| //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This is a utility pass used for testing the InstructionSimplify analysis. |
| // The analysis is applied to every instruction, and if it simplifies then the |
| // instruction is replaced by the simplification. If you are looking for a pass |
| // that performs serious instruction folding, use the instcombine pass instead. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h" |
| #include "llvm/DataLayout.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Function.h" |
| #include "llvm/IRBuilder.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Target/TargetLibraryInfo.h" |
| #include "llvm/Transforms/Utils/BuildLibCalls.h" |
| |
| using namespace llvm; |
| |
| /// This class is the abstract base class for the set of optimizations that |
| /// corresponds to one library call. |
| namespace { |
| class LibCallOptimization { |
| protected: |
| Function *Caller; |
| const DataLayout *TD; |
| const TargetLibraryInfo *TLI; |
| LLVMContext* Context; |
| public: |
| LibCallOptimization() { } |
| virtual ~LibCallOptimization() {} |
| |
| /// callOptimizer - This pure virtual method is implemented by base classes to |
| /// do various optimizations. If this returns null then no transformation was |
| /// performed. If it returns CI, then it transformed the call and CI is to be |
| /// deleted. If it returns something else, replace CI with the new value and |
| /// delete CI. |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) |
| =0; |
| |
| Value *optimizeCall(CallInst *CI, const DataLayout *TD, |
| const TargetLibraryInfo *TLI, IRBuilder<> &B) { |
| Caller = CI->getParent()->getParent(); |
| this->TD = TD; |
| this->TLI = TLI; |
| if (CI->getCalledFunction()) |
| Context = &CI->getCalledFunction()->getContext(); |
| |
| // We never change the calling convention. |
| if (CI->getCallingConv() != llvm::CallingConv::C) |
| return NULL; |
| |
| return callOptimizer(CI->getCalledFunction(), CI, B); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Fortified Library Call Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| struct FortifiedLibCallOptimization : public LibCallOptimization { |
| protected: |
| virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, |
| bool isString) const = 0; |
| }; |
| |
| struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization { |
| CallInst *CI; |
| |
| bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const { |
| if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp)) |
| return true; |
| if (ConstantInt *SizeCI = |
| dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) { |
| if (SizeCI->isAllOnesValue()) |
| return true; |
| if (isString) { |
| uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp)); |
| // If the length is 0 we don't know how long it is and so we can't |
| // remove the check. |
| if (Len == 0) return false; |
| return SizeCI->getZExtValue() >= Len; |
| } |
| if (ConstantInt *Arg = dyn_cast<ConstantInt>( |
| CI->getArgOperand(SizeArgOp))) |
| return SizeCI->getZExtValue() >= Arg->getZExtValue(); |
| } |
| return false; |
| } |
| }; |
| |
| struct MemCpyChkOpt : public InstFortifiedLibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| this->CI = CI; |
| FunctionType *FT = Callee->getFunctionType(); |
| |
| // Check if this has the right signature. |
| if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || |
| !FT->getParamType(0)->isPointerTy() || |
| !FT->getParamType(1)->isPointerTy() || |
| FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)) || |
| FT->getParamType(3) != TD->getIntPtrType(FT->getParamType(1))) |
| return 0; |
| |
| if (isFoldable(3, 2, false)) { |
| B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), |
| CI->getArgOperand(2), 1); |
| return CI->getArgOperand(0); |
| } |
| return 0; |
| } |
| }; |
| |
| struct MemMoveChkOpt : public InstFortifiedLibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| this->CI = CI; |
| FunctionType *FT = Callee->getFunctionType(); |
| |
| // Check if this has the right signature. |
| if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || |
| !FT->getParamType(0)->isPointerTy() || |
| !FT->getParamType(1)->isPointerTy() || |
| FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)) || |
| FT->getParamType(3) != TD->getIntPtrType(FT->getParamType(1))) |
| return 0; |
| |
| if (isFoldable(3, 2, false)) { |
| B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), |
| CI->getArgOperand(2), 1); |
| return CI->getArgOperand(0); |
| } |
| return 0; |
| } |
| }; |
| |
| struct MemSetChkOpt : public InstFortifiedLibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| this->CI = CI; |
| FunctionType *FT = Callee->getFunctionType(); |
| |
