| //===- MaximumSpanningTree.cpp - LLVM Pass to estimate profile info -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This module privides means for calculating a maximum spanning tree for the |
| // CFG of a function according to a given profile. The tree does not contain |
| // leaf edges, since they are needed for optimal edge profiling. |
| // |
| //===----------------------------------------------------------------------===// |
| #define DEBUG_TYPE "maximum-spanning-tree" |
| #include "MaximumSpanningTree.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Analysis/Passes.h" |
| #include "llvm/ADT/EquivalenceClasses.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Format.h" |
| using namespace llvm; |
| |
| namespace { |
| // compare two weighted edges |
| struct VISIBILITY_HIDDEN EdgeWeightCompare { |
| bool operator()(const ProfileInfo::EdgeWeight X, |
| const ProfileInfo::EdgeWeight Y) const { |
| if (X.second > Y.second) return true; |
| if (X.second < Y.second) return false; |
| |
| // It would be enough to just compare the weights of the edges and be |
| // done. With edges of the same weight this may lead to a different MST |
| // each time the MST is created. To have more stable sorting (and thus |
| // more stable MSTs) furhter sort the edges. |
| if (X.first.first != 0 && Y.first.first == 0) return true; |
| if (X.first.first == 0 && Y.first.first != 0) return false; |
| if (X.first.first == 0 && Y.first.first == 0) return false; |
| |
| if (X.first.first->size() > Y.first.first->size()) return true; |
| if (X.first.first->size() < Y.first.first->size()) return false; |
| |
| if (X.first.second != 0 && Y.first.second == 0) return true; |
| if (X.first.second == 0 && Y.first.second != 0) return false; |
| if (X.first.second == 0 && Y.first.second == 0) return false; |
| |
| if (X.first.second->size() > Y.first.second->size()) return true; |
| if (X.first.second->size() < Y.first.second->size()) return false; |
| |
| return false; |
| } |
| }; |
| } |
| |
| static void inline printMSTEdge(ProfileInfo::EdgeWeight E, |
| const char *M) { |
| DEBUG(errs() << "--Edge " << E.first |
| <<" (Weight "<< format("%g",E.second) << ") " |
| << (M) << "\n"); |
| } |
| |
| // MaximumSpanningTree() - Takes a function and returns a spanning tree |
| // according to the currently active profiling information, the leaf edges are |
| // NOT in the MST. MaximumSpanningTree uses the algorithm of Kruskal. |
| MaximumSpanningTree::MaximumSpanningTree(Function *F, ProfileInfo *PI, |
| bool inverted = false) { |
| |
| // Copy edges to vector, sort them biggest first. |
| ProfileInfo::EdgeWeights ECs = PI->getEdgeWeights(F); |
| std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end()); |
| std::sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare()); |
| |
| // Create spanning tree, Forest contains a special data structure |
| // that makes checking if two nodes are already in a common (sub-)tree |
| // fast and cheap. |
| EquivalenceClasses<const BasicBlock*> Forest; |
| for (std::vector<ProfileInfo::EdgeWeight>::iterator bbi = EdgeVector.begin(), |
| bbe = EdgeVector.end(); bbi != bbe; ++bbi) { |
| Forest.insert(bbi->first.first); |
| Forest.insert(bbi->first.second); |
| } |
| Forest.insert(0); |
| |
| // Iterate over the sorted edges, biggest first. |
| for (std::vector<ProfileInfo::EdgeWeight>::iterator bbi = EdgeVector.begin(), |
| bbe = EdgeVector.end(); bbi != bbe; ++bbi) { |
| ProfileInfo::Edge e = (*bbi).first; |
| |
| if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) { |
| Forest.unionSets(e.first, e.second); |
| // So we know now that the edge is not already in a subtree (and not |
| // (0,entry)), so we push the edge to the MST if it has some successors. |
| if (!inverted) { MST.push_back(e); } |
| printMSTEdge(*bbi,"in MST"); |
| } else { |
| // This edge is either (0,entry) or (BB,0) or would create a circle in a |
| // subtree. |
| if (inverted) { MST.push_back(e); } |
| printMSTEdge(*bbi,"*not* in MST"); |
| } |
| } |
| |
| // Sort the MST edges. |
| std::stable_sort(MST.begin(),MST.end()); |
| } |
| |
| MaximumSpanningTree::MaxSpanTree::iterator MaximumSpanningTree::begin() { |
| return MST.begin(); |
| } |
| |
| MaximumSpanningTree::MaxSpanTree::iterator MaximumSpanningTree::end() { |
| return MST.end(); |
| } |
| |
| void MaximumSpanningTree::dump() { |
| errs()<<"{"; |
| for ( MaxSpanTree::iterator ei = MST.begin(), ee = MST.end(); |
| ei!=ee; ++ei ) { |
| errs()<<"("<<((*ei).first?(*ei).first->getNameStr():"0")<<","; |
| errs()<<(*ei).second->getNameStr()<<")"; |
| } |
| errs()<<"}\n"; |
| } |