| //===-- InstSelectSimple.cpp - A simple instruction selector for SparcV8 --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a simple peephole instruction selector for the V8 target |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SparcV8.h" |
| #include "SparcV8InstrInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Constants.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Support/CFG.h" |
| using namespace llvm; |
| |
| namespace { |
| struct V8ISel : public FunctionPass, public InstVisitor<V8ISel> { |
| TargetMachine &TM; |
| MachineFunction *F; // The function we are compiling into |
| MachineBasicBlock *BB; // The current MBB we are compiling |
| |
| std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs |
| |
| // MBBMap - Mapping between LLVM BB -> Machine BB |
| std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; |
| |
| V8ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {} |
| |
| /// runOnFunction - Top level implementation of instruction selection for |
| /// the entire function. |
| /// |
| bool runOnFunction(Function &Fn); |
| |
| virtual const char *getPassName() const { |
| return "SparcV8 Simple Instruction Selection"; |
| } |
| |
| /// emitGEPOperation - Common code shared between visitGetElementPtrInst and |
| /// constant expression GEP support. |
| /// |
| void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, |
| Value *Src, User::op_iterator IdxBegin, |
| User::op_iterator IdxEnd, unsigned TargetReg); |
| |
| /// emitCastOperation - Common code shared between visitCastInst and |
| /// constant expression cast support. |
| /// |
| void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, |
| Value *Src, const Type *DestTy, unsigned TargetReg); |
| |
| /// emitIntegerCast, emitFPToIntegerCast - Helper methods for |
| /// emitCastOperation. |
| /// |
| unsigned emitIntegerCast (MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| const Type *oldTy, unsigned SrcReg, |
| const Type *newTy, unsigned DestReg); |
| void emitFPToIntegerCast (MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, const Type *oldTy, |
| unsigned SrcReg, const Type *newTy, |
| unsigned DestReg); |
| |
| /// visitBasicBlock - This method is called when we are visiting a new basic |
| /// block. This simply creates a new MachineBasicBlock to emit code into |
| /// and adds it to the current MachineFunction. Subsequent visit* for |
| /// instructions will be invoked for all instructions in the basic block. |
| /// |
| void visitBasicBlock(BasicBlock &LLVM_BB) { |
| BB = MBBMap[&LLVM_BB]; |
| } |
| |
| void visitBinaryOperator(Instruction &I); |
| void visitShiftInst (ShiftInst &SI) { visitBinaryOperator (SI); } |
| void visitSetCondInst(SetCondInst &I); |
| void visitCallInst(CallInst &I); |
| void visitReturnInst(ReturnInst &I); |
| void visitBranchInst(BranchInst &I); |
| void visitUnreachableInst(UnreachableInst &I) {} |
| void visitCastInst(CastInst &I); |
| void visitLoadInst(LoadInst &I); |
| void visitStoreInst(StoreInst &I); |
| void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass |
| void visitGetElementPtrInst(GetElementPtrInst &I); |
| void visitAllocaInst(AllocaInst &I); |
| |
| void visitInstruction(Instruction &I) { |
| std::cerr << "Unhandled instruction: " << I; |
| abort(); |
| } |
| |
| /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the |
| /// function, lowering any calls to unknown intrinsic functions into the |
| /// equivalent LLVM code. |
| void LowerUnknownIntrinsicFunctionCalls(Function &F); |
| void visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI); |
| |
| void LoadArgumentsToVirtualRegs(Function *F); |
| |
| /// SelectPHINodes - Insert machine code to generate phis. This is tricky |
| /// because we have to generate our sources into the source basic blocks, |
| /// not the current one. |
| /// |
| void SelectPHINodes(); |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void copyConstantToRegister(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Constant *C, unsigned R); |
| |
| /// makeAnotherReg - This method returns the next register number we haven't |
| /// yet used. |
| /// |
| /// Long values are handled somewhat specially. They are always allocated |
| /// as pairs of 32 bit integer values. The register number returned is the |
| /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits |
| /// of the long value. |
| /// |
| unsigned makeAnotherReg(const Type *Ty) { |
| assert(dynamic_cast<const SparcV8RegisterInfo*>(TM.getRegisterInfo()) && |
| "Current target doesn't have SparcV8 reg info??"); |
| const SparcV8RegisterInfo *MRI = |
| static_cast<const SparcV8RegisterInfo*>(TM.getRegisterInfo()); |
| if (Ty == Type::LongTy || Ty == Type::ULongTy) { |
| const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy); |
| // Create the lower part |
| F->getSSARegMap()->createVirtualRegister(RC); |
| // Create the upper part. |
| return F->getSSARegMap()->createVirtualRegister(RC)-1; |
| } |
| |
| // Add the mapping of regnumber => reg class to MachineFunction |
| const TargetRegisterClass *RC = MRI->getRegClassForType(Ty); |
| return F->getSSARegMap()->createVirtualRegister(RC); |
| } |
| |
| unsigned getReg(Value &V) { return getReg (&V); } // allow refs. |
| unsigned getReg(Value *V) { |
| // Just append to the end of the current bb. |
| MachineBasicBlock::iterator It = BB->end(); |
| return getReg(V, BB, It); |
| } |
| unsigned getReg(Value *V, MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IPt) { |
| unsigned &Reg = RegMap[V]; |
| if (Reg == 0) { |
| Reg = makeAnotherReg(V->getType()); |
| RegMap[V] = Reg; |
| } |
| // If this operand is a constant, emit the code to copy the constant into |
| // the register here... |
| // |
| if (Constant *C = dyn_cast<Constant>(V)) { |
| copyConstantToRegister(MBB, IPt, C, Reg); |
| RegMap.erase(V); // Assign a new name to this constant if ref'd again |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // Move the address of the global into the register |
| unsigned TmpReg = makeAnotherReg(V->getType()); |
| BuildMI (*MBB, IPt, V8::SETHIi, 1, TmpReg).addGlobalAddress (GV); |
| BuildMI (*MBB, IPt, V8::ORri, 2, Reg).addReg (TmpReg) |
| .addGlobalAddress (GV); |
