| //===---------------------------------------------------------------------===// |
| // Random ideas for the X86 backend. |
| //===---------------------------------------------------------------------===// |
| |
| Add a MUL2U and MUL2S nodes to represent a multiply that returns both the |
| Hi and Lo parts (combination of MUL and MULH[SU] into one node). Add this to |
| X86, & make the dag combiner produce it when needed. This will eliminate one |
| imul from the code generated for: |
| |
| long long test(long long X, long long Y) { return X*Y; } |
| |
| by using the EAX result from the mul. We should add a similar node for |
| DIVREM. |
| |
| another case is: |
| |
| long long test(int X, int Y) { return (long long)X*Y; } |
| |
| ... which should only be one imul instruction. |
| |
| //===---------------------------------------------------------------------===// |
| |
| This should be one DIV/IDIV instruction, not a libcall: |
| |
| unsigned test(unsigned long long X, unsigned Y) { |
| return X/Y; |
| } |
| |
| This can be done trivially with a custom legalizer. What about overflow |
| though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224 |
| |
| //===---------------------------------------------------------------------===// |
| |
| Some targets (e.g. athlons) prefer freep to fstp ST(0): |
| http://gcc.gnu.org/ml/gcc-patches/2004-04/msg00659.html |
| |
| //===---------------------------------------------------------------------===// |
| |
| This should use fiadd on chips where it is profitable: |
| double foo(double P, int *I) { return P+*I; } |
| |
| We have fiadd patterns now but the followings have the same cost and |
| complexity. We need a way to specify the later is more profitable. |
| |
| def FpADD32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, |
| [(set RFP:$dst, (fadd RFP:$src1, |
| (extloadf64f32 addr:$src2)))]>; |
| // ST(0) = ST(0) + [mem32] |
| |
| def FpIADD32m : FpI<(ops RFP:$dst, RFP:$src1, i32mem:$src2), OneArgFPRW, |
| [(set RFP:$dst, (fadd RFP:$src1, |
| (X86fild addr:$src2, i32)))]>; |
| // ST(0) = ST(0) + [mem32int] |
| |
| //===---------------------------------------------------------------------===// |
| |
| The FP stackifier needs to be global. Also, it should handle simple permutates |
| to reduce number of shuffle instructions, e.g. turning: |
| |
| fld P -> fld Q |
| fld Q fld P |
| fxch |
| |
| or: |
| |
| fxch -> fucomi |
| fucomi jl X |
| jg X |
| |
| Ideas: |
| http://gcc.gnu.org/ml/gcc-patches/2004-11/msg02410.html |
| |
| |
| //===---------------------------------------------------------------------===// |
| |
| Improvements to the multiply -> shift/add algorithm: |
| http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html |
| |
| //===---------------------------------------------------------------------===// |
| |
| Improve code like this (occurs fairly frequently, e.g. in LLVM): |
| long long foo(int x) { return 1LL << x; } |
| |
| http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html |
| http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html |
| http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html |
| |
| Another useful one would be ~0ULL >> X and ~0ULL << X. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Compile this: |
| _Bool f(_Bool a) { return a!=1; } |
| |
| into: |
| movzbl %dil, %eax |
| xorl $1, %eax |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| Some isel ideas: |
| |
| 1. Dynamic programming based approach when compile time if not an |
| issue. |
| 2. Code duplication (addressing mode) during isel. |
| 3. Other ideas from "Register-Sensitive Selection, Duplication, and |
| Sequencing of Instructions". |
| 4. Scheduling for reduced register pressure. E.g. "Minimum Register |
| Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs" |
| and other related papers. |
| http://citeseer.ist.psu.edu/govindarajan01minimum.html |
| |
| //===---------------------------------------------------------------------===// |
| |
