| //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that X86 uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86ISelLowering.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/ADT/VectorExtras.h" |
| using namespace llvm; |
| |
| // FIXME: temporary. |
| #include "llvm/Support/CommandLine.h" |
| static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden, |
| cl::desc("Enable fastcc on X86")); |
| |
| X86TargetLowering::X86TargetLowering(TargetMachine &TM) |
| : TargetLowering(TM) { |
| Subtarget = &TM.getSubtarget<X86Subtarget>(); |
| X86ScalarSSE = Subtarget->hasSSE2(); |
| |
| // Set up the TargetLowering object. |
| |
| // X86 is weird, it always uses i8 for shift amounts and setcc results. |
| setShiftAmountType(MVT::i8); |
| setSetCCResultType(MVT::i8); |
| setSetCCResultContents(ZeroOrOneSetCCResult); |
| setSchedulingPreference(SchedulingForRegPressure); |
| setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 |
| setStackPointerRegisterToSaveRestore(X86::ESP); |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i8, X86::R8RegisterClass); |
| addRegisterClass(MVT::i16, X86::R16RegisterClass); |
| addRegisterClass(MVT::i32, X86::R32RegisterClass); |
| |
| // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this |
| // operation. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); |
| |
| if (X86ScalarSSE) |
| // No SSE i64 SINT_TO_FP, so expand i32 UINT_TO_FP instead. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); |
| else |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); |
| |
| // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); |
| // SSE has no i16 to fp conversion, only i32 |
| if (X86ScalarSSE) |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); |
| else { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); |
| } |
| |
| // We can handle SINT_TO_FP and FP_TO_SINT from/to i64 even though i64 |
| // isn't legal. |
| setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); |
| |
| // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); |
| |
| if (X86ScalarSSE) { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); |
| } else { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| } |
| |
| // Handle FP_TO_UINT by promoting the destination to a larger signed |
| // conversion. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); |
| |
| if (X86ScalarSSE && !Subtarget->hasSSE3()) |
| // Expand FP_TO_UINT into a select. |
| // FIXME: We would like to use a Custom expander here eventually to do |
| // the optimal thing for SSE vs. the default expansion in the legalizer. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); |
| else |
| // With SSE3 we can use fisttpll to convert to a signed i64. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); |
| |
| setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); |
| setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); |
| |
| setOperationAction(ISD::BRCOND , MVT::Other, Custom); |
| setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand); |
| setOperationAction(ISD::BRTWOWAY_CC , MVT::Other, Expand); |
| setOperationAction(ISD::BR_CC , MVT::Other, Expand); |
| setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); |
| setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); |
| setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); |
| setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand); |
| setOperationAction(ISD::FREM , MVT::f64 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i8 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i8 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i8 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i16 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i16 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i16 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i32 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i32 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i32 , Expand); |
| setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); |
| setOperationAction(ISD::BSWAP , MVT::i16 , Expand); |
| |
| setOperationAction(ISD::READIO , MVT::i1 , Expand); |
| setOperationAction(ISD::READIO , MVT::i8 , Expand); |
| setOperationAction(ISD::READIO , MVT::i16 , Expand); |
| setOperationAction(ISD::READIO , MVT::i32 , Expand); |
| setOperationAction(ISD::WRITEIO , MVT::i1 , Expand); |
| setOperationAction(ISD::WRITEIO , MVT::i8 , Expand); |
| setOperationAction(ISD::WRITEIO , MVT::i16 , Expand); |
| setOperationAction(ISD::WRITEIO , MVT::i32 , Expand); |
| |
| // These should be promoted to a larger select which is supported. |
| setOperationAction(ISD::SELECT , MVT::i1 , Promote); |
| setOperationAction(ISD::SELECT , MVT::i8 , Promote); |
| |
| // X86 wants to expand cmov itself. |
| setOperationAction(ISD::SELECT , MVT::i16 , Custom); |
| setOperationAction(ISD::SELECT , MVT::i32 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f32 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f64 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i8 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i16 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i32 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f32 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f64 , Custom); |
| // X86 ret instruction may pop stack. |
| setOperationAction(ISD::RET , MVT::Other, Custom); |
| // Darwin ABI issue. |
| setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); |
| setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); |
| // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) |
| setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); |
| setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); |
| setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); |
| // X86 wants to expand memset / memcpy itself. |
| setOperationAction(ISD::MEMSET , MVT::Other, Custom); |
| setOperationAction(ISD::MEMCPY , MVT::Other, Custom); |
| |
| // We don't have line number support yet. |
| setOperationAction(ISD::LOCATION, MVT::Other, Expand); |
| setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); |
| setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand); |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VAARG , MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand); |
| |
| if (X86ScalarSSE) { |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f32, X86::FR32RegisterClass); |
| addRegisterClass(MVT::f64, X86::FR64RegisterClass); |
| |
| // SSE has no load+extend ops |
| setOperationAction(ISD::EXTLOAD, MVT::f32, Expand); |
| setOperationAction(ISD::ZEXTLOAD, MVT::f32, Expand); |
| |
| // Use ANDPD to simulate FABS. |
| setOperationAction(ISD::FABS , MVT::f64, Custom); |
| setOperationAction(ISD::FABS , MVT::f32, Custom); |
| |
| // Use XORP to simulate FNEG. |
| setOperationAction(ISD::FNEG , MVT::f64, Custom); |
| setOperationAction(ISD::FNEG , MVT::f32, Custom); |
| |
| // We don't support sin/cos/fmod |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FREM , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FREM , MVT::f32, Expand); |
| |
| // Expand FP immediates into loads from the stack, except for the special |
| // cases we handle. |
| setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Expand); |
| addLegalFPImmediate(+0.0); // xorps / xorpd |
| } else { |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f64, X86::RFPRegisterClass); |
| |
| setOperationAction(ISD::UNDEF, MVT::f64, Expand); |
| |
| if (!UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f64 , Expand); |
| setOperationAction(ISD::FCOS , MVT::f64 , Expand); |
| } |
| |
| setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| addLegalFPImmediate(+0.0); // FLD0 |
