blob: 97a43f2b95de2cffd7a18eb58f5022583275cd71 [file] [log] [blame]
//===-- X86FloatingPoint.cpp - FP_REG_KILL inserter -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass which inserts FP_REG_KILL instructions.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "x86-codegen"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/Instructions.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CFG.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumFPKill, "Number of FP_REG_KILL instructions added");
namespace {
struct FPRegKiller : public MachineFunctionPass {
static char ID;
FPRegKiller() : MachineFunctionPass(&ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "X86 FP_REG_KILL inserter";
}
};
char FPRegKiller::ID = 0;
}
FunctionPass *llvm::createX87FPRegKillInserterPass() {
return new FPRegKiller();
}
/// ContainsFPStackCode - Return true if the specific MBB has floating point
/// stack code, and thus needs an FP_REG_KILL.
static bool ContainsFPStackCode(MachineBasicBlock *MBB, unsigned SSELevel,
MachineRegisterInfo &MRI) {
// Scan the block, looking for instructions that define fp stack vregs.
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
I != E; ++I) {
if (I->getNumOperands() == 0 || !I->getOperand(0).isReg())
continue;
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
if (!I->getOperand(op).isReg() || !I->getOperand(op).isDef() ||
!TargetRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()))
continue;
const TargetRegisterClass *RegClass =
MRI.getRegClass(I->getOperand(op).getReg());
switch (RegClass->getID())
case X86::RFP32RegClassID:
case X86::RFP64RegClassID:
case X86::RFP80RegClassID:
return true;
}
}
// Check PHI nodes in successor blocks. These PHI's will be lowered to have
// a copy of the input value in this block. In SSE mode, we only care about
// 80-bit values.
// Final check, check LLVM BB's that are successors to the LLVM BB
// corresponding to BB for FP PHI nodes.
const BasicBlock *LLVMBB = MBB->getBasicBlock();
for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
SI != E; ++SI) {
const PHINode *PN;
for (BasicBlock::const_iterator II = SI->begin();
(PN = dyn_cast<PHINode>(II)); ++II) {
if (PN->getType()->isX86_FP80Ty() ||
(SSELevel == 0 && PN->getType()->isFloatingPointTy()) ||
(SSELevel < 2 && PN->getType()->isDoubleTy())) {
return true;
}
}
}
return false;
}
bool FPRegKiller::runOnMachineFunction(MachineFunction &MF) {
// If we are emitting FP stack code, scan the basic block to determine if this
// block defines any FP values. If so, put an FP_REG_KILL instruction before
// the terminator of the block.
// Note that FP stack instructions are used in all modes for long double,
// so we always need to do this check.
// Also note that it's possible for an FP stack register to be live across
// an instruction that produces multiple basic blocks (SSE CMOV) so we
// must check all the generated basic blocks.
// Scan all of the machine instructions in these MBBs, checking for FP
// stores. (RFP32 and RFP64 will not exist in SSE mode, but RFP80 might.)
// Fast-path: If nothing is using the x87 registers, we don't need to do
// any scanning.
MachineRegisterInfo &MRI = MF.getRegInfo();
if (MRI.getRegClassVirtRegs(X86::RFP80RegisterClass).empty() &&
MRI.getRegClassVirtRegs(X86::RFP64RegisterClass).empty() &&
MRI.getRegClassVirtRegs(X86::RFP32RegisterClass).empty())
return false;
const X86Subtarget &Subtarget = MF.getTarget().getSubtarget<X86Subtarget>();
unsigned SSELevel = 0;
if (Subtarget.hasSSE2())
SSELevel = 2;
else if (Subtarget.hasSSE1())
SSELevel = 1;
bool Changed = false;
MachineFunction::iterator MBBI = MF.begin();
MachineFunction::iterator EndMBB = MF.end();
for (; MBBI != EndMBB; ++MBBI) {
MachineBasicBlock *MBB = MBBI;
// If this block returns, ignore it. We don't want to insert an FP_REG_KILL
// before the return.
if (!MBB->empty()) {
MachineBasicBlock::iterator EndI = MBB->end();
--EndI;
if (EndI->getDesc().isReturn())
continue;
}
// If we find any FP stack code, emit the FP_REG_KILL instruction.
if (ContainsFPStackCode(MBB, SSELevel, MRI)) {
BuildMI(*MBB, MBBI->getFirstTerminator(), DebugLoc(),
MF.getTarget().getInstrInfo()->get(X86::FP_REG_KILL));
++NumFPKill;
Changed = true;
}
}
return Changed;
}