| Should we promote i16 to i32 to avoid partial register update stalls? |
| |
| //===---------------------------------------------------------------------===// |
| |
| Leave any_extend as pseudo instruction and hint to register |
| allocator. Delay codegen until post register allocation. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Add a target specific hook to DAG combiner to handle SINT_TO_FP and |
| FP_TO_SINT when the source operand is already in memory. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Model X86 EFLAGS as a real register to avoid redudant cmp / test. e.g. |
| |
| cmpl $1, %eax |
| setg %al |
| testb %al, %al # unnecessary |
| jne .BB7 |
| |
| //===---------------------------------------------------------------------===// |
| |
| Count leading zeros and count trailing zeros: |
| |
| int clz(int X) { return __builtin_clz(X); } |
| int ctz(int X) { return __builtin_ctz(X); } |
| |
| $ gcc t.c -S -o - -O3 -fomit-frame-pointer -masm=intel |
| clz: |
| bsr %eax, DWORD PTR [%esp+4] |
| xor %eax, 31 |
| ret |
| ctz: |
| bsf %eax, DWORD PTR [%esp+4] |
| ret |
| |
| however, check that these are defined for 0 and 32. Our intrinsics are, GCC's |
| aren't. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Use push/pop instructions in prolog/epilog sequences instead of stores off |
| ESP (certain code size win, perf win on some [which?] processors). |
| |
| //===---------------------------------------------------------------------===// |
| |
| Only use inc/neg/not instructions on processors where they are faster than |
| add/sub/xor. They are slower on the P4 due to only updating some processor |
| flags. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Open code rint,floor,ceil,trunc: |
| http://gcc.gnu.org/ml/gcc-patches/2004-08/msg02006.html |
| http://gcc.gnu.org/ml/gcc-patches/2004-08/msg02011.html |
| |
| //===---------------------------------------------------------------------===// |
| |
| Combine: a = sin(x), b = cos(x) into a,b = sincos(x). |
| |
| Expand these to calls of sin/cos and stores: |
| double sincos(double x, double *sin, double *cos); |
| float sincosf(float x, float *sin, float *cos); |
| long double sincosl(long double x, long double *sin, long double *cos); |
| |
| Doing so could allow SROA of the destination pointers. See also: |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687 |
| |
| //===---------------------------------------------------------------------===// |
| |
| The instruction selector sometimes misses folding a load into a compare. The |
| pattern is written as (cmp reg, (load p)). Because the compare isn't |
| commutative, it is not matched with the load on both sides. The dag combiner |
| should be made smart enough to cannonicalize the load into the RHS of a compare |
| when it can invert the result of the compare for free. |
| |
| //===---------------------------------------------------------------------===// |
| |
| LSR should be turned on for the X86 backend and tuned to take advantage of its |
| addressing modes. |
| |
| //===---------------------------------------------------------------------===// |
| |
| When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and |
| other fast SSE modes. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Think about doing i64 math in SSE regs. |
| |
| //===---------------------------------------------------------------------===// |
| |
| The DAG Isel doesn't fold the loads into the adds in this testcase. The |
| pattern selector does. This is because the chain value of the load gets |
| selected first, and the loads aren't checking to see if they are only used by |
| and add. |
| |
| .ll: |
| |
| int %test(int* %x, int* %y, int* %z) { |
| %X = load int* %x |
| %Y = load int* %y |
| %Z = load int* %z |
| %a = add int %X, %Y |
| %b = add int %a, %Z |
| ret int %b |
| } |
| |
| dag isel: |
| |
| _test: |
| movl 4(%esp), %eax |
| movl (%eax), %eax |
| movl 8(%esp), %ecx |
| movl (%ecx), %ecx |
| addl %ecx, %eax |
| movl 12(%esp), %ecx |
| movl (%ecx), %ecx |