| RegMap.erase(V); // Assign a new name to this address if ref'd again |
| } |
| |
| return Reg; |
| } |
| |
| }; |
| } |
| |
| FunctionPass *llvm::createSparcV8SimpleInstructionSelector(TargetMachine &TM) { |
| return new V8ISel(TM); |
| } |
| |
| enum TypeClass { |
| cByte, cShort, cInt, cLong, cFloat, cDouble |
| }; |
| |
| static TypeClass getClass (const Type *T) { |
| switch (T->getTypeID()) { |
| case Type::UByteTyID: case Type::SByteTyID: return cByte; |
| case Type::UShortTyID: case Type::ShortTyID: return cShort; |
| case Type::PointerTyID: |
| case Type::UIntTyID: case Type::IntTyID: return cInt; |
| case Type::ULongTyID: case Type::LongTyID: return cLong; |
| case Type::FloatTyID: return cFloat; |
| case Type::DoubleTyID: return cDouble; |
| default: |
| assert (0 && "Type of unknown class passed to getClass?"); |
| return cByte; |
| } |
| } |
| |
| static TypeClass getClassB(const Type *T) { |
| if (T == Type::BoolTy) return cByte; |
| return getClass(T); |
| } |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void V8ISel::copyConstantToRegister(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Constant *C, unsigned R) { |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| emitGEPOperation(MBB, IP, CE->getOperand(0), |
| CE->op_begin()+1, CE->op_end(), R); |
| return; |
| case Instruction::Cast: |
| emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R); |
| return; |
| default: |
| std::cerr << "Copying this constant expr not yet handled: " << *CE; |
| abort(); |
| } |
| } else if (isa<UndefValue>(C)) { |
| BuildMI(*MBB, IP, V8::IMPLICIT_DEF, 0, R); |
| if (getClassB (C->getType ()) == cLong) |
| BuildMI(*MBB, IP, V8::IMPLICIT_DEF, 0, R+1); |
| return; |
| } |
| |
| if (C->getType()->isIntegral ()) { |
| uint64_t Val; |
| unsigned Class = getClassB (C->getType ()); |
| if (Class == cLong) { |
| unsigned TmpReg = makeAnotherReg (Type::IntTy); |
| unsigned TmpReg2 = makeAnotherReg (Type::IntTy); |
| // Copy the value into the register pair. |
| // R = top(more-significant) half, R+1 = bottom(less-significant) half |
| uint64_t Val = cast<ConstantInt>(C)->getRawValue(); |
| copyConstantToRegister(MBB, IP, ConstantUInt::get(Type::UIntTy, |
| Val >> 32), R); |
| copyConstantToRegister(MBB, IP, ConstantUInt::get(Type::UIntTy, |
| Val & 0xffffffffU), R+1); |
| return; |
| } |
| |
| assert(Class <= cInt && "Type not handled yet!"); |
| |
| if (C->getType() == Type::BoolTy) { |
| Val = (C == ConstantBool::True); |
| } else { |
| ConstantInt *CI = cast<ConstantInt> (C); |
| Val = CI->getRawValue (); |
| } |
| switch (Class) { |
| case cByte: Val = (int8_t) Val; break; |
| case cShort: Val = (int16_t) Val; break; |
| case cInt: Val = (int32_t) Val; break; |
| default: |
| std::cerr << "Offending constant: " << *C << "\n"; |
| assert (0 && "Can't copy this kind of constant into register yet"); |
| return; |
| } |
| if (Val == 0) { |
| BuildMI (*MBB, IP, V8::ORrr, 2, R).addReg (V8::G0).addReg(V8::G0); |
| } else if (((int64_t)Val >= -4096) && ((int64_t)Val <= 4095)) { |
| BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (V8::G0).addSImm(Val); |
| } else { |
| unsigned TmpReg = makeAnotherReg (C->getType ()); |
| BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg) |
| .addSImm (((uint32_t) Val) >> 10); |
| BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (TmpReg) |
| .addSImm (((uint32_t) Val) & 0x03ff); |
| return; |
| } |
| } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { |
| // We need to spill the constant to memory... |
| MachineConstantPool *CP = F->getConstantPool(); |
| unsigned CPI = CP->getConstantPoolIndex(CFP); |
| const Type *Ty = CFP->getType(); |
| unsigned TmpReg = makeAnotherReg (Type::UIntTy); |
| unsigned AddrReg = makeAnotherReg (Type::UIntTy); |
| |
| assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); |
| unsigned LoadOpcode = Ty == Type::FloatTy ? V8::LDFri : V8::LDDFri; |
| BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addConstantPoolIndex (CPI); |
| BuildMI (*MBB, IP, V8::ORri, 2, AddrReg).addReg (TmpReg) |
| .addConstantPoolIndex (CPI); |
| BuildMI (*MBB, IP, LoadOpcode, 2, R).addReg (AddrReg).addSImm (0); |
| } else if (isa<ConstantPointerNull>(C)) { |
| // Copy zero (null pointer) to the register. |
| BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (V8::G0).addSImm (0); |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { |
| // Copy it with a SETHI/OR pair; the JIT + asmwriter should recognize |
| // that SETHI %reg,global == SETHI %reg,%hi(global) and |
| // OR %reg,global,%reg == OR %reg,%lo(global),%reg. |
| unsigned TmpReg = makeAnotherReg (C->getType ()); |
| BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addGlobalAddress(GV); |
| BuildMI (*MBB, IP, V8::ORri, 2, R).addReg(TmpReg).addGlobalAddress(GV); |
| } else { |
| std::cerr << "Offending constant: " << *C << "\n"; |
| assert (0 && "Can't copy this kind of constant into register yet"); |
| } |
| } |
| |
| void V8ISel::LoadArgumentsToVirtualRegs (Function *LF) { |
| static const unsigned IncomingArgRegs[] = { V8::I0, V8::I1, V8::I2, |
| V8::I3, V8::I4, V8::I5 }; |
| |
| // Add IMPLICIT_DEFs of input regs. |
| unsigned ArgNo = 0; |
| for (Function::aiterator I = LF->abegin(), E = LF->aend(); |
| I != E && ArgNo < 6; ++I, ++ArgNo) { |
| switch (getClassB(I->getType())) { |
| case cByte: |
| case cShort: |
| case cInt: |
| case cFloat: |
| BuildMI(BB, V8::IMPLICIT_DEF, 0, IncomingArgRegs[ArgNo]); |
| break; |
| case cDouble: |
| case cLong: |
| // Double and Long use register pairs. |
| BuildMI(BB, V8::IMPLICIT_DEF, 0, IncomingArgRegs[ArgNo]); |
| ++ArgNo; |
| if (ArgNo < 6) |
| BuildMI(BB, V8::IMPLICIT_DEF, 0, IncomingArgRegs[ArgNo]); |
| break; |
| default: |
| assert (0 && "type not handled"); |
| return; |
| } |
| } |
| |
| // Copy args out of their incoming hard regs or stack slots into virtual regs. |
| const unsigned *IAREnd = &IncomingArgRegs[6]; |
| const unsigned *IAR = &IncomingArgRegs[0]; |
| unsigned ArgOffset = 68; |
| for (Function::aiterator I = LF->abegin(), E = LF->aend(); I != E; ++I) { |
| Argument &A = *I; |
| unsigned ArgReg = getReg (A); |
| if (getClassB (A.getType ()) < cLong) { |
| // Get it out of the incoming arg register |
| if (ArgOffset < 92) { |
| assert (IAR != IAREnd |