| // Check if this has the right signature. |
| if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || |
| !FT->getParamType(0)->isPointerTy() || |
| !FT->getParamType(1)->isIntegerTy() || |
| FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)) || |
| FT->getParamType(3) != TD->getIntPtrType(FT->getParamType(0))) |
| return 0; |
| |
| if (isFoldable(3, 2, false)) { |
| Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), |
| false); |
| B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); |
| return CI->getArgOperand(0); |
| } |
| return 0; |
| } |
| }; |
| |
| struct StrCpyChkOpt : public InstFortifiedLibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| this->CI = CI; |
| StringRef Name = Callee->getName(); |
| FunctionType *FT = Callee->getFunctionType(); |
| LLVMContext &Context = CI->getParent()->getContext(); |
| |
| // Check if this has the right signature. |
| if (FT->getNumParams() != 3 || |
| FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != Type::getInt8PtrTy(Context) || |
| FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0))) |
| return 0; |
| |
| Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); |
| if (Dst == Src) // __strcpy_chk(x,x) -> x |
| return Src; |
| |
| // If a) we don't have any length information, or b) we know this will |
| // fit then just lower to a plain strcpy. Otherwise we'll keep our |
| // strcpy_chk call which may fail at runtime if the size is too long. |
| // TODO: It might be nice to get a maximum length out of the possible |
| // string lengths for varying. |
| if (isFoldable(2, 1, true)) { |
| Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6)); |
| return Ret; |
| } else { |
| // Maybe we can stil fold __strcpy_chk to __memcpy_chk. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) return 0; |
| |
| // This optimization require DataLayout. |
| if (!TD) return 0; |
| |
| Value *Ret = |
| EmitMemCpyChk(Dst, Src, |
| ConstantInt::get(TD->getIntPtrType(Dst->getType()), |
| Len), CI->getArgOperand(2), B, TD, TLI); |
| return Ret; |
| } |
| return 0; |
| } |
| }; |
| |
| struct StpCpyChkOpt : public InstFortifiedLibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| this->CI = CI; |
| StringRef Name = Callee->getName(); |
| FunctionType *FT = Callee->getFunctionType(); |
| LLVMContext &Context = CI->getParent()->getContext(); |
| |
| // Check if this has the right signature. |
| if (FT->getNumParams() != 3 || |
| FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != Type::getInt8PtrTy(Context) || |
| FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0))) |
| return 0; |
| |
| Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); |
| if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) |
| Value *StrLen = EmitStrLen(Src, B, TD, TLI); |
| return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0; |
| } |
| |
| // If a) we don't have any length information, or b) we know this will |
| // fit then just lower to a plain stpcpy. Otherwise we'll keep our |
| // stpcpy_chk call which may fail at runtime if the size is too long. |
| // TODO: It might be nice to get a maximum length out of the possible |
| // string lengths for varying. |
| if (isFoldable(2, 1, true)) { |
| Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6)); |
| return Ret; |
| } else { |
| // Maybe we can stil fold __stpcpy_chk to __memcpy_chk. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) return 0; |
| |
| // This optimization require DataLayout. |
| if (!TD) return 0; |
| |
| Type *PT = FT->getParamType(0); |
| Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len); |
| Value *DstEnd = B.CreateGEP(Dst, |
| ConstantInt::get(TD->getIntPtrType(PT), |
| Len - 1)); |
| if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, TD, TLI)) |
| return 0; |
| return DstEnd; |
| } |
| return 0; |
| } |
| }; |
| |
| struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| this->CI = CI; |
| StringRef Name = Callee->getName(); |
| FunctionType *FT = Callee->getFunctionType(); |
| LLVMContext &Context = CI->getParent()->getContext(); |
| |
| // Check if this has the right signature. |
| if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != Type::getInt8PtrTy(Context) || |
| !FT->getParamType(2)->isIntegerTy() || |
| FT->getParamType(3) != TD->getIntPtrType(FT->getParamType(0))) |
| return 0; |
| |
| if (isFoldable(3, 2, false)) { |
| Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), |
| CI->getArgOperand(2), B, TD, TLI, |
| Name.substr(2, 7)); |
| return Ret; |
| } |
| return 0; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // String and Memory Library Call Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| struct StrCatOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strcat" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getReturnType() != B.getInt8PtrTy() || |
