| //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include <cctype> |
| using namespace llvm; |
| |
| static cl::opt<bool> DisableHazardRecognizer( |
| "disable-sched-hazard", cl::Hidden, cl::init(false), |
| cl::desc("Disable hazard detection during preRA scheduling")); |
| |
| TargetInstrInfo::~TargetInstrInfo() { |
| } |
| |
| const TargetRegisterClass* |
| TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, |
| const TargetRegisterInfo *TRI, |
| const MachineFunction &MF) const { |
| if (OpNum >= MCID.getNumOperands()) |
| return 0; |
| |
| short RegClass = MCID.OpInfo[OpNum].RegClass; |
| if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) |
| return TRI->getPointerRegClass(MF, RegClass); |
| |
| // Instructions like INSERT_SUBREG do not have fixed register classes. |
| if (RegClass < 0) |
| return 0; |
| |
| // Otherwise just look it up normally. |
| return TRI->getRegClass(RegClass); |
| } |
| |
| /// insertNoop - Insert a noop into the instruction stream at the specified |
| /// point. |
| void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI) const { |
| llvm_unreachable("Target didn't implement insertNoop!"); |
| } |
| |
| /// Measure the specified inline asm to determine an approximation of its |
| /// length. |
| /// Comments (which run till the next SeparatorString or newline) do not |
| /// count as an instruction. |
| /// Any other non-whitespace text is considered an instruction, with |
| /// multiple instructions separated by SeparatorString or newlines. |
| /// Variable-length instructions are not handled here; this function |
| /// may be overloaded in the target code to do that. |
| unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, |
| const MCAsmInfo &MAI) const { |
| |
| |
| // Count the number of instructions in the asm. |
| bool atInsnStart = true; |
| unsigned Length = 0; |
| for (; *Str; ++Str) { |
| if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), |
| strlen(MAI.getSeparatorString())) == 0) |
| atInsnStart = true; |
| if (atInsnStart && !std::isspace(*Str)) { |
| Length += MAI.getMaxInstLength(); |
| atInsnStart = false; |
| } |
| if (atInsnStart && strncmp(Str, MAI.getCommentString(), |
| strlen(MAI.getCommentString())) == 0) |
| atInsnStart = false; |
| } |
| |
| return Length; |
| } |
| |
| /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything |
| /// after it, replacing it with an unconditional branch to NewDest. |
| void |
| TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, |
| MachineBasicBlock *NewDest) const { |
| MachineBasicBlock *MBB = Tail->getParent(); |
| |
| // Remove all the old successors of MBB from the CFG. |
| while (!MBB->succ_empty()) |
| MBB->removeSuccessor(MBB->succ_begin()); |
| |
| // Remove all the dead instructions from the end of MBB. |
| MBB->erase(Tail, MBB->end()); |
| |
| // If MBB isn't immediately before MBB, insert a branch to it. |
| if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) |
| InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(), |
| Tail->getDebugLoc()); |
| MBB->addSuccessor(NewDest); |
| } |
| |
| // commuteInstruction - The default implementation of this method just exchanges |
| // the two operands returned by findCommutedOpIndices. |
| MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI, |
| bool NewMI) const { |
| const MCInstrDesc &MCID = MI->getDesc(); |
| bool HasDef = MCID.getNumDefs(); |
| if (HasDef && !MI->getOperand(0).isReg()) |
| // No idea how to commute this instruction. Target should implement its own. |
| return 0; |
| unsigned Idx1, Idx2; |
| if (!findCommutedOpIndices(MI, Idx1, Idx2)) { |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "Don't know how to commute: " << *MI; |
| report_fatal_error(Msg.str()); |
| } |
| |
| assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && |
| "This only knows how to commute register operands so far"); |
| unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; |
| unsigned Reg1 = MI->getOperand(Idx1).getReg(); |
| unsigned Reg2 = MI->getOperand(Idx2).getReg(); |
| unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; |
| unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); |
| unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); |
| bool Reg1IsKill = MI->getOperand(Idx1).isKill(); |
| bool Reg2IsKill = MI->getOperand(Idx2).isKill(); |
| // If destination is tied to either of the commuted source register, then |
| // it must be updated. |
| if (HasDef && Reg0 == Reg1 && |
| MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { |
| Reg2IsKill = false; |
| Reg0 = Reg2; |
| SubReg0 = SubReg2; |
| } else if (HasDef && Reg0 == Reg2 && |
| MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { |
| Reg1IsKill = false; |
| Reg0 = Reg1; |
| SubReg0 = SubReg1; |
| } |
| |
| if (NewMI) { |
| // Create a new instruction. |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| MI = MF.CloneMachineInstr(MI); |
| } |
| |
| if (HasDef) { |
| MI->getOperand(0).setReg(Reg0); |
| MI->getOperand(0).setSubReg(SubReg0); |
| } |
| MI->getOperand(Idx2).setReg(Reg1); |
| MI->getOperand(Idx1).setReg(Reg2); |
| MI->getOperand(Idx2).setSubReg(SubReg1); |
| MI->getOperand(Idx1).setSubReg(SubReg2); |
| MI->getOperand(Idx2).setIsKill(Reg1IsKill); |
| MI->getOperand(Idx1).setIsKill(Reg2IsKill); |
| return MI; |
| } |
| |
| /// findCommutedOpIndices - If specified MI is commutable, return the two |
| /// operand indices that would swap value. Return true if the instruction |
| /// is not in a form which this routine understands. |
| bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI, |
| unsigned &SrcOpIdx1, |
| unsigned &SrcOpIdx2) const { |
| assert(!MI->isBundle() && |
| "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); |
| |
| const MCInstrDesc &MCID = MI->getDesc(); |
| if (!MCID.isCommutable()) |
| return false; |
| // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this |
| // is not true, then the target must implement this. |
| SrcOpIdx1 = MCID.getNumDefs(); |
| SrcOpIdx2 = SrcOpIdx1 + 1; |
| if (!MI->getOperand(SrcOpIdx1).isReg() || |
| !MI->getOperand(SrcOpIdx2).isReg()) |
| // No idea. |
| return false; |
| return true; |
| } |
| |
| |
| bool |
| TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { |
| if (!MI->isTerminator()) return false; |
| |
| // Conditional branch is a special case. |
| if (MI->isBranch() && !MI->isBarrier()) |
| return true; |
| if (!MI->isPredicable()) |
| return true; |
| return !isPredicated(MI); |
| } |
| |
| |
| bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI, |
| const SmallVectorImpl<MachineOperand> &Pred) const { |
| bool MadeChange = false; |
| |
| assert(!MI->isBundle() && |
| "TargetInstrInfo::PredicateInstruction() can't handle bundles"); |
| |
| const MCInstrDesc &MCID = MI->getDesc(); |
| if (!MI->isPredicable()) |
| return false; |
| |
| for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| if (MCID.OpInfo[i].isPredicate()) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg()) { |
| MO.setReg(Pred[j].getReg()); |
| MadeChange = true; |
| } else if (MO.isImm()) { |
| MO.setImm(Pred[j].getImm()); |
| MadeChange = true; |
| } else if (MO.isMBB()) { |
| MO.setMBB(Pred[j].getMBB()); |
| MadeChange = true; |
| } |
| ++j; |
| } |
| } |
| return MadeChange; |
| } |
| |
| bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, |
| const MachineMemOperand *&MMO, |
| int &FrameIndex) const { |
| for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), |
| oe = MI->memoperands_end(); |
| o != oe; |
| ++o) { |
| if ((*o)->isLoad() && (*o)->getValue()) |
| if (const FixedStackPseudoSourceValue *Value = |
| dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { |
| FrameIndex = Value->getFrameIndex(); |
| MMO = *o; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI, |
| const MachineMemOperand *&MMO, |
| int &FrameIndex) const { |
| for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), |
| oe = MI->memoperands_end(); |
| o != oe; |
| ++o) { |
| if ((*o)->isStore() && (*o)->getValue()) |
| if (const FixedStackPseudoSourceValue *Value = |
| dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { |
| FrameIndex = Value->getFrameIndex(); |