| && "About to dereference past end of IncomingArgRegs"); |
| BuildMI (BB, V8::ORrr, 2, ArgReg).addReg (V8::G0).addReg (*IAR++); |
| } else { |
| int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset); |
| BuildMI (BB, V8::LD, 3, ArgReg).addFrameIndex (FI).addSImm (0); |
| } |
| ArgOffset += 4; |
| } else if (getClassB (A.getType ()) == cFloat) { |
| if (ArgOffset < 92) { |
| // Single-fp args are passed in integer registers; go through |
| // memory to get them out of integer registers and back into fp. (Bleh!) |
| unsigned FltAlign = TM.getTargetData().getFloatAlignment(); |
| int FI = F->getFrameInfo()->CreateStackObject(4, FltAlign); |
| assert (IAR != IAREnd |
| && "About to dereference past end of IncomingArgRegs"); |
| BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0).addReg (*IAR++); |
| BuildMI (BB, V8::LDFri, 2, ArgReg).addFrameIndex (FI).addSImm (0); |
| } else { |
| int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset); |
| BuildMI (BB, V8::LDFri, 3, ArgReg).addFrameIndex (FI).addSImm (0); |
| } |
| ArgOffset += 4; |
| } else if (getClassB (A.getType ()) == cDouble) { |
| // Double-fp args are passed in pairs of integer registers; go through |
| // memory to get them out of integer registers and back into fp. (Bleh!) |
| // We'd like to 'ldd' these right out of the incoming-args area, |
| // but it might not be 8-byte aligned (e.g., call x(int x, double d)). |
| unsigned DblAlign = TM.getTargetData().getDoubleAlignment(); |
| int FI = F->getFrameInfo()->CreateStackObject(8, DblAlign); |
| if (ArgOffset < 92 && IAR != IAREnd) { |
| BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0).addReg (*IAR++); |
| } else { |
| unsigned TempReg = makeAnotherReg (Type::IntTy); |
| BuildMI (BB, V8::LD, 2, TempReg).addFrameIndex (FI).addSImm (0); |
| BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0).addReg (TempReg); |
| } |
| ArgOffset += 4; |
| if (ArgOffset < 92 && IAR != IAREnd) { |
| BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (4).addReg (*IAR++); |
| } else { |
| unsigned TempReg = makeAnotherReg (Type::IntTy); |
| BuildMI (BB, V8::LD, 2, TempReg).addFrameIndex (FI).addSImm (4); |
| BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (4).addReg (TempReg); |
| } |
| ArgOffset += 4; |
| BuildMI (BB, V8::LDDFri, 2, ArgReg).addFrameIndex (FI).addSImm (0); |
| } else if (getClassB (A.getType ()) == cLong) { |
| // do the first half... |
| if (ArgOffset < 92) { |
| assert (IAR != IAREnd |
| && "About to dereference past end of IncomingArgRegs"); |
| BuildMI (BB, V8::ORrr, 2, ArgReg).addReg (V8::G0).addReg (*IAR++); |
| } else { |
| int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset); |
| BuildMI (BB, V8::LD, 2, ArgReg).addFrameIndex (FI).addSImm (0); |
| } |
| ArgOffset += 4; |
| // ...then do the second half |
| if (ArgOffset < 92) { |
| assert (IAR != IAREnd |
| && "About to dereference past end of IncomingArgRegs"); |
| BuildMI (BB, V8::ORrr, 2, ArgReg+1).addReg (V8::G0).addReg (*IAR++); |
| } else { |
| int FI = F->getFrameInfo()->CreateFixedObject(4, ArgOffset); |
| BuildMI (BB, V8::LD, 2, ArgReg+1).addFrameIndex (FI).addSImm (0); |
| } |
| ArgOffset += 4; |
| } else { |
| assert (0 && "Unknown class?!"); |
| } |
| } |
| } |
| |
| void V8ISel::SelectPHINodes() { |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| const Function &LF = *F->getFunction(); // The LLVM function... |
| for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { |
| const BasicBlock *BB = I; |
| MachineBasicBlock &MBB = *MBBMap[I]; |
| |
| // Loop over all of the PHI nodes in the LLVM basic block... |
| MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); |
| for (BasicBlock::const_iterator I = BB->begin(); |
| PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) { |
| |
| // Create a new machine instr PHI node, and insert it. |
| unsigned PHIReg = getReg(*PN); |
| MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, |
| V8::PHI, PN->getNumOperands(), PHIReg); |
| |
| MachineInstr *LongPhiMI = 0; |
| if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) |
| LongPhiMI = BuildMI(MBB, PHIInsertPoint, |
| V8::PHI, PN->getNumOperands(), PHIReg+1); |
| |
| // PHIValues - Map of blocks to incoming virtual registers. We use this |
| // so that we only initialize one incoming value for a particular block, |
| // even if the block has multiple entries in the PHI node. |
| // |
| std::map<MachineBasicBlock*, unsigned> PHIValues; |
| |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| MachineBasicBlock *PredMBB = 0; |
| for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (), |
| PE = MBB.pred_end (); PI != PE; ++PI) |
| if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) { |
| PredMBB = *PI; |
| break; |
| } |
| assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi"); |
| |
| unsigned ValReg; |
| std::map<MachineBasicBlock*, unsigned>::iterator EntryIt = |
| PHIValues.lower_bound(PredMBB); |
| |
| if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { |
| // We already inserted an initialization of the register for this |
| // predecessor. Recycle it. |
| ValReg = EntryIt->second; |
| |
| } else { |
| // Get the incoming value into a virtual register. |
| // |
| Value *Val = PN->getIncomingValue(i); |
| |
| // If this is a constant or GlobalValue, we may have to insert code |
| // into the basic block to compute it into a virtual register. |
| if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) || |
| isa<GlobalValue>(Val)) { |
| // Simple constants get emitted at the end of the basic block, |
| // before any terminator instructions. We "know" that the code to |
| // move a constant into a register will never clobber any flags. |
| ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); |
| } else { |
| // Because we don't want to clobber any values which might be in |
| // physical registers with the computation of this constant (which |
| // might be arbitrarily complex if it is a constant expression), |
| // just insert the computation at the top of the basic block. |
| MachineBasicBlock::iterator PI = PredMBB->begin(); |
| |
| // Skip over any PHI nodes though! |
| while (PI != PredMBB->end() && PI->getOpcode() == V8::PHI) |
| ++PI; |
| |
| ValReg = getReg(Val, PredMBB, PI); |
| } |
| |