| addl %ecx, %eax |
| ret |
| |
| pattern isel: |
| |
| _test: |
| movl 12(%esp), %ecx |
| movl 4(%esp), %edx |
| movl 8(%esp), %eax |
| movl (%eax), %eax |
| addl (%edx), %eax |
| addl (%ecx), %eax |
| ret |
| |
| This is bad for register pressure, though the dag isel is producing a |
| better schedule. :) |
| |
| //===---------------------------------------------------------------------===// |
| |
| This testcase should have no SSE instructions in it, and only one load from |
| a constant pool: |
| |
| double %test3(bool %B) { |
| %C = select bool %B, double 123.412, double 523.01123123 |
| ret double %C |
| } |
| |
| Currently, the select is being lowered, which prevents the dag combiner from |
| turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)' |
| |
| The pattern isel got this one right. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We need to lower switch statements to tablejumps when appropriate instead of |
| always into binary branch trees. |
| |
| //===---------------------------------------------------------------------===// |
| |
| SSE doesn't have [mem] op= reg instructions. If we have an SSE instruction |
| like this: |
| |
| X += y |
| |
| and the register allocator decides to spill X, it is cheaper to emit this as: |
| |
| Y += [xslot] |
| store Y -> [xslot] |
| |
| than as: |
| |
| tmp = [xslot] |
| tmp += y |
| store tmp -> [xslot] |
| |
| ..and this uses one fewer register (so this should be done at load folding |
| time, not at spiller time). *Note* however that this can only be done |
| if Y is dead. Here's a testcase: |
| |
| %.str_3 = external global [15 x sbyte] ; <[15 x sbyte]*> [#uses=0] |
| implementation ; Functions: |
| declare void %printf(int, ...) |
| void %main() { |
| build_tree.exit: |
| br label %no_exit.i7 |
| no_exit.i7: ; preds = %no_exit.i7, %build_tree.exit |
| %tmp.0.1.0.i9 = phi double [ 0.000000e+00, %build_tree.exit ], [ %tmp.34.i18, %no_exit.i7 ] ; <double> [#uses=1] |
| %tmp.0.0.0.i10 = phi double [ 0.000000e+00, %build_tree.exit ], [ %tmp.28.i16, %no_exit.i7 ] ; <double> [#uses=1] |
| %tmp.28.i16 = add double %tmp.0.0.0.i10, 0.000000e+00 |
| %tmp.34.i18 = add double %tmp.0.1.0.i9, 0.000000e+00 |
| br bool false, label %Compute_Tree.exit23, label %no_exit.i7 |
| Compute_Tree.exit23: ; preds = %no_exit.i7 |
| tail call void (int, ...)* %printf( int 0 ) |
| store double %tmp.34.i18, double* null |
| ret void |
| } |
| |
| We currently emit: |
| |
| .BBmain_1: |
| xorpd %XMM1, %XMM1 |
| addsd %XMM0, %XMM1 |
| *** movsd %XMM2, QWORD PTR [%ESP + 8] |
| *** addsd %XMM2, %XMM1 |
| *** movsd QWORD PTR [%ESP + 8], %XMM2 |
| jmp .BBmain_1 # no_exit.i7 |
| |
| This is a bugpoint reduced testcase, which is why the testcase doesn't make |
| much sense (e.g. its an infinite loop). :) |
| |
| //===---------------------------------------------------------------------===// |
| |
| None of the FPStack instructions are handled in |
| X86RegisterInfo::foldMemoryOperand, which prevents the spiller from |
| folding spill code into the instructions. |
| |
| //===---------------------------------------------------------------------===// |
| |
| In many cases, LLVM generates code like this: |
| |
| _test: |
| movl 8(%esp), %eax |
| cmpl %eax, 4(%esp) |
| setl %al |
| movzbl %al, %eax |
| ret |
| |
| on some processors (which ones?), it is more efficient to do this: |
| |
| _test: |
| movl 8(%esp), %ebx |
| xor %eax, %eax |
| cmpl %ebx, 4(%esp) |
| setl %al |
| ret |
| |
| Doing this correctly is tricky though, as the xor clobbers the flags. |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should generate 'test' instead of 'cmp' in various cases, e.g.: |
| |
| bool %test(int %X) { |
| %Y = shl int %X, ubyte 1 |
| %C = seteq int %Y, 0 |
| ret bool %C |
| } |
| bool %test(int %X) { |
| %Y = and int %X, 8 |
| %C = seteq int %Y, 0 |
| ret bool %C |
| } |
| |
| This may just be a matter of using 'test' to write bigger patterns for X86cmp. |
| |
| //===---------------------------------------------------------------------===// |