| addLegalFPImmediate(+1.0); // FLD1 |
| addLegalFPImmediate(-0.0); // FLD0/FCHS |
| addLegalFPImmediate(-1.0); // FLD1/FCHS |
| } |
| |
| if (TM.getSubtarget<X86Subtarget>().hasMMX()) { |
| addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); |
| |
| // FIXME: We don't support any ConstantVec's yet. We should custom expand |
| // the ones we do! |
| setOperationAction(ISD::ConstantVec, MVT::v8i8, Expand); |
| setOperationAction(ISD::ConstantVec, MVT::v4i16, Expand); |
| setOperationAction(ISD::ConstantVec, MVT::v2i32, Expand); |
| } |
| |
| if (TM.getSubtarget<X86Subtarget>().hasSSE1()) { |
| addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); |
| |
| // FIXME: We don't support any ConstantVec's yet. We should custom expand |
| // the ones we do! |
| setOperationAction(ISD::ConstantVec, MVT::v4f32, Expand); |
| } |
| |
| if (TM.getSubtarget<X86Subtarget>().hasSSE2()) { |
| addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); |
| |
| |
| // FIXME: We don't support any ConstantVec's yet. We should custom expand |
| // the ones we do! |
| setOperationAction(ISD::ConstantVec, MVT::v2f64, Expand); |
| setOperationAction(ISD::ConstantVec, MVT::v16i8, Expand); |
| setOperationAction(ISD::ConstantVec, MVT::v8i16, Expand); |
| setOperationAction(ISD::ConstantVec, MVT::v4i32, Expand); |
| setOperationAction(ISD::ConstantVec, MVT::v2i64, Expand); |
| } |
| |
| computeRegisterProperties(); |
| |
| // FIXME: These should be based on subtarget info. Plus, the values should |
| // be smaller when we are in optimizing for size mode. |
| maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores |
| maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores |
| maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores |
| allowUnalignedMemoryAccesses = true; // x86 supports it! |
| } |
| |
| std::vector<SDOperand> |
| X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { |
| if (F.getCallingConv() == CallingConv::Fast && EnableFastCC) |
| return LowerFastCCArguments(F, DAG); |
| return LowerCCCArguments(F, DAG); |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, |
| bool isVarArg, unsigned CallingConv, |
| bool isTailCall, |
| SDOperand Callee, ArgListTy &Args, |
| SelectionDAG &DAG) { |
| assert((!isVarArg || CallingConv == CallingConv::C) && |
| "Only C takes varargs!"); |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); |
| else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| |
| if (CallingConv == CallingConv::Fast && EnableFastCC) |
| return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG); |
| return LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // C Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| |
| std::vector<SDOperand> |
| X86TargetLowering::LowerCCCArguments(Function &F, SelectionDAG &DAG) { |
| std::vector<SDOperand> ArgValues; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| |
| // Add DAG nodes to load the arguments... On entry to a function on the X86, |
| // the stack frame looks like this: |
| // |
| // [ESP] -- return address |
| // [ESP + 4] -- first argument (leftmost lexically) |
| // [ESP + 8] -- second argument, if first argument is four bytes in size |
| // ... |
| // |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { |
| MVT::ValueType ObjectVT = getValueType(I->getType()); |
| unsigned ArgIncrement = 4; |
| unsigned ObjSize; |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i1: |
| case MVT::i8: ObjSize = 1; break; |
| case MVT::i16: ObjSize = 2; break; |
| case MVT::i32: ObjSize = 4; break; |
| case MVT::i64: ObjSize = ArgIncrement = 8; break; |
| case MVT::f32: ObjSize = 4; break; |
| case MVT::f64: ObjSize = ArgIncrement = 8; break; |
| } |
| // Create the frame index object for this incoming parameter... |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| |
| // Create the SelectionDAG nodes corresponding to a load from this parameter |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| |
| // Don't codegen dead arguments. FIXME: remove this check when we can nuke |
| // dead loads. |
| SDOperand ArgValue; |
| if (!I->use_empty()) |
| ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, |
| DAG.getSrcValue(NULL)); |
| else { |
| if (MVT::isInteger(ObjectVT)) |
| ArgValue = DAG.getConstant(0, ObjectVT); |
| else |
| ArgValue = DAG.getConstantFP(0, ObjectVT); |
| } |
| ArgValues.push_back(ArgValue); |
| |
| ArgOffset += ArgIncrement; // Move on to the next argument... |
| } |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| if (F.isVarArg()) |
| VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); |
| ReturnAddrIndex = 0; // No return address slot generated yet. |
| BytesToPopOnReturn = 0; // Callee pops nothing. |
| BytesCallerReserves = ArgOffset; |
| |
| // Finally, inform the code generator which regs we return values in. |
| switch (getValueType(F.getReturnType())) { |
| default: assert(0 && "Unknown type!"); |
| case MVT::isVoid: break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| MF.addLiveOut(X86::EAX); |
| break; |
| case MVT::i64: |
| MF.addLiveOut(X86::EAX); |
| MF.addLiveOut(X86::EDX); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| MF.addLiveOut(X86::ST0); |
| break; |
| } |
| return ArgValues; |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy, |
| bool isVarArg, bool isTailCall, |
| SDOperand Callee, ArgListTy &Args, |
| SelectionDAG &DAG) { |
| // Count how many bytes are to be pushed on the stack. |
| unsigned NumBytes = 0; |
| |
| if (Args.empty()) { |
| // Save zero bytes. |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(0, getPointerTy())); |
| } else { |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| switch (getValueType(Args[i].second)) { |
| default: assert(0 && "Unknown value type!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::f32: |
| NumBytes += 4; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| NumBytes += 8; |
| break; |
| } |
| |
| Chain = DAG.getCALLSEQ_START(Chain, |
| DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| unsigned ArgOffset = 0; |
| SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32); |
| std::vector<SDOperand> Stores; |
| |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| |
| switch (getValueType(Args[i].second)) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| // Promote the integer to 32 bits. If the input type is signed use a |
| // sign extend, otherwise use a zero extend. |
| if (Args[i].second->isSigned()) |
| Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); |
| else |
| Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); |
| |
| // FALL THROUGH |
| case MVT::i32: |
| case MVT::f32: |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff, |
| DAG.getSrcValue(NULL))); |
| ArgOffset += 4; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff, |
| DAG.getSrcValue(NULL))); |
| ArgOffset += 8; |
| break; |
| } |
| } |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); |
| } |
| |
| std::vector<MVT::ValueType> RetVals; |
| MVT::ValueType RetTyVT = getValueType(RetTy); |
| RetVals.push_back(MVT::Other); |
| |
| // The result values produced have to be legal. Promote the result. |
| switch (RetTyVT) { |
| case MVT::isVoid: break; |
| default: |
| RetVals.push_back(RetTyVT); |
| break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| RetVals.push_back(MVT::i32); |
| break; |
| case MVT::f32: |
| if (X86ScalarSSE) |
| RetVals.push_back(MVT::f32); |
| else |
| RetVals.push_back(MVT::f64); |
| break; |
| case MVT::i64: |
| RetVals.push_back(MVT::i32); |
| RetVals.push_back(MVT::i32); |
| break; |
| } |
| |
| std::vector<MVT::ValueType> NodeTys; |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // FIXME: Do not generate X86ISD::TAILCALL for now. |
| Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); |
| SDOperand InFlag = Chain.getValue(1); |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| Ops.push_back(DAG.getConstant(0, getPointerTy())); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); |
| InFlag = Chain.getValue(1); |
| |
| SDOperand RetVal; |
| if (RetTyVT != MVT::isVoid) { |
| switch (RetTyVT) { |
| default: assert(0 && "Unknown value type to return!"); |
| case MVT::i1: |
| case MVT::i8: |
| RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); |
| Chain = RetVal.getValue(1); |
| if (RetTyVT == MVT::i1) |
| RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); |
| break; |
| case MVT::i16: |
| RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); |
| Chain = RetVal.getValue(1); |
| break; |
| case MVT::i32: |
| RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); |
| Chain = RetVal.getValue(1); |
| break; |
| case MVT::i64: { |
| SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); |
| SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, |
| Lo.getValue(2)); |
| RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); |
| Chain = Hi.getValue(1); |
| break; |
| } |
| case MVT::f32: |
| case MVT::f64: { |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(InFlag); |
| RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); |
| Chain = RetVal.getValue(1); |
| InFlag = RetVal.getValue(2); |
| if (X86ScalarSSE) { |
| // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(RetVal); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(RetTyVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::FST, Tys, Ops); |
| RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, |
| DAG.getSrcValue(NULL)); |
| Chain = RetVal.getValue(1); |
| } |
| |
| if (RetTyVT == MVT::f32 && !X86ScalarSSE) |
| // FIXME: we would really like to remember that this FP_ROUND |
| // operation is okay to eliminate if we allow excess FP precision. |
| RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); |
| break; |
| } |
| } |
| } |
| |
| return std::make_pair(RetVal, Chain); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Fast Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| // |
| // The X86 'fast' calling convention passes up to two integer arguments in |
| // registers (an appropriate portion of EAX/EDX), passes arguments in C order, |
| // and requires that the callee pop its arguments off the stack (allowing proper |
| // tail calls), and has the same return value conventions as C calling convs. |
| // |
| // This calling convention always arranges for the callee pop value to be 8n+4 |
| // bytes, which is needed for tail recursion elimination and stack alignment |
| // reasons. |
| // |
| // Note that this can be enhanced in the future to pass fp vals in registers |
| // (when we have a global fp allocator) and do other tricks. |
| // |
| |
| /// AddLiveIn - This helper function adds the specified physical register to the |
| /// MachineFunction as a live in value. It also creates a corresponding virtual |
| /// register for it. |
| static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, |
| TargetRegisterClass *RC) { |
| assert(RC->contains(PReg) && "Not the correct regclass!"); |
| unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); |
| MF.addLiveIn(PReg, VReg); |
| return VReg; |
| } |
| |
| |
| std::vector<SDOperand> |
| X86TargetLowering::LowerFastCCArguments(Function &F, SelectionDAG &DAG) { |
| std::vector<SDOperand> ArgValues; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| |
| // Add DAG nodes to load the arguments... On entry to a function the stack |
| // frame looks like this: |
| // |
| // [ESP] -- return address |
| // [ESP + 4] -- first nonreg argument (leftmost lexically) |
| // [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size |
| // ... |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| |
| // Keep track of the number of integer regs passed so far. This can be either |
| // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both |
| // used). |
| unsigned NumIntRegs = 0; |
| |
| for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { |
| MVT::ValueType ObjectVT = getValueType(I->getType()); |
| unsigned ArgIncrement = 4; |
| unsigned ObjSize = 0; |
| SDOperand ArgValue; |
| |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i1: |
| case MVT::i8: |
| if (NumIntRegs < 2) { |
| if (!I->use_empty()) { |
| unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL, |
| X86::R8RegisterClass); |
| ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i8); |
| DAG.setRoot(ArgValue.getValue(1)); |
| if (ObjectVT == MVT::i1) |
| // FIXME: Should insert a assertzext here. |
| ArgValue = DAG.getNode(ISD::TRUNCATE, MVT::i1, ArgValue); |
| } |
| ++NumIntRegs; |
| break; |
| } |
| |
| ObjSize = 1; |
| break; |
| case MVT::i16: |
| if (NumIntRegs < 2) { |
| if (!I->use_empty()) { |
| unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX, |
| X86::R16RegisterClass); |
| ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i16); |
| DAG.setRoot(ArgValue.getValue(1)); |
| } |
| ++NumIntRegs; |
| break; |
| } |
| ObjSize = 2; |
| break; |
| case MVT::i32: |
| if (NumIntRegs < 2) { |
| if (!I->use_empty()) { |
| unsigned VReg = AddLiveIn(MF,NumIntRegs ? X86::EDX : X86::EAX, |
| X86::R32RegisterClass); |
| ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32); |
| DAG.setRoot(ArgValue.getValue(1)); |
| } |
| ++NumIntRegs; |
| break; |
| } |
| ObjSize = 4; |
| break; |
| case MVT::i64: |
| if (NumIntRegs == 0) { |
| if (!I->use_empty()) { |
| unsigned BotReg = AddLiveIn(MF, X86::EAX, X86::R32RegisterClass); |
| unsigned TopReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); |
| |
| SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32); |
| SDOperand Hi = DAG.getCopyFromReg(Low.getValue(1), TopReg, MVT::i32); |
| DAG.setRoot(Hi.getValue(1)); |
| |
| ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); |
| } |
| NumIntRegs = 2; |
| break; |
| } else if (NumIntRegs == 1) { |
| if (!I->use_empty()) { |
| unsigned BotReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); |
| SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32); |
| DAG.setRoot(Low.getValue(1)); |
| |
| // Load the high part from memory. |
| // Create the frame index object for this incoming parameter... |
| int FI = MFI->CreateFixedObject(4, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| SDOperand Hi = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN, |
| DAG.getSrcValue(NULL)); |
| ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); |
| } |
| ArgOffset += 4; |
| NumIntRegs = 2; |
| break; |
| } |
| ObjSize = ArgIncrement = 8; |
| break; |
| case MVT::f32: ObjSize = 4; break; |
| case MVT::f64: ObjSize = ArgIncrement = 8; break; |
| } |
| |
| // Don't codegen dead arguments. FIXME: remove this check when we can nuke |
| // dead loads. |
| if (ObjSize && !I->use_empty()) { |
| // Create the frame index object for this incoming parameter... |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| |
| // Create the SelectionDAG nodes corresponding to a load from this |
| // parameter. |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| |
| ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, |
| DAG.getSrcValue(NULL)); |
| } else if (ArgValue.Val == 0) { |
| if (MVT::isInteger(ObjectVT)) |
| ArgValue = DAG.getConstant(0, ObjectVT); |
| else |
| ArgValue = DAG.getConstantFP(0, ObjectVT); |
| } |
| ArgValues.push_back(ArgValue); |
| |
| if (ObjSize) |
| ArgOffset += ArgIncrement; // Move on to the next argument. |
| } |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are aligned. |
| if ((ArgOffset & 7) == 0) |
| ArgOffset += 4; |
| |
| VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. |
| ReturnAddrIndex = 0; // No return address slot generated yet. |
| BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments. |
| BytesCallerReserves = 0; |
| |
| // Finally, inform the code generator which regs we return values in. |
| switch (getValueType(F.getReturnType())) { |
| default: assert(0 && "Unknown type!"); |
| case MVT::isVoid: break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| MF.addLiveOut(X86::EAX); |
| break; |
| case MVT::i64: |
| MF.addLiveOut(X86::EAX); |
| MF.addLiveOut(X86::EDX); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| MF.addLiveOut(X86::ST0); |
| break; |
| } |
| return ArgValues; |
| } |
| |
| std::pair<SDOperand, SDOperand> |
| X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, |
| bool isTailCall, SDOperand Callee, |
| ArgListTy &Args, SelectionDAG &DAG) { |
| // Count how many bytes are to be pushed on the stack. |
| unsigned NumBytes = 0; |
| |
| // Keep track of the number of integer regs passed so far. This can be either |
| // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both |
| // used). |
| unsigned NumIntRegs = 0; |
| |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| switch (getValueType(Args[i].second)) { |
| default: assert(0 && "Unknown value type!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| if (NumIntRegs < 2) { |
| ++NumIntRegs; |
| break; |
| } |
| // fall through |
| case MVT::f32: |
| NumBytes += 4; |
| break; |
| case MVT::i64: |
| if (NumIntRegs == 0) { |
| NumIntRegs = 2; |
| break; |
| } else if (NumIntRegs == 1) { |
| NumIntRegs = 2; |
| NumBytes += 4; |
| break; |
| } |
| |
| // fall through |
| case MVT::f64: |
| NumBytes += 8; |
| break; |
| } |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are aligned. |
| if ((NumBytes & 7) == 0) |
| NumBytes += 4; |
| |
| Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| unsigned ArgOffset = 0; |
| SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32); |
| NumIntRegs = 0; |
| std::vector<SDOperand> Stores; |
| std::vector<SDOperand> RegValuesToPass; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| switch (getValueType(Args[i].second)) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i1: |
| Args[i].first = DAG.getNode(ISD::ANY_EXTEND, MVT::i8, Args[i].first); |
| // Fall through. |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| if (NumIntRegs < 2) { |
| RegValuesToPass.push_back(Args[i].first); |
| ++NumIntRegs; |
| break; |
| } |
| // Fall through |
| case MVT::f32: { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff, |
| DAG.getSrcValue(NULL))); |
| ArgOffset += 4; |
| break; |
| } |
| case MVT::i64: |
| if (NumIntRegs < 2) { // Can pass part of it in regs? |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, |
| Args[i].first, DAG.getConstant(1, MVT::i32)); |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, |
| Args[i].first, DAG.getConstant(0, MVT::i32)); |
| RegValuesToPass.push_back(Lo); |
| ++NumIntRegs; |
| if (NumIntRegs < 2) { // Pass both parts in regs? |
| RegValuesToPass.push_back(Hi); |
| ++NumIntRegs; |
| } else { |
| // Pass the high part in memory. |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Hi, PtrOff, DAG.getSrcValue(NULL))); |
| ArgOffset += 4; |
| } |
| break; |
| } |
| // Fall through |
| case MVT::f64: |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Args[i].first, PtrOff, |
| DAG.getSrcValue(NULL))); |
| ArgOffset += 8; |
| break; |
| } |
| } |
| if (!Stores.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are aligned. |
| if ((ArgOffset & 7) == 0) |
| ArgOffset += 4; |
| |
| std::vector<MVT::ValueType> RetVals; |
| MVT::ValueType RetTyVT = getValueType(RetTy); |
| |
| RetVals.push_back(MVT::Other); |
| |
| // The result values produced have to be legal. Promote the result. |
| switch (RetTyVT) { |
| case MVT::isVoid: break; |
| default: |
| RetVals.push_back(RetTyVT); |
| break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| RetVals.push_back(MVT::i32); |
| break; |
| case MVT::f32: |
| if (X86ScalarSSE) |
| RetVals.push_back(MVT::f32); |
| else |
| RetVals.push_back(MVT::f64); |
| break; |
| case MVT::i64: |
| RetVals.push_back(MVT::i32); |
| RetVals.push_back(MVT::i32); |
| break; |
| } |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into registers. |
| SDOperand InFlag; |
| for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) { |
| unsigned CCReg; |
| SDOperand RegToPass = RegValuesToPass[i]; |
| switch (RegToPass.getValueType()) { |
| default: assert(0 && "Bad thing to pass in regs"); |
| case MVT::i8: |
| CCReg = (i == 0) ? X86::AL : X86::DL; |
| break; |
| case MVT::i16: |
| CCReg = (i == 0) ? X86::AX : X86::DX; |
| break; |
| case MVT::i32: |
| CCReg = (i == 0) ? X86::EAX : X86::EDX; |
| break; |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, CCReg, RegToPass, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| std::vector<MVT::ValueType> NodeTys; |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| if (InFlag.Val) |
| Ops.push_back(InFlag); |
| |
| // FIXME: Do not generate X86ISD::TAILCALL for now. |
| Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); |
| InFlag = Chain.getValue(1); |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); |
| Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); |
| InFlag = Chain.getValue(1); |
| |
| SDOperand RetVal; |
| if (RetTyVT != MVT::isVoid) { |
| switch (RetTyVT) { |
| default: assert(0 && "Unknown value type to return!"); |
| case MVT::i1: |
| case MVT::i8: |
| RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); |
| Chain = RetVal.getValue(1); |
| if (RetTyVT == MVT::i1) |
| RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); |
| break; |
| case MVT::i16: |
| RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); |
| Chain = RetVal.getValue(1); |
| break; |
| case MVT::i32: |
| RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); |
| Chain = RetVal.getValue(1); |
| break; |
| case MVT::i64: { |
| SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); |
| SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, |
| Lo.getValue(2)); |
| RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); |
| Chain = Hi.getValue(1); |
| break; |
| } |
| case MVT::f32: |
| case MVT::f64: { |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(InFlag); |
| RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); |
| Chain = RetVal.getValue(1); |
| InFlag = RetVal.getValue(2); |
| if (X86ScalarSSE) { |
| // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(RetVal); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(RetTyVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::FST, Tys, Ops); |
| RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, |
| DAG.getSrcValue(NULL)); |
| Chain = RetVal.getValue(1); |
| } |
| |
| if (RetTyVT == MVT::f32 && !X86ScalarSSE) |
| // FIXME: we would really like to remember that this FP_ROUND |
| // operation is okay to eliminate if we allow excess FP precision. |
| RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); |
| break; |
| } |
| } |
| } |
| |
| return std::make_pair(RetVal, Chain); |
| } |
| |
| SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { |
| if (ReturnAddrIndex == 0) { |
| // Set up a frame object for the return address. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); |
| } |
| |
| return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32); |
| } |
| |
| |
| |
| std::pair<SDOperand, SDOperand> X86TargetLowering:: |
| LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, |
| SelectionDAG &DAG) { |
| SDOperand Result; |
| if (Depth) // Depths > 0 not supported yet! |
| Result = DAG.getConstant(0, getPointerTy()); |
| else { |
| SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); |
| if (!isFrameAddress) |
| // Just load the return address |
| Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI, |
| DAG.getSrcValue(NULL)); |
| else |
| Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI, |
| DAG.getConstant(4, MVT::i32)); |
| } |
| return std::make_pair(Result, Chain); |
| } |
| |
| /// getCondBrOpcodeForX86CC - Returns the X86 conditional branch opcode |
| /// which corresponds to the condition code. |
| static unsigned getCondBrOpcodeForX86CC(unsigned X86CC) { |
| switch (X86CC) { |
| default: assert(0 && "Unknown X86 conditional code!"); |
| case X86ISD::COND_A: return X86::JA; |
| case X86ISD::COND_AE: return X86::JAE; |
| case X86ISD::COND_B: return X86::JB; |
| case X86ISD::COND_BE: return X86::JBE; |
| case X86ISD::COND_E: return X86::JE; |
| case X86ISD::COND_G: return X86::JG; |
| case X86ISD::COND_GE: return X86::JGE; |
| case X86ISD::COND_L: return X86::JL; |
| case X86ISD::COND_LE: return X86::JLE; |
| case X86ISD::COND_NE: return X86::JNE; |
| case X86ISD::COND_NO: return X86::JNO; |
| case X86ISD::COND_NP: return X86::JNP; |
| case X86ISD::COND_NS: return X86::JNS; |
| case X86ISD::COND_O: return X86::JO; |
| case X86ISD::COND_P: return X86::JP; |
| case X86ISD::COND_S: return X86::JS; |
| } |
| } |
| |
| /// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 |
| /// specific condition code. It returns a false if it cannot do a direct |
| /// translation. X86CC is the translated CondCode. Flip is set to true if the |
| /// the order of comparison operands should be flipped. |
| static bool translateX86CC(SDOperand CC, bool isFP, unsigned &X86CC, |
| bool &Flip) { |
| ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| Flip = false; |
| X86CC = X86ISD::COND_INVALID; |
| if (!isFP) { |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETEQ: X86CC = X86ISD::COND_E; break; |
| case ISD::SETGT: X86CC = X86ISD::COND_G; break; |
| case ISD::SETGE: X86CC = X86ISD::COND_GE; break; |
| case ISD::SETLT: X86CC = X86ISD::COND_L; break; |
| case ISD::SETLE: X86CC = X86ISD::COND_LE; break; |
| case ISD::SETNE: X86CC = X86ISD::COND_NE; break; |
| case ISD::SETULT: X86CC = X86ISD::COND_B; break; |
| case ISD::SETUGT: X86CC = X86ISD::COND_A; break; |
| case ISD::SETULE: X86CC = X86ISD::COND_BE; break; |
| case ISD::SETUGE: X86CC = X86ISD::COND_AE; break; |
| } |
| } else { |
| // On a floating point condition, the flags are set as follows: |
| // ZF PF CF op |
| // 0 | 0 | 0 | X > Y |
| // 0 | 0 | 1 | X < Y |
| // 1 | 0 | 0 | X == Y |
| // 1 | 1 | 1 | unordered |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETUEQ: |
| case ISD::SETEQ: X86CC = X86ISD::COND_E; break; |
| case ISD::SETOLE: Flip = true; // Fallthrough |
| case ISD::SETOGT: |
| case ISD::SETGT: X86CC = X86ISD::COND_A; break; |
| case ISD::SETOLT: Flip = true; // Fallthrough |
| case ISD::SETOGE: |
| case ISD::SETGE: X86CC = X86ISD::COND_AE; break; |
| case ISD::SETUGE: Flip = true; // Fallthrough |
| case ISD::SETULT: |
| case ISD::SETLT: X86CC = X86ISD::COND_B; break; |
| case ISD::SETUGT: Flip = true; // Fallthrough |
| case ISD::SETULE: |
| case ISD::SETLE: X86CC = X86ISD::COND_BE; break; |
| case ISD::SETONE: |
| case ISD::SETNE: X86CC = X86ISD::COND_NE; break; |
| case ISD::SETUO: X86CC = X86ISD::COND_P; break; |
| case ISD::SETO: X86CC = X86ISD::COND_NP; break; |
| } |
| } |
| |
| return X86CC != X86ISD::COND_INVALID; |
| } |
| |
| /// hasFPCMov - is there a floating point cmov for the specific X86 condition |
| /// code. Current x86 isa includes the following FP cmov instructions: |
| /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. |
| static bool hasFPCMov(unsigned X86CC) { |
| switch (X86CC) { |
| default: |
| return false; |
| case X86ISD::COND_B: |
| case X86ISD::COND_BE: |
| case X86ISD::COND_E: |
| case X86ISD::COND_P: |
| case X86ISD::COND_A: |
| case X86ISD::COND_AE: |
| case X86ISD::COND_NE: |
| case X86ISD::COND_NP: |
| return true; |
| } |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, |
| MachineBasicBlock *BB) { |
| switch (MI->getOpcode()) { |
| default: assert(false && "Unexpected instr type to insert"); |
| case X86::CMOV_FR32: |
| case X86::CMOV_FR64: { |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| unsigned Opc = getCondBrOpcodeForX86CC(MI->getOperand(3).getImmedValue()); |
| BuildMI(BB, Opc, 1).addMBB(sinkMBB); |
| MachineFunction *F = BB->getParent(); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| |
| delete MI; // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| case X86::FP_TO_INT16_IN_MEM: |
| case X86::FP_TO_INT32_IN_MEM: |
| case X86::FP_TO_INT64_IN_MEM: { |
| // Change the floating point control register to use "round towards zero" |
| // mode when truncating to an integer value. |
| MachineFunction *F = BB->getParent(); |
| int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); |
| addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); |
| |
| // Load the old value of the high byte of the control word... |
| unsigned OldCW = |
| F->getSSARegMap()->createVirtualRegister(X86::R16RegisterClass); |
| addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx); |
| |
| // Set the high part to be round to zero... |
| addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F); |
| |
| // Reload the modified control word now... |
| addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); |
| |
| // Restore the memory image of control word to original value |
| addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW); |
| |
| // Get the X86 opcode to use. |
| unsigned Opc; |
| switch (MI->getOpcode()) { |
| default: assert(0 && "illegal opcode!"); |
| case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break; |
| case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break; |
| case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break; |
| } |
| |
| X86AddressMode AM; |
| MachineOperand &Op = MI->getOperand(0); |
| if (Op.isRegister()) { |
| AM.BaseType = X86AddressMode::RegBase; |
| AM.Base.Reg = Op.getReg(); |
| } else { |
| AM.BaseType = X86AddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = Op.getFrameIndex(); |
| } |
| Op = MI->getOperand(1); |
| if (Op.isImmediate()) |
| AM.Scale = Op.getImmedValue(); |
| Op = MI->getOperand(2); |
| if (Op.isImmediate()) |
| AM.IndexReg = Op.getImmedValue(); |
| Op = MI->getOperand(3); |
| if (Op.isGlobalAddress()) { |
| AM.GV = Op.getGlobal(); |
| } else { |
| AM.Disp = Op.getImmedValue(); |
| } |
| addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(MI->getOperand(4).getReg()); |
| |
| // Reload the original control word now. |
| addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); |
| |
| delete MI; // The pseudo instruction is gone now. |
| return BB; |
| } |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Custom Lowering Hooks |
| //===----------------------------------------------------------------------===// |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { |
| switch (Op.getOpcode()) { |
| default: assert(0 && "Should not custom lower this!"); |
| case ISD::SHL_PARTS: |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: { |
| assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && |
| "Not an i64 shift!"); |
| bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; |
| SDOperand ShOpLo = Op.getOperand(0); |
| SDOperand ShOpHi = Op.getOperand(1); |
| SDOperand ShAmt = Op.getOperand(2); |
| SDOperand Tmp1 = isSRA ? DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, |
| DAG.getConstant(31, MVT::i8)) |
| : DAG.getConstant(0, MVT::i32); |
| |
| SDOperand Tmp2, Tmp3; |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt); |
| Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt); |