| // Remember that we inserted a value for this PHI for this predecessor |
| PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); |
| } |
| |
| PhiMI->addRegOperand(ValReg); |
| PhiMI->addMachineBasicBlockOperand(PredMBB); |
| if (LongPhiMI) { |
| LongPhiMI->addRegOperand(ValReg+1); |
| LongPhiMI->addMachineBasicBlockOperand(PredMBB); |
| } |
| } |
| |
| // Now that we emitted all of the incoming values for the PHI node, make |
| // sure to reposition the InsertPoint after the PHI that we just added. |
| // This is needed because we might have inserted a constant into this |
| // block, right after the PHI's which is before the old insert point! |
| PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; |
| ++PHIInsertPoint; |
| } |
| } |
| } |
| |
| bool V8ISel::runOnFunction(Function &Fn) { |
| // First pass over the function, lower any unknown intrinsic functions |
| // with the IntrinsicLowering class. |
| LowerUnknownIntrinsicFunctionCalls(Fn); |
| |
| F = &MachineFunction::construct(&Fn, TM); |
| |
| // Create all of the machine basic blocks for the function... |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); |
| |
| BB = &F->front(); |
| |
| // Set up a frame object for the return address. This is used by the |
| // llvm.returnaddress & llvm.frameaddress intrinisics. |
| //ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4); |
| |
| // Copy incoming arguments off of the stack and out of fixed registers. |
| LoadArgumentsToVirtualRegs(&Fn); |
| |
| // Instruction select everything except PHI nodes |
| visit(Fn); |
| |
| // Select the PHI nodes |
| SelectPHINodes(); |
| |
| RegMap.clear(); |
| MBBMap.clear(); |
| F = 0; |
| // We always build a machine code representation for the function |
| return true; |
| } |
| |
| void V8ISel::visitCastInst(CastInst &I) { |
| Value *Op = I.getOperand(0); |
| unsigned DestReg = getReg(I); |
| MachineBasicBlock::iterator MI = BB->end(); |
| emitCastOperation(BB, MI, Op, I.getType(), DestReg); |
| } |
| |
| |
| unsigned V8ISel::emitIntegerCast (MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, const Type *oldTy, |
| unsigned SrcReg, const Type *newTy, |
| unsigned DestReg) { |
| if (oldTy == newTy) { |
| // No-op cast - just emit a copy; assume the reg. allocator will zap it. |
| BuildMI (*BB, IP, V8::ORrr, 2, DestReg).addReg (V8::G0).addReg(SrcReg); |
| return SrcReg; |
| } |
| // Emit left-shift, then right-shift to sign- or zero-extend. |
| unsigned TmpReg = makeAnotherReg (newTy); |
| unsigned shiftWidth = 32 - (8 * TM.getTargetData ().getTypeSize (newTy)); |
| BuildMI (*BB, IP, V8::SLLri, 2, TmpReg).addZImm (shiftWidth).addReg(SrcReg); |
| if (newTy->isSigned ()) { // sign-extend with SRA |
| BuildMI(*BB, IP, V8::SRAri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg); |
| } else { // zero-extend with SRL |
| BuildMI(*BB, IP, V8::SRLri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg); |
| } |
| // Return the temp reg. in case this is one half of a cast to long. |
| return TmpReg; |
| } |
| |
| void V8ISel::emitFPToIntegerCast (MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| const Type *oldTy, unsigned SrcReg, |
| const Type *newTy, unsigned DestReg) { |
| unsigned FPCastOpcode, FPStoreOpcode, FPSize, FPAlign; |
| unsigned oldTyClass = getClassB(oldTy); |
| if (oldTyClass == cFloat) { |
| FPCastOpcode = V8::FSTOI; FPStoreOpcode = V8::STFri; FPSize = 4; |
| FPAlign = TM.getTargetData().getFloatAlignment(); |
| } else { // it's a double |
| FPCastOpcode = V8::FDTOI; FPStoreOpcode = V8::STDFri; FPSize = 8; |
| FPAlign = TM.getTargetData().getDoubleAlignment(); |
| } |
| unsigned TempReg = makeAnotherReg (oldTy); |
| BuildMI (*BB, IP, FPCastOpcode, 1, TempReg).addReg (SrcReg); |
| int FI = F->getFrameInfo()->CreateStackObject(FPSize, FPAlign); |
| BuildMI (*BB, IP, FPStoreOpcode, 3).addFrameIndex (FI).addSImm (0) |
| .addReg (TempReg); |
| unsigned TempReg2 = makeAnotherReg (newTy); |
| BuildMI (*BB, IP, V8::LD, 3, TempReg2).addFrameIndex (FI).addSImm (0); |
| emitIntegerCast (BB, IP, Type::IntTy, TempReg2, newTy, DestReg); |
| } |
| |
| /// emitCastOperation - Common code shared between visitCastInst and constant |
| /// expression cast support. |
| /// |
| void V8ISel::emitCastOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, Value *Src, |
| const Type *DestTy, unsigned DestReg) { |
| const Type *SrcTy = Src->getType(); |
| unsigned SrcClass = getClassB(SrcTy); |
| unsigned DestClass = getClassB(DestTy); |
| unsigned SrcReg = getReg(Src, BB, IP); |
| |
| const Type *oldTy = SrcTy; |
| const Type *newTy = DestTy; |
| unsigned oldTyClass = SrcClass; |
| unsigned newTyClass = DestClass; |
| |
| if (oldTyClass < cLong && newTyClass < cLong) { |
| emitIntegerCast (BB, IP, oldTy, SrcReg, newTy, DestReg); |
| } else switch (newTyClass) { |
| case cByte: |
| case cShort: |
| case cInt: |
| switch (oldTyClass) { |
| case cLong: |
| // Treat it like a cast from the lower half of the value. |
| emitIntegerCast (BB, IP, Type::IntTy, SrcReg+1, newTy, DestReg); |
| break; |
| case cFloat: |
| case cDouble: |
| emitFPToIntegerCast (BB, IP, oldTy, SrcReg, newTy, DestReg); |
| break; |
| default: goto not_yet; |
| } |
| return; |
| |
| case cFloat: |
| switch (oldTyClass) { |
| case cLong: goto not_yet; |
| case cFloat: |
| BuildMI (*BB, IP, V8::FMOVS, 1, DestReg).addReg (SrcReg); |
| break; |
| case cDouble: |
| BuildMI (*BB, IP, V8::FDTOS, 1, DestReg).addReg (SrcReg); |
| break; |
| default: { |
| unsigned FltAlign = TM.getTargetData().getFloatAlignment(); |
| // cast integer type to float. Store it to a stack slot and then load |
| // it using ldf into a floating point register. then do fitos. |
| unsigned TmpReg = makeAnotherReg (newTy); |
| int FI = F->getFrameInfo()->CreateStackObject(4, FltAlign); |
| BuildMI (*BB, IP, V8::ST, 3).addFrameIndex (FI).addSImm (0) |
| .addReg (SrcReg); |
| BuildMI (*BB, IP, V8::LDFri, 2, TmpReg).addFrameIndex (FI).addSImm (0); |
| BuildMI (*BB, IP, V8::FITOS, 1, DestReg).addReg(TmpReg); |
| break; |
| } |
| } |
| return; |
| |
| case cDouble: |
| switch (oldTyClass) { |
| case cLong: goto not_yet; |
| case cFloat: |
| BuildMI (*BB, IP, V8::FSTOD, 1, DestReg).addReg (SrcReg); |
| break; |
| case cDouble: // use double move pseudo-instr |