| MMO = *o; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned DestReg, |
| unsigned SubIdx, |
| const MachineInstr *Orig, |
| const TargetRegisterInfo &TRI) const { |
| MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); |
| MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); |
| MBB.insert(I, MI); |
| } |
| |
| bool |
| TargetInstrInfo::produceSameValue(const MachineInstr *MI0, |
| const MachineInstr *MI1, |
| const MachineRegisterInfo *MRI) const { |
| return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); |
| } |
| |
| MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig, |
| MachineFunction &MF) const { |
| assert(!Orig->isNotDuplicable() && |
| "Instruction cannot be duplicated"); |
| return MF.CloneMachineInstr(Orig); |
| } |
| |
| // If the COPY instruction in MI can be folded to a stack operation, return |
| // the register class to use. |
| static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, |
| unsigned FoldIdx) { |
| assert(MI->isCopy() && "MI must be a COPY instruction"); |
| if (MI->getNumOperands() != 2) |
| return 0; |
| assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); |
| |
| const MachineOperand &FoldOp = MI->getOperand(FoldIdx); |
| const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); |
| |
| if (FoldOp.getSubReg() || LiveOp.getSubReg()) |
| return 0; |
| |
| unsigned FoldReg = FoldOp.getReg(); |
| unsigned LiveReg = LiveOp.getReg(); |
| |
| assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && |
| "Cannot fold physregs"); |
| |
| const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); |
| const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); |
| |
| if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) |
| return RC->contains(LiveOp.getReg()) ? RC : 0; |
| |
| if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) |
| return RC; |
| |
| // FIXME: Allow folding when register classes are memory compatible. |
| return 0; |
| } |
| |
| bool TargetInstrInfo:: |
| canFoldMemoryOperand(const MachineInstr *MI, |
| const SmallVectorImpl<unsigned> &Ops) const { |
| return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]); |
| } |
| |
| /// foldMemoryOperand - Attempt to fold a load or store of the specified stack |
| /// slot into the specified machine instruction for the specified operand(s). |
| /// If this is possible, a new instruction is returned with the specified |
| /// operand folded, otherwise NULL is returned. The client is responsible for |
| /// removing the old instruction and adding the new one in the instruction |
| /// stream. |
| MachineInstr* |
| TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| int FI) const { |
| unsigned Flags = 0; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| if (MI->getOperand(Ops[i]).isDef()) |
| Flags |= MachineMemOperand::MOStore; |
| else |
| Flags |= MachineMemOperand::MOLoad; |
| |
| MachineBasicBlock *MBB = MI->getParent(); |
| assert(MBB && "foldMemoryOperand needs an inserted instruction"); |
| MachineFunction &MF = *MBB->getParent(); |
| |
| // Ask the target to do the actual folding. |
| if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) { |
| // Add a memory operand, foldMemoryOperandImpl doesn't do that. |
| assert((!(Flags & MachineMemOperand::MOStore) || |
| NewMI->mayStore()) && |
| "Folded a def to a non-store!"); |
| assert((!(Flags & MachineMemOperand::MOLoad) || |
| NewMI->mayLoad()) && |
| "Folded a use to a non-load!"); |
| const MachineFrameInfo &MFI = *MF.getFrameInfo(); |
| assert(MFI.getObjectOffset(FI) != -1); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), |
| Flags, MFI.getObjectSize(FI), |
| MFI.getObjectAlignment(FI)); |
| NewMI->addMemOperand(MF, MMO); |
| |
| // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI. |
| return MBB->insert(MI, NewMI); |
| } |
| |
| // Straight COPY may fold as load/store. |
| if (!MI->isCopy() || Ops.size() != 1) |
| return 0; |
| |
| const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); |
| if (!RC) |
| return 0; |
| |
| const MachineOperand &MO = MI->getOperand(1-Ops[0]); |