| } else { |
| Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt); |
| Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt); |
| } |
| |
| SDOperand InFlag = DAG.getNode(X86ISD::TEST, MVT::Flag, |
| ShAmt, DAG.getConstant(32, MVT::i8)); |
| |
| SDOperand Hi, Lo; |
| SDOperand CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); |
| |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::i32); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Ops.push_back(Tmp2); |
| Ops.push_back(Tmp3); |
| Ops.push_back(CC); |
| Ops.push_back(InFlag); |
| Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); |
| InFlag = Hi.getValue(1); |
| |
| Ops.clear(); |
| Ops.push_back(Tmp3); |
| Ops.push_back(Tmp1); |
| Ops.push_back(CC); |
| Ops.push_back(InFlag); |
| Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); |
| } else { |
| Ops.push_back(Tmp2); |
| Ops.push_back(Tmp3); |
| Ops.push_back(CC); |
| Ops.push_back(InFlag); |
| Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); |
| InFlag = Lo.getValue(1); |
| |
| Ops.clear(); |
| Ops.push_back(Tmp3); |
| Ops.push_back(Tmp1); |
| Ops.push_back(CC); |
| Ops.push_back(InFlag); |
| Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); |
| } |
| |
| Tys.clear(); |
| Tys.push_back(MVT::i32); |
| Tys.push_back(MVT::i32); |
| Ops.clear(); |
| Ops.push_back(Lo); |
| Ops.push_back(Hi); |
| return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); |
| } |
| case ISD::SINT_TO_FP: { |
| assert(Op.getOperand(0).getValueType() <= MVT::i64 && |
| Op.getOperand(0).getValueType() >= MVT::i16 && |
| "Unknown SINT_TO_FP to lower!"); |
| |
| SDOperand Result; |
| MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); |
| unsigned Size = MVT::getSizeInBits(SrcVT)/8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| SDOperand Chain = DAG.getNode(ISD::STORE, MVT::Other, |
| DAG.getEntryNode(), Op.getOperand(0), |
| StackSlot, DAG.getSrcValue(NULL)); |
| |
| // Build the FILD |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| if (X86ScalarSSE) Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(SrcVT)); |
| Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD, |
| Tys, Ops); |
| |
| if (X86ScalarSSE) { |
| Chain = Result.getValue(1); |
| SDOperand InFlag = Result.getValue(2); |
| |
| // FIXME: Currently the FST is flagged to the FILD_FLAG. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Result); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(Op.getValueType())); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::FST, Tys, Ops); |
| Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, |
| DAG.getSrcValue(NULL)); |
| } |
| |
| return Result; |
| } |
| case ISD::FP_TO_SINT: { |
| assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && |
| "Unknown FP_TO_SINT to lower!"); |
| // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary |
| // stack slot. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; |
| int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| |
| unsigned Opc; |
| switch (Op.getValueType()) { |
| default: assert(0 && "Invalid FP_TO_SINT to lower!"); |
| case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; |
| case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; |
| case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; |
| } |
| |
| SDOperand Chain = DAG.getEntryNode(); |
| SDOperand Value = Op.getOperand(0); |
| if (X86ScalarSSE) { |
| assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); |
| Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, StackSlot, |
| DAG.getSrcValue(0)); |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType())); |
| Value = DAG.getNode(X86ISD::FLD, Tys, Ops); |
| Chain = Value.getValue(1); |
| SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); |
| StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| } |
| |
| // Build the FP_TO_INT*_IN_MEM |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Value); |
| Ops.push_back(StackSlot); |
| SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops); |
| |
| // Load the result. |
| return DAG.getLoad(Op.getValueType(), FIST, StackSlot, |
| DAG.getSrcValue(NULL)); |
| } |
| case ISD::READCYCLECOUNTER: { |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Op.getOperand(0)); |
| SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, Ops); |
| Ops.clear(); |
| Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1))); |
| Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX, |
| MVT::i32, Ops[0].getValue(2))); |
| Ops.push_back(Ops[1].getValue(1)); |
| Tys[0] = Tys[1] = MVT::i32; |
| Tys.push_back(MVT::Other); |
| return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); |
| } |
| case ISD::FABS: { |
| MVT::ValueType VT = Op.getValueType(); |
| const Type *OpNTy = MVT::getTypeForValueType(VT); |
| std::vector<Constant*> CV; |
| if (VT == MVT::f64) { |
| CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)))); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| } else { |
| CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)))); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| } |
| Constant *CS = ConstantStruct::get(CV); |
| SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); |
| SDOperand Mask |
| = DAG.getNode(X86ISD::LOAD_PACK, |
| VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); |
| return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); |
| } |
| case ISD::FNEG: { |
| MVT::ValueType VT = Op.getValueType(); |
| const Type *OpNTy = MVT::getTypeForValueType(VT); |
| std::vector<Constant*> CV; |
| if (VT == MVT::f64) { |
| CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63))); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| } else { |
| CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31))); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| } |
| Constant *CS = ConstantStruct::get(CV); |
| SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); |
| SDOperand Mask |
| = DAG.getNode(X86ISD::LOAD_PACK, |
| VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); |
| return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); |
| } |
| case ISD::SETCC: { |
| assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); |
| SDOperand Cond; |
| SDOperand CC = Op.getOperand(2); |
| ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType()); |
| bool Flip; |
| unsigned X86CC; |
| if (translateX86CC(CC, isFP, X86CC, Flip)) { |
| if (Flip) |
| Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, |
| Op.getOperand(1), Op.getOperand(0)); |
| else |
| Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, |
| Op.getOperand(0), Op.getOperand(1)); |
| return DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86CC, MVT::i8), Cond); |
| } else { |
| assert(isFP && "Illegal integer SetCC!"); |
| |
| Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, |
| Op.getOperand(0), Op.getOperand(1)); |
| std::vector<MVT::ValueType> Tys; |
| std::vector<SDOperand> Ops; |
| switch (SetCCOpcode) { |
| default: assert(false && "Illegal floating point SetCC!"); |
| case ISD::SETOEQ: { // !PF & ZF |
| Tys.push_back(MVT::i8); |
| Tys.push_back(MVT::Flag); |
| Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8)); |
| Ops.push_back(Cond); |
| SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); |
| SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86ISD::COND_E, MVT::i8), |
| Tmp1.getValue(1)); |
| return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); |
| } |
| case ISD::SETUNE: { // PF | !ZF |
| Tys.push_back(MVT::i8); |
| Tys.push_back(MVT::Flag); |
| Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8)); |
| Ops.push_back(Cond); |
| SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); |
| SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86ISD::COND_NE, MVT::i8), |