| BuildMI (*BB, IP, V8::FpMOVD, 1, DestReg).addReg (SrcReg); |
| break; |
| default: { |
| unsigned DoubleAlignment = TM.getTargetData().getDoubleAlignment(); |
| unsigned TmpReg = makeAnotherReg (newTy); |
| int FI = F->getFrameInfo()->CreateStackObject(8, DoubleAlignment); |
| BuildMI (*BB, IP, V8::ST, 3).addFrameIndex (FI).addSImm (0) |
| .addReg (SrcReg); |
| BuildMI (*BB, IP, V8::LDDFri, 2, TmpReg).addFrameIndex (FI).addSImm (0); |
| BuildMI (*BB, IP, V8::FITOD, 1, DestReg).addReg(TmpReg); |
| break; |
| } |
| } |
| return; |
| |
| case cLong: |
| switch (oldTyClass) { |
| case cByte: |
| case cShort: |
| case cInt: { |
| // Cast to (u)int in the bottom half, and sign(zero) extend in the top |
| // half. |
| const Type *OldHalfTy = oldTy->isSigned() ? Type::IntTy : Type::UIntTy; |
| const Type *NewHalfTy = newTy->isSigned() ? Type::IntTy : Type::UIntTy; |
| unsigned TempReg = emitIntegerCast (BB, IP, OldHalfTy, SrcReg, |
| NewHalfTy, DestReg+1); |
| if (newTy->isSigned ()) { |
| BuildMI (*BB, IP, V8::SRAri, 2, DestReg).addReg (TempReg) |
| .addZImm (31); |
| } else { |
| BuildMI (*BB, IP, V8::ORrr, 2, DestReg).addReg (V8::G0) |
| .addReg (V8::G0); |
| } |
| break; |
| } |
| case cLong: |
| // Just copy both halves. |
| BuildMI (*BB, IP, V8::ORrr, 2, DestReg).addReg (V8::G0).addReg (SrcReg); |
| BuildMI (*BB, IP, V8::ORrr, 2, DestReg+1).addReg (V8::G0) |
| .addReg (SrcReg+1); |
| break; |
| default: goto not_yet; |
| } |
| return; |
| |
| default: goto not_yet; |
| } |
| return; |
| not_yet: |
| std::cerr << "Sorry, cast still unsupported: SrcTy = " << *SrcTy |
| << ", DestTy = " << *DestTy << "\n"; |
| abort (); |
| } |
| |
| void V8ISel::visitLoadInst(LoadInst &I) { |
| unsigned DestReg = getReg (I); |
| unsigned PtrReg = getReg (I.getOperand (0)); |
| switch (getClassB (I.getType ())) { |
| case cByte: |
| if (I.getType ()->isSigned ()) |
| BuildMI (BB, V8::LDSB, 2, DestReg).addReg (PtrReg).addSImm(0); |
| else |
| BuildMI (BB, V8::LDUB, 2, DestReg).addReg (PtrReg).addSImm(0); |
| return; |
| case cShort: |
| if (I.getType ()->isSigned ()) |
| BuildMI (BB, V8::LDSH, 2, DestReg).addReg (PtrReg).addSImm(0); |
| else |
| BuildMI (BB, V8::LDUH, 2, DestReg).addReg (PtrReg).addSImm(0); |
| return; |
| case cInt: |
| BuildMI (BB, V8::LD, 2, DestReg).addReg (PtrReg).addSImm(0); |
| return; |
| case cLong: |
| BuildMI (BB, V8::LD, 2, DestReg).addReg (PtrReg).addSImm(0); |
| BuildMI (BB, V8::LD, 2, DestReg+1).addReg (PtrReg).addSImm(4); |
| return; |
| case cFloat: |
| BuildMI (BB, V8::LDFri, 2, DestReg).addReg (PtrReg).addSImm(0); |
| return; |
| case cDouble: |
| BuildMI (BB, V8::LDDFri, 2, DestReg).addReg (PtrReg).addSImm(0); |
| return; |
| default: |
| std::cerr << "Load instruction not handled: " << I; |
| abort (); |
| return; |
| } |
| } |
| |
| void V8ISel::visitStoreInst(StoreInst &I) { |
| Value *SrcVal = I.getOperand (0); |
| unsigned SrcReg = getReg (SrcVal); |
| unsigned PtrReg = getReg (I.getOperand (1)); |
| switch (getClassB (SrcVal->getType ())) { |
| case cByte: |
| BuildMI (BB, V8::STB, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg); |
| return; |
| case cShort: |
| BuildMI (BB, V8::STH, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg); |
| return; |
| case cInt: |
| BuildMI (BB, V8::ST, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg); |
| return; |
| case cLong: |
| BuildMI (BB, V8::ST, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg); |
| BuildMI (BB, V8::ST, 3).addReg (PtrReg).addSImm (4).addReg (SrcReg+1); |
| return; |
| case cFloat: |
| BuildMI (BB, V8::STFri, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg); |
| return; |
| case cDouble: |
| BuildMI (BB, V8::STDFri, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg); |
| return; |
| default: |
| std::cerr << "Store instruction not handled: " << I; |
| abort (); |
| return; |
| } |
| } |
| |
| void V8ISel::visitCallInst(CallInst &I) { |
| MachineInstr *TheCall; |
| // Is it an intrinsic function call? |
| if (Function *F = I.getCalledFunction()) { |
| if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { |
| visitIntrinsicCall(ID, I); // Special intrinsics are not handled here |
| return; |
| } |
| } |
| |
| unsigned extraStack = 0; |
| // How much extra call stack will we need? |
| for (unsigned i = 7; i < I.getNumOperands (); ++i) { |
| switch (getClassB (I.getOperand (i)->getType ())) { |
| case cLong: extraStack += 8; break; |
| case cFloat: extraStack += 4; break; |
| case cDouble: extraStack += 8; break; |
| default: extraStack += 4; break; |
| } |
| } |
| // Round up extra stack size to the nearest doubleword. |
| if (extraStack) { extraStack = (extraStack + 7) & ~7; } |
| |
| // Deal with args |
| static const unsigned OutgoingArgRegs[] = { V8::O0, V8::O1, V8::O2, V8::O3, |
| V8::O4, V8::O5 }; |
| const unsigned *OAREnd = &OutgoingArgRegs[6]; |
| const unsigned *OAR = &OutgoingArgRegs[0]; |
| unsigned ArgOffset = 68; |
| if (extraStack) BuildMI (BB, V8::ADJCALLSTACKDOWN, 1).addImm (extraStack); |
| for (unsigned i = 1; i < I.getNumOperands (); ++i) { |
| unsigned ArgReg = getReg (I.getOperand (i)); |
| if (getClassB (I.getOperand (i)->getType ()) < cLong) { |
| // Schlep it over into the incoming arg register |
| if (ArgOffset < 92) { |
| assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs"); |
| BuildMI (BB, V8::ORrr, 2, *OAR++).addReg (V8::G0).addReg (ArgReg); |
| } else { |
| BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (ArgReg); |
| } |
| ArgOffset += 4; |
| } else if (getClassB (I.getOperand (i)->getType ()) == cFloat) { |
| if (ArgOffset < 92) { |
| // Single-fp args are passed in integer registers; go through |
| // memory to get them out of FP registers. (Bleh!) |
| unsigned FltAlign = TM.getTargetData().getFloatAlignment(); |
| int FI = F->getFrameInfo()->CreateStackObject(4, FltAlign); |
| BuildMI (BB, V8::STFri, 3).addFrameIndex (FI).addSImm (0).addReg (ArgReg); |
| assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs"); |
| BuildMI (BB, V8::LD, 2, *OAR++).addFrameIndex (FI).addSImm (0); |
| } else { |
| BuildMI (BB, V8::STFri, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (ArgReg); |
| } |
| ArgOffset += 4; |
| } else if (getClassB (I.getOperand (i)->getType ()) == cDouble) { |