| MachineBasicBlock::iterator Pos = MI; |
| const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); |
| |
| if (Flags == MachineMemOperand::MOStore) |
| storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); |
| else |
| loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); |
| return --Pos; |
| } |
| |
| /// foldMemoryOperand - Same as the previous version except it allows folding |
| /// of any load and store from / to any address, not just from a specific |
| /// stack slot. |
| MachineInstr* |
| TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| MachineInstr* LoadMI) const { |
| assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); |
| #endif |
| MachineBasicBlock &MBB = *MI->getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| |
| // Ask the target to do the actual folding. |
| MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); |
| if (!NewMI) return 0; |
| |
| NewMI = MBB.insert(MI, NewMI); |
| |
| // Copy the memoperands from the load to the folded instruction. |
| NewMI->setMemRefs(LoadMI->memoperands_begin(), |
| LoadMI->memoperands_end()); |
| |
| return NewMI; |
| } |
| |
| bool TargetInstrInfo:: |
| isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, |
| AliasAnalysis *AA) const { |
| const MachineFunction &MF = *MI->getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| const TargetMachine &TM = MF.getTarget(); |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| |
| // Remat clients assume operand 0 is the defined register. |
| if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) |
| return false; |
| unsigned DefReg = MI->getOperand(0).getReg(); |
| |
| // A sub-register definition can only be rematerialized if the instruction |
| // doesn't read the other parts of the register. Otherwise it is really a |
| // read-modify-write operation on the full virtual register which cannot be |
| // moved safely. |
| if (TargetRegisterInfo::isVirtualRegister(DefReg) && |
| MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) |
| return false; |
| |
| // A load from a fixed stack slot can be rematerialized. This may be |
| // redundant with subsequent checks, but it's target-independent, |
| // simple, and a common case. |
| int FrameIdx = 0; |
| if (TII.isLoadFromStackSlot(MI, FrameIdx) && |
| MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) |
| return true; |
| |
| // Avoid instructions obviously unsafe for remat. |
| if (MI->isNotDuplicable() || MI->mayStore() || |
| MI->hasUnmodeledSideEffects()) |
| return false; |
| |
| // Don't remat inline asm. We have no idea how expensive it is |
| // even if it's side effect free. |
| if (MI->isInlineAsm()) |
| return false; |
| |
| // Avoid instructions which load from potentially varying memory. |
| if (MI->mayLoad() && !MI->isInvariantLoad(AA)) |
| return false; |
| |
| // If any of the registers accessed are non-constant, conservatively assume |
| // the instruction is not rematerializable. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) |
| continue; |
| |
| // Check for a well-behaved physical register. |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| if (MO.isUse()) { |
| // If the physreg has no defs anywhere, it's just an ambient register |
| // and we can freely move its uses. Alternatively, if it's allocatable, |
| // it could get allocated to something with a def during allocation. |
| if (!MRI.isConstantPhysReg(Reg, MF)) |
| return false; |
| } else { |
| // A physreg def. We can't remat it. |
| return false; |
| } |
| continue; |
| } |
| |
| // Only allow one virtual-register def. There may be multiple defs of the |
| // same virtual register, though. |
| if (MO.isDef() && Reg != DefReg) |
| return false; |
| |
| // Don't allow any virtual-register uses. Rematting an instruction with |
| // virtual register uses would length the live ranges of the uses, which |
| // is not necessarily a good idea, certainly not "trivial". |
| if (MO.isUse()) |
| return false; |
| } |
| |
| // Everything checked out. |
| return true; |
| } |
| |
| /// isSchedulingBoundary - Test if the given instruction should be |