| FT->getParamType(0) != FT->getReturnType() || |
| FT->getParamType(1) != FT->getReturnType()) |
| return 0; |
| |
| // Extract some information from the instruction |
| Value *Dst = CI->getArgOperand(0); |
| Value *Src = CI->getArgOperand(1); |
| |
| // See if we can get the length of the input string. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) return 0; |
| --Len; // Unbias length. |
| |
| // Handle the simple, do-nothing case: strcat(x, "") -> x |
| if (Len == 0) |
| return Dst; |
| |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| return emitStrLenMemCpy(Src, Dst, Len, B); |
| } |
| |
| Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, |
| IRBuilder<> &B) { |
| // We need to find the end of the destination string. That's where the |
| // memory is to be moved to. We just generate a call to strlen. |
| Value *DstLen = EmitStrLen(Dst, B, TD, TLI); |
| if (!DstLen) |
| return 0; |
| |
| // Now that we have the destination's length, we must index into the |
| // destination's pointer to get the actual memcpy destination (end of |
| // the string .. we're concatenating). |
| Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); |
| |
| // We have enough information to now generate the memcpy call to do the |
| // concatenation for us. Make a memcpy to copy the nul byte with align = 1. |
| B.CreateMemCpy(CpyDst, Src, |
| ConstantInt::get(TD->getIntPtrType(Src->getType()), |
| Len + 1), 1); |
| return Dst; |
| } |
| }; |
| |
| struct StrNCatOpt : public StrCatOpt { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strncat" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || |
| FT->getReturnType() != B.getInt8PtrTy() || |
| FT->getParamType(0) != FT->getReturnType() || |
| FT->getParamType(1) != FT->getReturnType() || |
| !FT->getParamType(2)->isIntegerTy()) |
| return 0; |
| |
| // Extract some information from the instruction |
| Value *Dst = CI->getArgOperand(0); |
| Value *Src = CI->getArgOperand(1); |
| uint64_t Len; |
| |
| // We don't do anything if length is not constant |
| if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) |
| Len = LengthArg->getZExtValue(); |
| else |
| return 0; |
| |
| // See if we can get the length of the input string. |
| uint64_t SrcLen = GetStringLength(Src); |
| if (SrcLen == 0) return 0; |
| --SrcLen; // Unbias length. |
| |
| // Handle the simple, do-nothing cases: |
| // strncat(x, "", c) -> x |
| // strncat(x, c, 0) -> x |
| if (SrcLen == 0 || Len == 0) return Dst; |
| |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| // We don't optimize this case |
| if (Len < SrcLen) return 0; |
| |
| // strncat(x, s, c) -> strcat(x, s) |
| // s is constant so the strcat can be optimized further |
| return emitStrLenMemCpy(Src, Dst, SrcLen, B); |
| } |
| }; |
| |
| struct StrChrOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strchr" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getReturnType() != B.getInt8PtrTy() || |
| FT->getParamType(0) != FT->getReturnType() || |
| !FT->getParamType(1)->isIntegerTy(32)) |
| return 0; |
| |
| Value *SrcStr = CI->getArgOperand(0); |
| |
| // If the second operand is non-constant, see if we can compute the length |
| // of the input string and turn this into memchr. |
| ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); |
| if (CharC == 0) { |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| uint64_t Len = GetStringLength(SrcStr); |
| if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32. |
| return 0; |
| |
| Type *PT = FT->getParamType(0); |
| return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. |
| ConstantInt::get(TD->getIntPtrType(PT), Len), |
| B, TD, TLI); |
| } |
| |
| // Otherwise, the character is a constant, see if the first argument is |
| // a string literal. If so, we can constant fold. |
| StringRef Str; |
| if (!getConstantStringInfo(SrcStr, Str)) |
| return 0; |
| |
| // Compute the offset, make sure to handle the case when we're searching for |
| // zero (a weird way to spell strlen). |
| size_t I = CharC->getSExtValue() == 0 ? |
| Str.size() : Str.find(CharC->getSExtValue()); |
| if (I == StringRef::npos) // Didn't find the char. strchr returns null. |
| return Constant::getNullValue(CI->getType()); |
| |
| // strchr(s+n,c) -> gep(s+n+i,c) |
| return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); |
| } |
| }; |
| |
| struct StrRChrOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strrchr" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getReturnType() != B.getInt8PtrTy() || |
| FT->getParamType(0) != FT->getReturnType() || |
| !FT->getParamType(1)->isIntegerTy(32)) |
| return 0; |
| |