| // Double-fp args are passed in pairs of integer registers; go through |
| // memory to get them out of FP registers. (Bleh!) |
| // We'd like to 'std' these right onto the outgoing-args area, but it might |
| // not be 8-byte aligned (e.g., call x(int x, double d)). sigh. |
| unsigned DblAlign = TM.getTargetData().getDoubleAlignment(); |
| int FI = F->getFrameInfo()->CreateStackObject(8, DblAlign); |
| BuildMI (BB, V8::STDFri, 3).addFrameIndex (FI).addSImm (0).addReg (ArgReg); |
| if (ArgOffset < 92 && OAR != OAREnd) { |
| assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs"); |
| BuildMI (BB, V8::LD, 2, *OAR++).addFrameIndex (FI).addSImm (0); |
| } else { |
| unsigned TempReg = makeAnotherReg (Type::IntTy); |
| BuildMI (BB, V8::LD, 2, TempReg).addFrameIndex (FI).addSImm (0); |
| BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (TempReg); |
| } |
| ArgOffset += 4; |
| if (ArgOffset < 92 && OAR != OAREnd) { |
| assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs"); |
| BuildMI (BB, V8::LD, 2, *OAR++).addFrameIndex (FI).addSImm (4); |
| } else { |
| unsigned TempReg = makeAnotherReg (Type::IntTy); |
| BuildMI (BB, V8::LD, 2, TempReg).addFrameIndex (FI).addSImm (4); |
| BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (TempReg); |
| } |
| ArgOffset += 4; |
| } else if (getClassB (I.getOperand (i)->getType ()) == cLong) { |
| // do the first half... |
| if (ArgOffset < 92) { |
| assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs"); |
| BuildMI (BB, V8::ORrr, 2, *OAR++).addReg (V8::G0).addReg (ArgReg); |
| } else { |
| BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (ArgReg); |
| } |
| ArgOffset += 4; |
| // ...then do the second half |
| if (ArgOffset < 92) { |
| assert (OAR != OAREnd && "About to dereference past end of OutgoingArgRegs"); |
| BuildMI (BB, V8::ORrr, 2, *OAR++).addReg (V8::G0).addReg (ArgReg+1); |
| } else { |
| BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (ArgOffset).addReg (ArgReg+1); |
| } |
| ArgOffset += 4; |
| } else { |
| assert (0 && "Unknown class?!"); |
| } |
| } |
| |
| // Emit call instruction |
| if (Function *F = I.getCalledFunction ()) { |
| BuildMI (BB, V8::CALL, 1).addGlobalAddress (F, true); |
| } else { // Emit an indirect call... |
| unsigned Reg = getReg (I.getCalledValue ()); |
| BuildMI (BB, V8::JMPLrr, 3, V8::O7).addReg (Reg).addReg (V8::G0); |
| } |
| |
| if (extraStack) BuildMI (BB, V8::ADJCALLSTACKUP, 1).addImm (extraStack); |
| |
| // Deal w/ return value: schlep it over into the destination register |
| if (I.getType () == Type::VoidTy) |
| return; |
| unsigned DestReg = getReg (I); |
| switch (getClassB (I.getType ())) { |
| case cByte: |
| case cShort: |
| case cInt: |
| BuildMI (BB, V8::ORrr, 2, DestReg).addReg(V8::G0).addReg(V8::O0); |
| break; |
| case cFloat: |
| BuildMI (BB, V8::FMOVS, 2, DestReg).addReg(V8::F0); |
| break; |
| case cDouble: |
| BuildMI (BB, V8::FpMOVD, 2, DestReg).addReg(V8::D0); |
| break; |
| case cLong: |
| BuildMI (BB, V8::ORrr, 2, DestReg).addReg(V8::G0).addReg(V8::O0); |
| BuildMI (BB, V8::ORrr, 2, DestReg+1).addReg(V8::G0).addReg(V8::O1); |
| break; |
| default: |
| std::cerr << "Return type of call instruction not handled: " << I; |
| abort (); |
| } |
| } |
| |
| void V8ISel::visitReturnInst(ReturnInst &I) { |
| if (I.getNumOperands () == 1) { |
| unsigned RetValReg = getReg (I.getOperand (0)); |
| switch (getClassB (I.getOperand (0)->getType ())) { |
| case cByte: |
| case cShort: |
| case cInt: |
| // Schlep it over into i0 (where it will become o0 after restore). |
| BuildMI (BB, V8::ORrr, 2, V8::I0).addReg(V8::G0).addReg(RetValReg); |
| break; |
| case cFloat: |
| BuildMI (BB, V8::FMOVS, 1, V8::F0).addReg(RetValReg); |
| break; |
| case cDouble: |
| BuildMI (BB, V8::FpMOVD, 1, V8::D0).addReg(RetValReg); |
| break; |
| case cLong: |
| BuildMI (BB, V8::ORrr, 2, V8::I0).addReg(V8::G0).addReg(RetValReg); |
| BuildMI (BB, V8::ORrr, 2, V8::I1).addReg(V8::G0).addReg(RetValReg+1); |
| break; |
| default: |
| std::cerr << "Return instruction of this type not handled: " << I; |
| abort (); |
| } |
| } |
| |
| // Just emit a 'retl' instruction to return. |
| BuildMI(BB, V8::RETL, 0); |
| return; |
| } |
| |
| static inline BasicBlock *getBlockAfter(BasicBlock *BB) { |
| Function::iterator I = BB; ++I; // Get iterator to next block |
| return I != BB->getParent()->end() ? &*I : 0; |
| } |
| |
| /// visitBranchInst - Handles conditional and unconditional branches. |
| /// |
| void V8ISel::visitBranchInst(BranchInst &I) { |
| BasicBlock *takenSucc = I.getSuccessor (0); |
| MachineBasicBlock *takenSuccMBB = MBBMap[takenSucc]; |
| BB->addSuccessor (takenSuccMBB); |
| if (I.isConditional()) { // conditional branch |
| BasicBlock *notTakenSucc = I.getSuccessor (1); |
| MachineBasicBlock *notTakenSuccMBB = MBBMap[notTakenSucc]; |
| BB->addSuccessor (notTakenSuccMBB); |
| |
| // CondReg=(<condition>); |
| // If (CondReg==0) goto notTakenSuccMBB; |
| unsigned CondReg = getReg (I.getCondition ()); |
| BuildMI (BB, V8::CMPri, 2).addSImm (0).addReg (CondReg); |
| BuildMI (BB, V8::BE, 1).addMBB (notTakenSuccMBB); |
| } |
| // goto takenSuccMBB; |
| BuildMI (BB, V8::BA, 1).addMBB (takenSuccMBB); |
| } |
| |
| /// emitGEPOperation - Common code shared between visitGetElementPtrInst and |
| /// constant expression GEP support. |
| /// |
| void V8ISel::emitGEPOperation (MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Src, User::op_iterator IdxBegin, |
| User::op_iterator IdxEnd, unsigned TargetReg) { |
| const TargetData &TD = TM.getTargetData (); |
| const Type *Ty = Src->getType (); |
| unsigned basePtrReg = getReg (Src, MBB, IP); |
| |
| // GEPs have zero or more indices; we must perform a struct access |
| // or array access for each one. |
| for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe; |
| ++oi) { |
| Value *idx = *oi; |
| unsigned nextBasePtrReg = makeAnotherReg (Type::UIntTy); |
| if (const StructType *StTy = dyn_cast<StructType> (Ty)) { |
| // It's a struct access. idx is the index into the structure, |
| // which names the field. Use the TargetData structure to |
| // pick out what the layout of the structure is in memory. |
| // Use the (constant) structure index's value to find the |