| /// considered a scheduling boundary. This primarily includes labels |
| /// and terminators. |
| bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI, |
| const MachineBasicBlock *MBB, |
| const MachineFunction &MF) const { |
| // Terminators and labels can't be scheduled around. |
| if (MI->isTerminator() || MI->isLabel()) |
| return true; |
| |
| // Don't attempt to schedule around any instruction that defines |
| // a stack-oriented pointer, as it's unlikely to be profitable. This |
| // saves compile time, because it doesn't require every single |
| // stack slot reference to depend on the instruction that does the |
| // modification. |
| const TargetLowering &TLI = *MF.getTarget().getTargetLowering(); |
| const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); |
| if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI)) |
| return true; |
| |
| return false; |
| } |
| |
| // Provide a global flag for disabling the PreRA hazard recognizer that targets |
| // may choose to honor. |
| bool TargetInstrInfo::usePreRAHazardRecognizer() const { |
| return !DisableHazardRecognizer; |
| } |
| |
| // Default implementation of CreateTargetRAHazardRecognizer. |
| ScheduleHazardRecognizer *TargetInstrInfo:: |
| CreateTargetHazardRecognizer(const TargetMachine *TM, |
| const ScheduleDAG *DAG) const { |
| // Dummy hazard recognizer allows all instructions to issue. |
| return new ScheduleHazardRecognizer(); |
| } |
| |
| // Default implementation of CreateTargetMIHazardRecognizer. |
| ScheduleHazardRecognizer *TargetInstrInfo:: |
| CreateTargetMIHazardRecognizer(const InstrItineraryData *II, |
| const ScheduleDAG *DAG) const { |
| return (ScheduleHazardRecognizer *) |
| new ScoreboardHazardRecognizer(II, DAG, "misched"); |
| } |
| |
| // Default implementation of CreateTargetPostRAHazardRecognizer. |
| ScheduleHazardRecognizer *TargetInstrInfo:: |
| CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, |
| const ScheduleDAG *DAG) const { |
| return (ScheduleHazardRecognizer *) |
| new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAG latency interface. |
| //===----------------------------------------------------------------------===// |
| |
| int |
| TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, |
| SDNode *DefNode, unsigned DefIdx, |
| SDNode *UseNode, unsigned UseIdx) const { |
| if (!ItinData || ItinData->isEmpty()) |
| return -1; |
| |
| if (!DefNode->isMachineOpcode()) |
| return -1; |
| |
| unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); |
| if (!UseNode->isMachineOpcode()) |
| return ItinData->getOperandCycle(DefClass, DefIdx); |
| unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); |
| return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); |
| } |
| |
| int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, |
| SDNode *N) const { |
| if (!ItinData || ItinData->isEmpty()) |
| return 1; |
| |
| if (!N->isMachineOpcode()) |
| return 1; |
| |
| return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MachineInstr latency interface. |
| //===----------------------------------------------------------------------===// |
| |
| unsigned |
| TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, |
| const MachineInstr *MI) const { |
| if (!ItinData || ItinData->isEmpty()) |
| return 1; |
| |
| unsigned Class = MI->getDesc().getSchedClass(); |
| int UOps = ItinData->Itineraries[Class].NumMicroOps; |
| if (UOps >= 0) |
| return UOps; |
| |
| // The # of u-ops is dynamically determined. The specific target should |
| // override this function to return the right number. |
| return 1; |
| } |
| |
| /// Return the default expected latency for a def based on it's opcode. |
| unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel, |
| const MachineInstr *DefMI) const { |
| if (DefMI->isTransient()) |
| return 0; |
| if (DefMI->mayLoad()) |
| return SchedModel->LoadLatency; |
| if (isHighLatencyDef(DefMI->getOpcode())) |
| return SchedModel->HighLatency; |
| return 1; |
| } |
| |
| unsigned TargetInstrInfo:: |
| getInstrLatency(const InstrItineraryData *ItinData, |