| Value *SrcStr = CI->getArgOperand(0); |
| ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); |
| |
| // Cannot fold anything if we're not looking for a constant. |
| if (!CharC) |
| return 0; |
| |
| StringRef Str; |
| if (!getConstantStringInfo(SrcStr, Str)) { |
| // strrchr(s, 0) -> strchr(s, 0) |
| if (TD && CharC->isZero()) |
| return EmitStrChr(SrcStr, '\0', B, TD, TLI); |
| return 0; |
| } |
| |
| // Compute the offset. |
| size_t I = CharC->getSExtValue() == 0 ? |
| Str.size() : Str.rfind(CharC->getSExtValue()); |
| if (I == StringRef::npos) // Didn't find the char. Return null. |
| return Constant::getNullValue(CI->getType()); |
| |
| // strrchr(s+n,c) -> gep(s+n+i,c) |
| return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); |
| } |
| }; |
| |
| struct StrCmpOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strcmp" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| !FT->getReturnType()->isIntegerTy(32) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != B.getInt8PtrTy()) |
| return 0; |
| |
| Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); |
| if (Str1P == Str2P) // strcmp(x,x) -> 0 |
| return ConstantInt::get(CI->getType(), 0); |
| |
| StringRef Str1, Str2; |
| bool HasStr1 = getConstantStringInfo(Str1P, Str1); |
| bool HasStr2 = getConstantStringInfo(Str2P, Str2); |
| |
| // strcmp(x, y) -> cnst (if both x and y are constant strings) |
| if (HasStr1 && HasStr2) |
| return ConstantInt::get(CI->getType(), Str1.compare(Str2)); |
| |
| if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x |
| return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), |
| CI->getType())); |
| |
| if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x |
| return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); |
| |
| // strcmp(P, "x") -> memcmp(P, "x", 2) |
| uint64_t Len1 = GetStringLength(Str1P); |
| uint64_t Len2 = GetStringLength(Str2P); |
| if (Len1 && Len2) { |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| Type *PT = FT->getParamType(0); |
| return EmitMemCmp(Str1P, Str2P, |
| ConstantInt::get(TD->getIntPtrType(PT), |
| std::min(Len1, Len2)), B, TD, TLI); |
| } |
| |
| return 0; |
| } |
| }; |
| |
| struct StrNCmpOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strncmp" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || |
| !FT->getReturnType()->isIntegerTy(32) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != B.getInt8PtrTy() || |
| !FT->getParamType(2)->isIntegerTy()) |
| return 0; |
| |
| Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); |
| if (Str1P == Str2P) // strncmp(x,x,n) -> 0 |
| return ConstantInt::get(CI->getType(), 0); |
| |
| // Get the length argument if it is constant. |
| uint64_t Length; |
| if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) |
| Length = LengthArg->getZExtValue(); |
| else |
| return 0; |
| |
| if (Length == 0) // strncmp(x,y,0) -> 0 |
| return ConstantInt::get(CI->getType(), 0); |
| |
| if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) |
| return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI); |
| |
| StringRef Str1, Str2; |
| bool HasStr1 = getConstantStringInfo(Str1P, Str1); |
| bool HasStr2 = getConstantStringInfo(Str2P, Str2); |
| |
| // strncmp(x, y) -> cnst (if both x and y are constant strings) |
| if (HasStr1 && HasStr2) { |
| StringRef SubStr1 = Str1.substr(0, Length); |
| StringRef SubStr2 = Str2.substr(0, Length); |
| return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); |
| } |
| |
| if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x |
| return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), |
| CI->getType())); |
| |
| if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x |
| return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); |
| |
| return 0; |
| } |
| }; |
| |
| struct StrCpyOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "strcpy" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != B.getInt8PtrTy()) |
| return 0; |
| |
| Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); |
| if (Dst == Src) // strcpy(x,x) -> x |
| return Src; |
| |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| // See if we can get the length of the input string. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) return 0; |
| |
| // We have enough information to now generate the memcpy call to do the |
| // copy for us. Make a memcpy to copy the nul byte with align = 1. |
| B.CreateMemCpy(Dst, Src, |
| ConstantInt::get(TD->getIntPtrType(Dst->getType()), Len), 1); |
| return Dst; |
| } |
| }; |
| |
| struct StpCpyOpt: public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| // Verify the "stpcpy" function prototype. |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 2 || |
| FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != B.getInt8PtrTy()) |
| return 0; |
| |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); |
| if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) |
| Value *StrLen = EmitStrLen(Src, B, TD, TLI); |
| return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0; |
| } |
| |
| // See if we can get the length of the input string. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) return 0; |
| |
| Type *PT = FT->getParamType(0); |
| Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len); |
| Value *DstEnd = B.CreateGEP(Dst, |
| ConstantInt::get(TD->getIntPtrType(PT), |
| Len - 1)); |
| |
| // We have enough information to now generate the memcpy call to do the |
| // copy for us. Make a memcpy to copy the nul byte with align = 1. |
| B.CreateMemCpy(Dst, Src, LenV, 1); |
| return DstEnd; |
| } |
| }; |
| |
| struct StrNCpyOpt : public LibCallOptimization { |
| virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { |
| FunctionType *FT = Callee->getFunctionType(); |
| if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || |
| FT->getParamType(0) != FT->getParamType(1) || |
| FT->getParamType(0) != B.getInt8PtrTy() || |
| !FT->getParamType(2)->isIntegerTy()) |
| return 0; |
| |
| Value *Dst = CI->getArgOperand(0); |
| Value *Src = CI->getArgOperand(1); |
| Value *LenOp = CI->getArgOperand(2); |
| |
| // See if we can get the length of the input string. |
| uint64_t SrcLen = GetStringLength(Src); |
| if (SrcLen == 0) return 0; |
| --SrcLen; |
| |
| if (SrcLen == 0) { |
| // strncpy(x, "", y) -> memset(x, '\0', y, 1) |
| B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); |
| return Dst; |
| } |
| |
| uint64_t Len; |
| if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) |
| Len = LengthArg->getZExtValue(); |
| else |
| return 0; |
| |
| if (Len == 0) return Dst; // strncpy(x, y, 0) -> x |
| |
| // These optimizations require DataLayout. |
| if (!TD) return 0; |
| |
| // Let strncpy handle the zero padding |
| if (Len > SrcLen+1) return 0; |
| |
| Type *PT = FT->getParamType(0); |
| // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] |
| B.CreateMemCpy(Dst, Src, |
| ConstantInt::get(TD->getIntPtrType(PT), Len), 1); |
| |
| return Dst; |
| } |
| }; |
| |
| } // End anonymous namespace. |
| |
| namespace llvm { |
| |
| class LibCallSimplifierImpl { |
| const DataLayout *TD; |
| const TargetLibraryInfo *TLI; |
| StringMap<LibCallOptimization*> Optimizations; |
| |
| // Fortified library call optimizations. |
| MemCpyChkOpt MemCpyChk; |
| MemMoveChkOpt MemMoveChk; |
| MemSetChkOpt MemSetChk; |
| StrCpyChkOpt StrCpyChk; |
| StpCpyChkOpt StpCpyChk; |
| StrNCpyChkOpt StrNCpyChk; |
| |
| // String and memory library call optimizations. |
| StrCatOpt StrCat; |
| StrNCatOpt StrNCat; |
| StrChrOpt StrChr; |
| StrRChrOpt StrRChr; |
| StrCmpOpt StrCmp; |
| StrNCmpOpt StrNCmp; |
| StrCpyOpt StrCpy; |
| StpCpyOpt StpCpy; |
| StrNCpyOpt StrNCpy; |
| |
| void initOptimizations(); |
| public: |
| LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI) { |
| this->TD = TD; |
| this->TLI = TLI; |
| } |
| |
| Value *optimizeCall(CallInst *CI); |
| }; |
| |
| void LibCallSimplifierImpl::initOptimizations() { |
| // Fortified library call optimizations. |
| Optimizations["__memcpy_chk"] = &MemCpyChk; |
| Optimizations["__memmove_chk"] = &MemMoveChk; |
| Optimizations["__memset_chk"] = &MemSetChk; |
| Optimizations["__strcpy_chk"] = &StrCpyChk; |
| Optimizations["__stpcpy_chk"] = &StpCpyChk; |
| Optimizations["__strncpy_chk"] = &StrNCpyChk; |
| Optimizations["__stpncpy_chk"] = &StrNCpyChk; |
| |
| // String and memory library call optimizations. |
| Optimizations["strcat"] = &StrCat; |
| Optimizations["strncat"] = &StrNCat; |
| Optimizations["strchr"] = &StrChr; |
| Optimizations["strrchr"] = &StrRChr; |
| Optimizations["strcmp"] = &StrCmp; |
| Optimizations["strncmp"] = &StrNCmp; |
| Optimizations["strcpy"] = &StrCpy; |
| Optimizations["stpcpy"] = &StpCpy; |
| Optimizations["strncpy"] = &StrNCpy; |
| } |
| |
| Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) { |
| if (Optimizations.empty()) |
| initOptimizations(); |
| |
| Function *Callee = CI->getCalledFunction(); |
| LibCallOptimization *LCO = Optimizations.lookup(Callee->getName()); |
| if (LCO) { |
| IRBuilder<> Builder(CI); |
| return LCO->optimizeCall(CI, TD, TLI, Builder); |
| } |
| return 0; |
| } |
| |
| LibCallSimplifier::LibCallSimplifier(const DataLayout *TD, |
| const TargetLibraryInfo *TLI) { |
| Impl = new LibCallSimplifierImpl(TD, TLI); |
| } |
| |
| LibCallSimplifier::~LibCallSimplifier() { |
| delete Impl; |
| } |
| |
| Value *LibCallSimplifier::optimizeCall(CallInst *CI) { |
| return Impl->optimizeCall(CI); |
| } |
| |
| } |