| // right byte offset from the StructLayout class's list of |
| // structure member offsets. |
| unsigned fieldIndex = cast<ConstantUInt> (idx)->getValue (); |
| unsigned memberOffset = |
| TD.getStructLayout (StTy)->MemberOffsets[fieldIndex]; |
| // Emit an ADD to add memberOffset to the basePtr. |
| BuildMI (*MBB, IP, V8::ADDri, 2, |
| nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset); |
| // The next type is the member of the structure selected by the |
| // index. |
| Ty = StTy->getElementType (fieldIndex); |
| } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) { |
| // It's an array or pointer access: [ArraySize x ElementType]. |
| // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we |
| // must find the size of the pointed-to type (Not coincidentally, the next |
| // type is the type of the elements in the array). |
| Ty = SqTy->getElementType (); |
| unsigned elementSize = TD.getTypeSize (Ty); |
| unsigned idxReg = getReg (idx, MBB, IP); |
| unsigned OffsetReg = makeAnotherReg (Type::IntTy); |
| unsigned elementSizeReg = makeAnotherReg (Type::UIntTy); |
| copyConstantToRegister (MBB, IP, |
| ConstantUInt::get(Type::UIntTy, elementSize), elementSizeReg); |
| // Emit a SMUL to multiply the register holding the index by |
| // elementSize, putting the result in OffsetReg. |
| BuildMI (*MBB, IP, V8::SMULrr, 2, |
| OffsetReg).addReg (elementSizeReg).addReg (idxReg); |
| // Emit an ADD to add OffsetReg to the basePtr. |
| BuildMI (*MBB, IP, V8::ADDrr, 2, |
| nextBasePtrReg).addReg (basePtrReg).addReg (OffsetReg); |
| } |
| basePtrReg = nextBasePtrReg; |
| } |
| // After we have processed all the indices, the result is left in |
| // basePtrReg. Move it to the register where we were expected to |
| // put the answer. |
| BuildMI (BB, V8::ORrr, 1, TargetReg).addReg (V8::G0).addReg (basePtrReg); |
| } |
| |
| void V8ISel::visitGetElementPtrInst (GetElementPtrInst &I) { |
| unsigned outputReg = getReg (I); |
| emitGEPOperation (BB, BB->end (), I.getOperand (0), |
| I.op_begin ()+1, I.op_end (), outputReg); |
| } |
| |
| |
| void V8ISel::visitBinaryOperator (Instruction &I) { |
| unsigned DestReg = getReg (I); |
| unsigned Op0Reg = getReg (I.getOperand (0)); |
| unsigned Op1Reg = getReg (I.getOperand (1)); |
| |
| unsigned Class = getClassB (I.getType()); |
| unsigned OpCase = ~0; |
| |
| if (Class > cLong) { |
| switch (I.getOpcode ()) { |
| case Instruction::Add: OpCase = 0; break; |
| case Instruction::Sub: OpCase = 1; break; |
| case Instruction::Mul: OpCase = 2; break; |
| case Instruction::Div: OpCase = 3; break; |
| default: visitInstruction (I); return; |
| } |
| static unsigned Opcodes[] = { V8::FADDS, V8::FADDD, |
| V8::FSUBS, V8::FSUBD, |
| V8::FMULS, V8::FMULD, |
| V8::FDIVS, V8::FDIVD }; |
| BuildMI (BB, Opcodes[2*OpCase + (Class - cFloat)], 2, DestReg) |
| .addReg (Op0Reg).addReg (Op1Reg); |
| return; |
| } |
| |
| unsigned ResultReg = DestReg; |
| if (Class != cInt && Class != cLong) |
| ResultReg = makeAnotherReg (I.getType ()); |
| |
| if (Class == cLong) { |
| DEBUG (std::cerr << "Class = cLong\n"); |
| DEBUG (std::cerr << "Op0Reg = " << Op0Reg << ", " << Op0Reg+1 << "\n"); |
| DEBUG (std::cerr << "Op1Reg = " << Op1Reg << ", " << Op1Reg+1 << "\n"); |
| DEBUG (std::cerr << "ResultReg = " << ResultReg << ", " << ResultReg+1 << "\n"); |
| DEBUG (std::cerr << "DestReg = " << DestReg << ", " << DestReg+1 << "\n"); |
| } |
| |
| // FIXME: support long, ulong. |
| switch (I.getOpcode ()) { |
| case Instruction::Add: OpCase = 0; break; |
| case Instruction::Sub: OpCase = 1; break; |
| case Instruction::Mul: OpCase = 2; break; |
| case Instruction::And: OpCase = 3; break; |
| case Instruction::Or: OpCase = 4; break; |
| case Instruction::Xor: OpCase = 5; break; |
| case Instruction::Shl: OpCase = 6; break; |
| case Instruction::Shr: OpCase = 7+I.getType()->isSigned(); break; |
| |
| case Instruction::Div: |
| case Instruction::Rem: { |
| unsigned Dest = ResultReg; |
| if (I.getOpcode() == Instruction::Rem) |
| Dest = makeAnotherReg(I.getType()); |
| |
| // FIXME: this is probably only right for 32 bit operands. |
| if (I.getType ()->isSigned()) { |
| unsigned Tmp = makeAnotherReg (I.getType ()); |
| // Sign extend into the Y register |
| BuildMI (BB, V8::SRAri, 2, Tmp).addReg (Op0Reg).addZImm (31); |
| BuildMI (BB, V8::WRrr, 2, V8::Y).addReg (Tmp).addReg (V8::G0); |
| BuildMI (BB, V8::SDIVrr, 2, Dest).addReg (Op0Reg).addReg (Op1Reg); |
| } else { |
| // Zero extend into the Y register, ie, just set it to zero |
| BuildMI (BB, V8::WRrr, 2, V8::Y).addReg (V8::G0).addReg (V8::G0); |
| BuildMI (BB, V8::UDIVrr, 2, Dest).addReg (Op0Reg).addReg (Op1Reg); |
| } |
| |
| if (I.getOpcode() == Instruction::Rem) { |
| unsigned Tmp = makeAnotherReg (I.getType ()); |
| BuildMI (BB, V8::SMULrr, 2, Tmp).addReg(Dest).addReg(Op1Reg); |
| BuildMI (BB, V8::SUBrr, 2, ResultReg).addReg(Op0Reg).addReg(Tmp); |
| } |
| break; |
| } |
| default: |
| visitInstruction (I); |
| return; |
| } |
| |
| static const unsigned Opcodes[] = { |
| V8::ADDrr, V8::SUBrr, V8::SMULrr, V8::ANDrr, V8::ORrr, V8::XORrr, |
| V8::SLLrr, V8::SRLrr, V8::SRArr |
| }; |
| if (OpCase != ~0U) { |
| BuildMI (BB, Opcodes[OpCase], 2, ResultReg).addReg (Op0Reg).addReg (Op1Reg); |
| } |
| |
| switch (getClassB (I.getType ())) { |
| case cByte: |
| if (I.getType ()->isSigned ()) { // add byte |
| BuildMI (BB, V8::ANDri, 2, DestReg).addReg (ResultReg).addZImm (0xff); |
| } else { // add ubyte |
| unsigned TmpReg = makeAnotherReg (I.getType ()); |
| BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (24); |
| BuildMI (BB, V8::SRAri, 2, DestReg).addReg (TmpReg).addZImm (24); |
| } |
| break; |
| case cShort: |
| if (I.getType ()->isSigned ()) { // add short |
| unsigned TmpReg = makeAnotherReg (I.getType ()); |
| BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (16); |
| BuildMI (BB, V8::SRAri, 2, DestReg).addReg (TmpReg).addZImm (16); |
| } else { // add ushort |
| unsigned TmpReg = makeAnotherReg (I.getType ()); |
| BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (16); |
| BuildMI (BB, V8::SRLri, 2, DestReg).addReg (TmpReg).addZImm (16); |
| } |
| break; |
| case cInt: |
| // Nothing to do here. |
| break; |
| case cLong: |
| // Only support and, or, xor. |