| Tmp1.getValue(1)); |
| return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); |
| } |
| } |
| } |
| } |
| case ISD::SELECT: { |
| MVT::ValueType VT = Op.getValueType(); |
| bool isFP = MVT::isFloatingPoint(VT); |
| bool isFPStack = isFP && !X86ScalarSSE; |
| bool isFPSSE = isFP && X86ScalarSSE; |
| bool addTest = false; |
| SDOperand Op0 = Op.getOperand(0); |
| SDOperand Cond, CC; |
| if (Op0.getOpcode() == ISD::SETCC) |
| Op0 = LowerOperation(Op0, DAG); |
| |
| if (Op0.getOpcode() == X86ISD::SETCC) { |
| // If condition flag is set by a X86ISD::CMP, then make a copy of it |
| // (since flag operand cannot be shared). If the X86ISD::SETCC does not |
| // have another use it will be eliminated. |
| // If the X86ISD::SETCC has more than one use, then it's probably better |
| // to use a test instead of duplicating the X86ISD::CMP (for register |
| // pressure reason). |
| if (Op0.getOperand(1).getOpcode() == X86ISD::CMP) { |
| if (!Op0.hasOneUse()) { |
| std::vector<MVT::ValueType> Tys; |
| for (unsigned i = 0; i < Op0.Val->getNumValues(); ++i) |
| Tys.push_back(Op0.Val->getValueType(i)); |
| std::vector<SDOperand> Ops; |
| for (unsigned i = 0; i < Op0.getNumOperands(); ++i) |
| Ops.push_back(Op0.getOperand(i)); |
| Op0 = DAG.getNode(X86ISD::SETCC, Tys, Ops); |
| } |
| |
| CC = Op0.getOperand(0); |
| Cond = Op0.getOperand(1); |
| // Make a copy as flag result cannot be used by more than one. |
| Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, |
| Cond.getOperand(0), Cond.getOperand(1)); |
| addTest = |
| isFPStack && !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended()); |
| } else |
| addTest = true; |
| } else |
| addTest = true; |
| |
| if (addTest) { |
| CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); |
| Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Op0, Op0); |
| } |
| |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(Op.getValueType()); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| // X86ISD::CMOV means set the result (which is operand 1) to the RHS if |
| // condition is true. |
| Ops.push_back(Op.getOperand(2)); |
| Ops.push_back(Op.getOperand(1)); |
| Ops.push_back(CC); |
| Ops.push_back(Cond); |
| return DAG.getNode(X86ISD::CMOV, Tys, Ops); |
| } |
| case ISD::BRCOND: { |
| bool addTest = false; |
| SDOperand Cond = Op.getOperand(1); |
| SDOperand Dest = Op.getOperand(2); |
| SDOperand CC; |
| if (Cond.getOpcode() == ISD::SETCC) |
| Cond = LowerOperation(Cond, DAG); |
| |
| if (Cond.getOpcode() == X86ISD::SETCC) { |
| // If condition flag is set by a X86ISD::CMP, then make a copy of it |
| // (since flag operand cannot be shared). If the X86ISD::SETCC does not |
| // have another use it will be eliminated. |
| // If the X86ISD::SETCC has more than one use, then it's probably better |
| // to use a test instead of duplicating the X86ISD::CMP (for register |
| // pressure reason). |
| if (Cond.getOperand(1).getOpcode() == X86ISD::CMP) { |
| if (!Cond.hasOneUse()) { |
| std::vector<MVT::ValueType> Tys; |
| for (unsigned i = 0; i < Cond.Val->getNumValues(); ++i) |
| Tys.push_back(Cond.Val->getValueType(i)); |
| std::vector<SDOperand> Ops; |
| for (unsigned i = 0; i < Cond.getNumOperands(); ++i) |
| Ops.push_back(Cond.getOperand(i)); |
| Cond = DAG.getNode(X86ISD::SETCC, Tys, Ops); |
| } |
| |
| CC = Cond.getOperand(0); |
| Cond = Cond.getOperand(1); |
| // Make a copy as flag result cannot be used by more than one. |
| Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, |
| Cond.getOperand(0), Cond.getOperand(1)); |
| } else |
| addTest = true; |
| } else |
| addTest = true; |
| |
| if (addTest) { |
| CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); |
| Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Cond, Cond); |
| } |
| return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), |
| Op.getOperand(0), Op.getOperand(2), CC, Cond); |
| } |
| case ISD::MEMSET: { |
| SDOperand InFlag; |
| SDOperand Chain = Op.getOperand(0); |
| unsigned Align = |
| (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); |
| if (Align == 0) Align = 1; |
| |
| ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); |
| // If not DWORD aligned, call memset if size is less than the threshold. |
| // It knows how to align to the right boundary first. |
| if ((Align & 3) != 0 && |
| !(I && I->getValue() >= Subtarget->getMinRepStrSizeThreshold())) { |
| MVT::ValueType IntPtr = getPointerTy(); |
| const Type *IntPtrTy = getTargetData().getIntPtrType(); |
| std::vector<std::pair<SDOperand, const Type*> > Args; |
| Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); |
| // Extend the ubyte argument to be an int value for the call. |
| SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2)); |
| Args.push_back(std::make_pair(Val, IntPtrTy)); |
| Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); |
| std::pair<SDOperand,SDOperand> CallResult = |
| LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, |
| DAG.getExternalSymbol("memset", IntPtr), Args, DAG); |
| return CallResult.second; |
| } |
| |
| MVT::ValueType AVT; |
| SDOperand Count; |
| if (ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2))) { |
| unsigned ValReg; |
| unsigned Val = ValC->getValue() & 255; |
| |
| // If the value is a constant, then we can potentially use larger sets. |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| AVT = MVT::i16; |
| if (I) |
| Count = DAG.getConstant(I->getValue() / 2, MVT::i32); |
| else |
| Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), |
| DAG.getConstant(1, MVT::i8)); |
| Val = (Val << 8) | Val; |
| ValReg = X86::AX; |
| break; |
| case 0: // DWORD aligned |
| AVT = MVT::i32; |
| if (I) |
| Count = DAG.getConstant(I->getValue() / 4, MVT::i32); |
| else |
| Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), |
| DAG.getConstant(2, MVT::i8)); |
| Val = (Val << 8) | Val; |
| Val = (Val << 16) | Val; |
| ValReg = X86::EAX; |
| break; |
| default: // Byte aligned |
| AVT = MVT::i8; |
| Count = Op.getOperand(3); |
| ValReg = X86::AL; |
| break; |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } else { |
| AVT = MVT::i8; |
| Count = Op.getOperand(3); |
| Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| return DAG.getNode(X86ISD::REP_STOS, MVT::Other, Chain, |
| DAG.getValueType(AVT), InFlag); |
| } |
| case ISD::MEMCPY: { |
| SDOperand Chain = Op.getOperand(0); |
| unsigned Align = |
| (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); |
| if (Align == 0) Align = 1; |
| |
| ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); |
| // If not DWORD aligned, call memcpy if size is less than the threshold. |
| // It knows how to align to the right boundary first. |
| if ((Align & 3) != 0 && |
| !(I && I->getValue() >= Subtarget->getMinRepStrSizeThreshold())) { |
| MVT::ValueType IntPtr = getPointerTy(); |
| const Type *IntPtrTy = getTargetData().getIntPtrType(); |
| std::vector<std::pair<SDOperand, const Type*> > Args; |
| Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); |
| Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy)); |
| Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); |
| std::pair<SDOperand,SDOperand> CallResult = |
| LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, |
| DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG); |
| return CallResult.second; |
| } |
| |
| MVT::ValueType AVT; |
| SDOperand Count; |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| AVT = MVT::i16; |
| if (I) |
| Count = DAG.getConstant(I->getValue() / 2, MVT::i32); |
| else |
| Count = DAG.getConstant(I->getValue() / 2, MVT::i32); |
| break; |
| case 0: // DWORD aligned |
| AVT = MVT::i32; |
| if (I) |
| Count = DAG.getConstant(I->getValue() / 4, MVT::i32); |