| |
| SSE should implement 'select_cc' using 'emulated conditional moves' that use |
| pcmp/pand/pandn/por to do a selection instead of a conditional branch: |
| |
| double %X(double %Y, double %Z, double %A, double %B) { |
| %C = setlt double %A, %B |
| %z = add double %Z, 0.0 ;; select operand is not a load |
| %D = select bool %C, double %Y, double %z |
| ret double %D |
| } |
| |
| We currently emit: |
| |
| _X: |
| subl $12, %esp |
| xorpd %xmm0, %xmm0 |
| addsd 24(%esp), %xmm0 |
| movsd 32(%esp), %xmm1 |
| movsd 16(%esp), %xmm2 |
| ucomisd 40(%esp), %xmm1 |
| jb LBB_X_2 |
| LBB_X_1: |
| movsd %xmm0, %xmm2 |
| LBB_X_2: |
| movsd %xmm2, (%esp) |
| fldl (%esp) |
| addl $12, %esp |
| ret |
| |
| //===---------------------------------------------------------------------===// |
| |
| We should generate bts/btr/etc instructions on targets where they are cheap or |
| when codesize is important. e.g., for: |
| |
| void setbit(int *target, int bit) { |
| *target |= (1 << bit); |
| } |
| void clearbit(int *target, int bit) { |
| *target &= ~(1 << bit); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| |
| Easy: Global addresses are not always allowed as immediates. For this: |
| |
| int dst = 0; int *ptr = 0; |
| void foo() { ptr = &dst; } |
| |
| we get this: |
| |
| _foo: |
| movl $_dst, %eax |
| movl %eax, _ptr |
| ret |
| |
| When: "movl $_dst, _ptr" is sufficient. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Instead of the following for memset char*, 1, 10: |
| |
| movl $16843009, 4(%edx) |
| movl $16843009, (%edx) |
| movw $257, 8(%edx) |
| |
| It might be better to generate |
| |
| movl $16843009, %eax |
| movl %eax, 4(%edx) |
| movl %eax, (%edx) |
| movw al, 8(%edx) |
| |
| when we can spare a register. It reduces code size. |
| |
| //===---------------------------------------------------------------------===// |
| |
| It's not clear whether we should use pxor or xorps / xorpd to clear XMM |
| registers. The choice may depend on subtarget information. We should do some |
| more experiments on different x86 machines. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently |
| get this: |
| |
| int %test1(int %X) { |
| %Y = div int %X, 8 |
| ret int %Y |
| } |
| |
| _test1: |
| movl 4(%esp), %eax |
| movl %eax, %ecx |
| sarl $31, %ecx |
| shrl $29, %ecx |
| addl %ecx, %eax |
| sarl $3, %eax |
| ret |
| |
| GCC knows several different ways to codegen it, one of which is this: |
| |
| _test1: |
| movl 4(%esp), %eax |
| cmpl $-1, %eax |
| leal 7(%eax), %ecx |
| cmovle %ecx, %eax |
| sarl $3, %eax |
| ret |
| |
| which is probably slower, but it's interesting at least :) |
| |
| //===---------------------------------------------------------------------===// |
| |
| Currently the x86 codegen isn't very good at mixing SSE and FPStack |
| code: |
| |
| unsigned int foo(double x) { return x; } |
| |
| foo: |
| subl $20, %esp |
| movsd 24(%esp), %xmm0 |
| movsd %xmm0, 8(%esp) |
| fldl 8(%esp) |
| fisttpll (%esp) |
| movl (%esp), %eax |
| addl $20, %esp |
| ret |
| |
| This will be solved when we go to a dynamic programming based isel. |
| |
| //===---------------------------------------------------------------------===// |
| |
| Make use of floating point min / max instructions. Perhaps introduce ISD::FMIN |
| and ISD::FMAX node types? |
| |
| //===---------------------------------------------------------------------===// |
| |
| Select (add, x, GlobalAddress) to ADD32ri, etc. when it's appropriate. |
| |
| //===---------------------------------------------------------------------===// |
| |
| The first BB of this code: |
| |
| declare bool %foo() |
| int %bar() { |
| %V = call bool %foo() |
| br bool %V, label %T, label %F |
| T: |
| ret int 1 |
| F: |
| call bool %foo() |
| ret int 12 |
| } |
| |
| compiles to: |
| |
| _bar: |
| subl $12, %esp |
| call L_foo$stub |
| xorb $1, %al |
| testb %al, %al |
| jne LBB_bar_2 # F |
| |
| It would be better to emit "cmp %al, 1" than a xor and test. |
| |
| |