| if (OpCase < 3 || OpCase > 5) { |
| visitInstruction (I); |
| return; |
| } |
| // Do the other half of the value: |
| BuildMI (BB, Opcodes[OpCase], 2, ResultReg+1).addReg (Op0Reg+1) |
| .addReg (Op1Reg+1); |
| break; |
| default: |
| visitInstruction (I); |
| } |
| } |
| |
| void V8ISel::visitSetCondInst(SetCondInst &I) { |
| unsigned Op0Reg = getReg (I.getOperand (0)); |
| unsigned Op1Reg = getReg (I.getOperand (1)); |
| unsigned DestReg = getReg (I); |
| const Type *Ty = I.getOperand (0)->getType (); |
| |
| // Compare the two values. |
| assert (getClass (Ty) != cLong && "can't setcc on longs yet"); |
| if (getClass (Ty) < cLong) { |
| BuildMI(BB, V8::SUBCCrr, 2, V8::G0).addReg(Op0Reg).addReg(Op1Reg); |
| } else if (getClass (Ty) == cFloat) { |
| BuildMI(BB, V8::FCMPS, 2).addReg(Op0Reg).addReg(Op1Reg); |
| } else if (getClass (Ty) == cDouble) { |
| BuildMI(BB, V8::FCMPD, 2).addReg(Op0Reg).addReg(Op1Reg); |
| } |
| |
| unsigned BranchIdx; |
| switch (I.getOpcode()) { |
| default: assert(0 && "Unknown setcc instruction!"); |
| case Instruction::SetEQ: BranchIdx = 0; break; |
| case Instruction::SetNE: BranchIdx = 1; break; |
| case Instruction::SetLT: BranchIdx = 2; break; |
| case Instruction::SetGT: BranchIdx = 3; break; |
| case Instruction::SetLE: BranchIdx = 4; break; |
| case Instruction::SetGE: BranchIdx = 5; break; |
| } |
| unsigned Column = 0; |
| if (Ty->isSigned() && !Ty->isFloatingPoint()) Column = 1; |
| if (Ty->isFloatingPoint()) Column = 2; |
| static unsigned OpcodeTab[3*6] = { |
| // LLVM SparcV8 |
| // unsigned signed fp |
| V8::BE, V8::BE, V8::FBE, // seteq = be be fbe |
| V8::BNE, V8::BNE, V8::FBNE, // setne = bne bne fbne |
| V8::BCS, V8::BL, V8::FBL, // setlt = bcs bl fbl |
| V8::BGU, V8::BG, V8::FBG, // setgt = bgu bg fbg |
| V8::BLEU, V8::BLE, V8::FBLE, // setle = bleu ble fble |
| V8::BCC, V8::BGE, V8::FBGE // setge = bcc bge fbge |
| }; |
| unsigned Opcode = OpcodeTab[3*BranchIdx + Column]; |
| |
| MachineBasicBlock *thisMBB = BB; |
| const BasicBlock *LLVM_BB = BB->getBasicBlock (); |
| // thisMBB: |
| // ... |
| // subcc %reg0, %reg1, %g0 |
| // bCC copy1MBB |
| // ba copy0MBB |
| |
| // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB) |
| // if we could insert other, non-terminator instructions after the |
| // bCC. But MBB->getFirstTerminator() can't understand this. |
| MachineBasicBlock *copy1MBB = new MachineBasicBlock (LLVM_BB); |
| F->getBasicBlockList ().push_back (copy1MBB); |
| BuildMI (BB, Opcode, 1).addMBB (copy1MBB); |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock (LLVM_BB); |
| F->getBasicBlockList ().push_back (copy0MBB); |
| BuildMI (BB, V8::BA, 1).addMBB (copy0MBB); |
| // Update machine-CFG edges |
| BB->addSuccessor (copy1MBB); |
| BB->addSuccessor (copy0MBB); |
| |
| // copy0MBB: |
| // %FalseValue = or %G0, 0 |
| // ba sinkMBB |
| BB = copy0MBB; |
| unsigned FalseValue = makeAnotherReg (I.getType ()); |
| BuildMI (BB, V8::ORri, 2, FalseValue).addReg (V8::G0).addZImm (0); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock (LLVM_BB); |
| F->getBasicBlockList ().push_back (sinkMBB); |
| BuildMI (BB, V8::BA, 1).addMBB (sinkMBB); |
| // Update machine-CFG edges |
| BB->addSuccessor (sinkMBB); |
| |
| DEBUG (std::cerr << "thisMBB is at " << (void*)thisMBB << "\n"); |
| DEBUG (std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n"); |
| DEBUG (std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n"); |
| DEBUG (std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n"); |
| |
| // copy1MBB: |
| // %TrueValue = or %G0, 1 |
| // ba sinkMBB |
| BB = copy1MBB; |
| unsigned TrueValue = makeAnotherReg (I.getType ()); |
| BuildMI (BB, V8::ORri, 2, TrueValue).addReg (V8::G0).addZImm (1); |
| BuildMI (BB, V8::BA, 1).addMBB (sinkMBB); |
| // Update machine-CFG edges |
| BB->addSuccessor (sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI (BB, V8::PHI, 4, DestReg).addReg (FalseValue) |
| .addMBB (copy0MBB).addReg (TrueValue).addMBB (copy1MBB); |
| } |
| |
| void V8ISel::visitAllocaInst(AllocaInst &I) { |
| // Find the data size of the alloca inst's getAllocatedType. |
| const Type *Ty = I.getAllocatedType(); |
| unsigned TySize = TM.getTargetData().getTypeSize(Ty); |
| |
| unsigned ArraySizeReg = getReg (I.getArraySize ()); |
| unsigned TySizeReg = getReg (ConstantUInt::get (Type::UIntTy, TySize)); |
| unsigned TmpReg1 = makeAnotherReg (Type::UIntTy); |
| unsigned TmpReg2 = makeAnotherReg (Type::UIntTy); |
| unsigned StackAdjReg = makeAnotherReg (Type::UIntTy); |
| |
| // StackAdjReg = (ArraySize * TySize) rounded up to nearest doubleword boundary |
| BuildMI (BB, V8::UMULrr, 2, TmpReg1).addReg (ArraySizeReg).addReg (TySizeReg); |
| |
| // Round up TmpReg1 to nearest doubleword boundary: |
| BuildMI (BB, V8::ADDri, 2, TmpReg2).addReg (TmpReg1).addSImm (7); |
| BuildMI (BB, V8::ANDri, 2, StackAdjReg).addReg (TmpReg2).addSImm (-8); |
| |
| // Subtract size from stack pointer, thereby allocating some space. |
| BuildMI (BB, V8::SUBrr, 2, V8::SP).addReg (V8::SP).addReg (StackAdjReg); |
| |
| // Put a pointer to the space into the result register, by copying |
| // the stack pointer. |
| BuildMI (BB, V8::ADDri, 2, getReg(I)).addReg (V8::SP).addSImm (96); |
| |
| // Inform the Frame Information that we have just allocated a variable-sized |
| // object. |
| F->getFrameInfo()->CreateVariableSizedObject(); |
| } |
| |
| /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the |
| /// function, lowering any calls to unknown intrinsic functions into the |
| /// equivalent LLVM code. |
| void V8ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) |
| if (CallInst *CI = dyn_cast<CallInst>(I++)) |
| if (Function *F = CI->getCalledFunction()) |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::not_intrinsic: break; |
| default: |
| // All other intrinsic calls we must lower. |
| Instruction *Before = CI->getPrev(); |
| TM.getIntrinsicLowering().LowerIntrinsicCall(CI); |
| if (Before) { // Move iterator to instruction after call |
| I = Before; ++I; |
| } else { |
| I = BB->begin(); |
| } |
| } |
| } |
| |
| |
| void V8ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { |
| unsigned TmpReg1, TmpReg2; |
| switch (ID) { |
| default: assert(0 && "Intrinsic not supported!"); |
| } |
| } |