing to do here, they always match. |
| LeafRec->isSubClassOf("RegisterClass") || |
| LeafRec->isSubClassOf("PointerLikeRegClass") || |
| LeafRec->isSubClassOf("Register") || |
| // Place holder for SRCVALUE nodes. Nothing to do here. |
| LeafRec->getName() == "srcvalue") |
| return; |
| |
| if (LeafRec->isSubClassOf("ValueType")) |
| return AddMatcherNode(new CheckValueTypeMatcherNode(LeafRec->getName())); |
| |
| if (LeafRec->isSubClassOf("CondCode")) |
| return AddMatcherNode(new CheckCondCodeMatcherNode(LeafRec->getName())); |
| |
| if (LeafRec->isSubClassOf("ComplexPattern")) { |
| // Handle complex pattern. |
| const ComplexPattern &CP = CGP.getComplexPattern(LeafRec); |
| return AddMatcherNode(new CheckComplexPatMatcherNode(CP)); |
| } |
| |
| errs() << "Unknown leaf kind: " << *N << "\n"; |
| abort(); |
| } |
| |
| void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, |
| TreePatternNode *NodeNoTypes) { |
| assert(!N->isLeaf() && "Not an operator?"); |
| const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); |
| |
| // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is |
| // a constant without a predicate fn that has more that one bit set, handle |
| // this as a special case. This is usually for targets that have special |
| // handling of certain large constants (e.g. alpha with it's 8/16/32-bit |
| // handling stuff). Using these instructions is often far more efficient |
| // than materializing the constant. Unfortunately, both the instcombiner |
| // and the dag combiner can often infer that bits are dead, and thus drop |
| // them from the mask in the dag. For example, it might turn 'AND X, 255' |
| // into 'AND X, 254' if it knows the low bit is set. Emit code that checks |
| // to handle this. |
| if ((N->getOperator()->getName() == "and" || |
| N->getOperator()->getName() == "or") && |
| N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty()) { |
| if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) { |
| if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. |
| if (N->getOperator()->getName() == "and") |
| AddMatcherNode(new CheckAndImmMatcherNode(II->getValue())); |
| else |
| AddMatcherNode(new CheckOrImmMatcherNode(II->getValue())); |
| |
| // Match the LHS of the AND as appropriate. |
| AddMatcherNode(new MoveChildMatcherNode(0)); |
| EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0)); |
| AddMatcherNode(new MoveParentMatcherNode()); |
| return; |
| } |
| } |
| } |
| |
| // Check that the current opcode lines up. |
| AddMatcherNode(new CheckOpcodeMatcherNode(CInfo.getEnumName())); |
| |
| // If this node has a chain, then the chain is operand #0 is the SDNode, and |
| // the child numbers of the node are all offset by one. |
| unsigned OpNo = 0; |
| if (N->NodeHasProperty(SDNPHasChain, CGP)) |
| OpNo = 1; |
| |
| if (N->TreeHasProperty(SDNPHasChain, CGP)) { |
| // FIXME: Handle Chains with multiple uses etc. |
| // [ld] |
| // ^ ^ |
| // | | |
| // / \--- |
| // / [YY] |
| // | ^ |
| // [XX]-------| |
| } |
| |
| // FIXME: Handle Flags & .hasOneUse() |
| |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { |
| // Get the code suitable for matching this child. Move to the child, check |
| // it then move back to the parent. |
| AddMatcherNode(new MoveChildMatcherNode(i)); |
| EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i)); |
| AddMatcherNode(new MoveParentMatcherNode()); |
| } |
| } |
| |
| |
| void MatcherGen::EmitMatchCode(const TreePatternNode *N, |
| TreePatternNode *NodeNoTypes) { |
| // If N and NodeNoTypes don't agree on a type, then this is a case where we |
| // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and |
| // reinfer any correlated types. |
| if (NodeNoTypes->getExtTypes() != N->getExtTypes()) { |
| AddMatcherNode(new CheckTypeMatcherNode(N->getTypeNum(0))); |
| NodeNoTypes->setTypes(N->getExtTypes()); |
| InferPossibleTypes(); |
| } |
| |
| |
| // If this node has a name associated with it, capture it in VariableMap. If |
| // we already saw this in the pattern, emit code to verify dagness. |
| if (!N->getName().empty()) { |
| unsigned &VarMapEntry = VariableMap[N->getName()]; |
| if (VarMapEntry == 0) { |
| VarMapEntry = ++NextRecordedOperandNo; |
| AddMatcherNode(new RecordMatcherNode()); |
| } else { |
| // If we get here, this is a second reference to a specific name. Since |
| // we already have checked that the first reference is valid, we don't |
| // have to recursively match it, just check that it's the same as the |
| // previously named thing. |
| AddMatcherNode(new CheckSameMatcherNode(VarMapEntry-1)); |
| return; |
| } |
| } |
| |
| // If there are node predicates for this node, generate their checks. |
| for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) |
| AddMatcherNode(new CheckPredicateMatcherNode(N->getPredicateFns()[i])); |
| |
| if (N->isLeaf()) |
| EmitLeafMatchCode(N); |
| else |
| EmitOperatorMatchCode(N, NodeNoTypes); |
| } |
| |
| void MatcherGen::EmitMatcherCode() { |
| // If the pattern has a predicate on it (e.g. only enabled when a subtarget |
| // feature is around, do the check). |
| if (!Pattern.getPredicateCheck().empty()) |
| AddMatcherNode(new |
| CheckPatternPredicateMatcherNode(Pattern.getPredicateCheck())); |
| |
| // Emit the matcher for the pattern structure and types. |
| EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes); |
| } |
| |
| |
| MatcherNode *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, |
| const CodeGenDAGPatterns &CGP) { |
| MatcherGen Gen(Pattern, CGP); |
| |
| // Generate the code for the matcher. |
| Gen.EmitMatcherCode(); |
| |
| // If the match succeeds, then we generate Pattern. |
| EmitNodeMatcherNode *Result = new EmitNodeMatcherNode(Pattern); |
| |
| // Link it into the pattern. |
| if (MatcherNodeWithChild *Pred = Gen.GetCurPredicate()) { |
| Pred->setChild(Result); |
| return Gen.GetMatcher(); |
| } |
| |
| // Unconditional match. |
| return Result; |
| } |
| |
| |
| |