| else |
| Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), |
| DAG.getConstant(2, MVT::i8)); |
| break; |
| default: // Byte aligned |
| AVT = MVT::i8; |
| Count = Op.getOperand(3); |
| break; |
| } |
| |
| SDOperand InFlag; |
| Chain = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, X86::ESI, Op.getOperand(2), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| return DAG.getNode(X86ISD::REP_MOVS, MVT::Other, Chain, |
| DAG.getValueType(AVT), InFlag); |
| } |
| case ISD::ConstantPool: { |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| SDOperand Result = |
| DAG.getTargetConstantPool(CP->get(), getPointerTy(), CP->getAlignment()); |
| // Only lower ConstantPool on Darwin. |
| if (getTargetMachine().getSubtarget<X86Subtarget>().isTargetDarwin()) { |
| // With PIC, the address is actually $g + Offset. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC) |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); |
| } |
| |
| return Result; |
| } |
| case ISD::GlobalAddress: { |
| SDOperand Result; |
| // Only lower GlobalAddress on Darwin. |
| if (getTargetMachine(). |
| getSubtarget<X86Subtarget>().isTargetDarwin()) { |
| GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| Result = DAG.getNode(X86ISD::TGAWrapper, getPointerTy(), |
| DAG.getTargetGlobalAddress(GV, getPointerTy())); |
| // With PIC, the address is actually $g + Offset. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC) |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); |
| |
| // For Darwin, external and weak symbols are indirect, so we want to load |
| // the value at address GV, not the value of GV itself. This means that |
| // the GlobalAddress must be in the base or index register of the address, |
| // not the GV offset field. |
| if (getTargetMachine().getRelocationModel() != Reloc::Static && |
| (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || |
| (GV->isExternal() && !GV->hasNotBeenReadFromBytecode()))) |
| Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), |
| Result, DAG.getSrcValue(NULL)); |
| } |
| |
| return Result; |
| } |
| case ISD::VASTART: { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| // FIXME: Replace MVT::i32 with PointerTy |
| SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); |
| return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR, |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| case ISD::RET: { |
| SDOperand Copy; |
| |
| switch(Op.getNumOperands()) { |
| default: |
| assert(0 && "Do not know how to return this many arguments!"); |
| abort(); |
| case 1: |
| return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); |
| case 2: { |
| MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); |
| if (MVT::isInteger(ArgVT)) |
| Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EAX, Op.getOperand(1), |
| SDOperand()); |
| else if (!X86ScalarSSE) { |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Op.getOperand(0)); |
| Ops.push_back(Op.getOperand(1)); |
| Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); |
| } else { |
| SDOperand MemLoc; |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand Value = Op.getOperand(1); |
| |
| if (Value.getOpcode() == ISD::LOAD && |
| (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) { |
| Chain = Value.getOperand(0); |
| MemLoc = Value.getOperand(1); |
| } else { |
| // Spill the value to memory and reload it into top of stack. |
| unsigned Size = MVT::getSizeInBits(ArgVT)/8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); |
| MemLoc = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Chain = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), |
| Value, MemLoc, DAG.getSrcValue(0)); |
| } |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(MemLoc); |
| Ops.push_back(DAG.getValueType(ArgVT)); |
| Copy = DAG.getNode(X86ISD::FLD, Tys, Ops); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| Ops.clear(); |
| Ops.push_back(Copy.getValue(1)); |
| Ops.push_back(Copy); |
| Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); |
| } |
| break; |
| } |
| case 3: |
| Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EDX, Op.getOperand(2), |
| SDOperand()); |
| Copy = DAG.getCopyToReg(Copy, X86::EAX,Op.getOperand(1),Copy.getValue(1)); |
| break; |
| } |
| return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, |
| Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16), |
| Copy.getValue(1)); |
| } |
| } |
| } |
| |
| const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return NULL; |
| case X86ISD::SHLD: return "X86ISD::SHLD"; |
| case X86ISD::SHRD: return "X86ISD::SHRD"; |
| case X86ISD::FAND: return "X86ISD::FAND"; |
| case X86ISD::FXOR: return "X86ISD::FXOR"; |
| case X86ISD::FILD: return "X86ISD::FILD"; |
| case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; |
| case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; |
| case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; |
| case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; |
| case X86ISD::FLD: return "X86ISD::FLD"; |
| case X86ISD::FST: return "X86ISD::FST"; |
| case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT"; |
| case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT"; |
| case X86ISD::CALL: return "X86ISD::CALL"; |
| case X86ISD::TAILCALL: return "X86ISD::TAILCALL"; |
| case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; |
| case X86ISD::CMP: return "X86ISD::CMP"; |
| case X86ISD::TEST: return "X86ISD::TEST"; |
| case X86ISD::SETCC: return "X86ISD::SETCC"; |
| case X86ISD::CMOV: return "X86ISD::CMOV"; |
| case X86ISD::BRCOND: return "X86ISD::BRCOND"; |
| case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; |
| case X86ISD::REP_STOS: return "X86ISD::RET_STOS"; |
| case X86ISD::REP_MOVS: return "X86ISD::RET_MOVS"; |
| case X86ISD::LOAD_PACK: return "X86ISD::LOAD_PACK"; |
| case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; |
| case X86ISD::TGAWrapper: return "X86ISD::TGAWrapper"; |
| } |
| } |
| |
| void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| uint64_t Mask, |
| uint64_t &KnownZero, |
| uint64_t &KnownOne, |
| unsigned Depth) const { |
| |
| unsigned Opc = Op.getOpcode(); |
| KnownZero = KnownOne = 0; // Don't know anything. |
| |
| switch (Opc) { |
| default: |
| assert(Opc >= ISD::BUILTIN_OP_END && "Expected a target specific node"); |
| break; |
| case X86ISD::SETCC: |
| KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| break; |
| } |
| } |
| |
| std::vector<unsigned> X86TargetLowering:: |
| getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| MVT::ValueType VT) const { |
| if (Constraint.size() == 1) { |
| // FIXME: not handling fp-stack yet! |
| // FIXME: not handling MMX registers yet ('y' constraint). |
| switch (Constraint[0]) { // GCC X86 Constraint Letters |
| default: break; // Unknown constriant letter |
| case 'r': // GENERAL_REGS |
| case 'R': // LEGACY_REGS |
| return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX, |
| X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0); |
| case 'l': // INDEX_REGS |
| return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX, |
| X86::ESI, X86::EDI, X86::EBP, 0); |
| case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode) |
| case 'Q': // Q_REGS |
| return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX, 0); |
| case 'x': // SSE_REGS if SSE1 allowed |
| if (Subtarget->hasSSE1()) |
| return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, |
| 0); |
| return std::vector<unsigned>(); |
| case 'Y': // SSE_REGS if SSE2 allowed |
| if (Subtarget->hasSSE2()) |
| return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, |
| 0); |
| return std::vector<unsigned>(); |
| } |
| } |
| |
| return std::vector<unsigned>(); |
| } |