| const MachineInstr *MI, |
| unsigned *PredCost) const { |
| // Default to one cycle for no itinerary. However, an "empty" itinerary may |
| // still have a MinLatency property, which getStageLatency checks. |
| if (!ItinData) |
| return MI->mayLoad() ? 2 : 1; |
| |
| return ItinData->getStageLatency(MI->getDesc().getSchedClass()); |
| } |
| |
| bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData, |
| const MachineInstr *DefMI, |
| unsigned DefIdx) const { |
| if (!ItinData || ItinData->isEmpty()) |
| return false; |
| |
| unsigned DefClass = DefMI->getDesc().getSchedClass(); |
| int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); |
| return (DefCycle != -1 && DefCycle <= 1); |
| } |
| |
| /// Both DefMI and UseMI must be valid. By default, call directly to the |
| /// itinerary. This may be overriden by the target. |
| int TargetInstrInfo:: |
| getOperandLatency(const InstrItineraryData *ItinData, |
| const MachineInstr *DefMI, unsigned DefIdx, |
| const MachineInstr *UseMI, unsigned UseIdx) const { |
| unsigned DefClass = DefMI->getDesc().getSchedClass(); |
| unsigned UseClass = UseMI->getDesc().getSchedClass(); |
| return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); |
| } |
| |
| /// If we can determine the operand latency from the def only, without itinerary |
| /// lookup, do so. Otherwise return -1. |
| int TargetInstrInfo::computeDefOperandLatency( |
| const InstrItineraryData *ItinData, |
| const MachineInstr *DefMI, bool FindMin) const { |
| |
| // Let the target hook getInstrLatency handle missing itineraries. |
| if (!ItinData) |
| return getInstrLatency(ItinData, DefMI); |
| |
| // Return a latency based on the itinerary properties and defining instruction |
| // if possible. Some common subtargets don't require per-operand latency, |
| // especially for minimum latencies. |
| if (FindMin) { |
| // If MinLatency is valid, call getInstrLatency. This uses Stage latency if |
| // it exists before defaulting to MinLatency. |
| if (ItinData->SchedModel->MinLatency >= 0) |
| return getInstrLatency(ItinData, DefMI); |
| |
| // If MinLatency is invalid, OperandLatency is interpreted as MinLatency. |
| // For empty itineraries, short-cirtuit the check and default to one cycle. |
| if (ItinData->isEmpty()) |
| return 1; |
| } |
| else if(ItinData->isEmpty()) |
| return defaultDefLatency(ItinData->SchedModel, DefMI); |
| |
| // ...operand lookup required |
| return -1; |
| } |
| |
| /// computeOperandLatency - Compute and return the latency of the given data |
| /// dependent def and use when the operand indices are already known. UseMI may |
| /// be NULL for an unknown use. |
| /// |
| /// FindMin may be set to get the minimum vs. expected latency. Minimum |
| /// latency is used for scheduling groups, while expected latency is for |
| /// instruction cost and critical path. |
| /// |
| /// Depending on the subtarget's itinerary properties, this may or may not need |
| /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or |
| /// UseIdx to compute min latency. |
| unsigned TargetInstrInfo:: |
| computeOperandLatency(const InstrItineraryData *ItinData, |
| const MachineInstr *DefMI, unsigned DefIdx, |
| const MachineInstr *UseMI, unsigned UseIdx, |
| bool FindMin) const { |
| |
| int DefLatency = computeDefOperandLatency(ItinData, DefMI, FindMin); |
| if (DefLatency >= 0) |
| return DefLatency; |
| |
| assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); |
| |
| int OperLatency = 0; |
| if (UseMI) |
| OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); |
| else { |
| unsigned DefClass = DefMI->getDesc().getSchedClass(); |
| OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); |
| } |
| if (OperLatency >= 0) |
| return OperLatency; |
| |
| // No operand latency was found. |
| unsigned InstrLatency = getInstrLatency(ItinData, DefMI); |
| |
| // Expected latency is the max of the stage latency and itinerary props. |
| if (!FindMin) |
| InstrLatency = std::max(InstrLatency, |
| defaultDefLatency(ItinData->SchedModel, DefMI)); |
| return InstrLatency; |
| } |