| //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the machine instruction level if-conversion pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "ifcvt" |
| #include "BranchFolding.h" |
| #include "llvm/Function.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| using namespace llvm; |
| |
| // Hidden options for help debugging. |
| static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); |
| static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); |
| static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); |
| static cl::opt<bool> DisableSimple("disable-ifcvt-simple", |
| cl::init(false), cl::Hidden); |
| static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", |
| cl::init(false), cl::Hidden); |
| static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", |
| cl::init(false), cl::Hidden); |
| static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", |
| cl::init(false), cl::Hidden); |
| static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", |
| cl::init(false), cl::Hidden); |
| static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", |
| cl::init(false), cl::Hidden); |
| static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", |
| cl::init(false), cl::Hidden); |
| static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", |
| cl::init(true), cl::Hidden); |
| |
| STATISTIC(NumSimple, "Number of simple if-conversions performed"); |
| STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); |
| STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); |
| STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); |
| STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); |
| STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); |
| STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); |
| STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); |
| STATISTIC(NumDupBBs, "Number of duplicated blocks"); |
| STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); |
| |
| namespace { |
| class IfConverter : public MachineFunctionPass { |
| enum IfcvtKind { |
| ICNotClassfied, // BB data valid, but not classified. |
| ICSimpleFalse, // Same as ICSimple, but on the false path. |
| ICSimple, // BB is entry of an one split, no rejoin sub-CFG. |
| ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. |
| ICTriangleRev, // Same as ICTriangle, but true path rev condition. |
| ICTriangleFalse, // Same as ICTriangle, but on the false path. |
| ICTriangle, // BB is entry of a triangle sub-CFG. |
| ICDiamond // BB is entry of a diamond sub-CFG. |
| }; |
| |
| /// BBInfo - One per MachineBasicBlock, this is used to cache the result |
| /// if-conversion feasibility analysis. This includes results from |
| /// TargetInstrInfo::AnalyzeBranch() (i.e. TBB, FBB, and Cond), and its |
| /// classification, and common tail block of its successors (if it's a |
| /// diamond shape), its size, whether it's predicable, and whether any |
| /// instruction can clobber the 'would-be' predicate. |
| /// |
| /// IsDone - True if BB is not to be considered for ifcvt. |
| /// IsBeingAnalyzed - True if BB is currently being analyzed. |
| /// IsAnalyzed - True if BB has been analyzed (info is still valid). |
| /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. |
| /// IsBrAnalyzable - True if AnalyzeBranch() returns false. |
| /// HasFallThrough - True if BB may fallthrough to the following BB. |
| /// IsUnpredicable - True if BB is known to be unpredicable. |
| /// ClobbersPred - True if BB could modify predicates (e.g. has |
| /// cmp, call, etc.) |
| /// NonPredSize - Number of non-predicated instructions. |
| /// ExtraCost - Extra cost for multi-cycle instructions. |
| /// ExtraCost2 - Some instructions are slower when predicated |
| /// BB - Corresponding MachineBasicBlock. |
| /// TrueBB / FalseBB- See AnalyzeBranch(). |
| /// BrCond - Conditions for end of block conditional branches. |
| /// Predicate - Predicate used in the BB. |
| struct BBInfo { |
| bool IsDone : 1; |
| bool IsBeingAnalyzed : 1; |
| bool IsAnalyzed : 1; |
| bool IsEnqueued : 1; |
| bool IsBrAnalyzable : 1; |
| bool HasFallThrough : 1; |
| bool IsUnpredicable : 1; |
| bool CannotBeCopied : 1; |
| bool ClobbersPred : 1; |
| unsigned NonPredSize; |
| unsigned ExtraCost; |
| unsigned ExtraCost2; |
| MachineBasicBlock *BB; |
| MachineBasicBlock *TrueBB; |
| MachineBasicBlock *FalseBB; |
| SmallVector<MachineOperand, 4> BrCond; |
| SmallVector<MachineOperand, 4> Predicate; |
| BBInfo() : IsDone(false), IsBeingAnalyzed(false), |
| IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), |
| HasFallThrough(false), IsUnpredicable(false), |
| CannotBeCopied(false), ClobbersPred(false), NonPredSize(0), |
| ExtraCost(0), ExtraCost2(0), BB(0), TrueBB(0), FalseBB(0) {} |
| }; |
| |
| /// IfcvtToken - Record information about pending if-conversions to attempt: |
| /// BBI - Corresponding BBInfo. |
| /// Kind - Type of block. See IfcvtKind. |
| /// NeedSubsumption - True if the to-be-predicated BB has already been |
| /// predicated. |
| /// NumDups - Number of instructions that would be duplicated due |
| /// to this if-conversion. (For diamonds, the number of |
| /// identical instructions at the beginnings of both |
| /// paths). |
| /// NumDups2 - For diamonds, the number of identical instructions |
| /// at the ends of both paths. |
| struct IfcvtToken { |
| BBInfo &BBI; |
| IfcvtKind Kind; |
| bool NeedSubsumption; |
| unsigned NumDups; |
| unsigned NumDups2; |
| IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0) |
| : BBI(b), Kind(k), NeedSubsumption(s), NumDups(d), NumDups2(d2) {} |
| }; |
| |
| /// BBAnalysis - Results of if-conversion feasibility analysis indexed by |
| /// basic block number. |
| std::vector<BBInfo> BBAnalysis; |
| |
| const TargetLowering *TLI; |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| const InstrItineraryData *InstrItins; |
| const MachineBranchProbabilityInfo *MBPI; |
| |
| bool MadeChange; |
| int FnNum; |
| public: |
| static char ID; |
| IfConverter() : MachineFunctionPass(ID), FnNum(-1) { |
| initializeIfConverterPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<MachineBranchProbabilityInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| private: |
| bool ReverseBranchCondition(BBInfo &BBI); |
| bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, |
| const BranchProbability &Prediction) const; |
| bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, |
| bool FalseBranch, unsigned &Dups, |
| const BranchProbability &Prediction) const; |
| bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, |
| unsigned &Dups1, unsigned &Dups2) const; |
| void ScanInstructions(BBInfo &BBI); |
| BBInfo &AnalyzeBlock(MachineBasicBlock *BB, |
| std::vector<IfcvtToken*> &Tokens); |
| bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond, |
| bool isTriangle = false, bool RevBranch = false); |
| void AnalyzeBlocks(MachineFunction &MF, std::vector<IfcvtToken*> &Tokens); |
| void InvalidatePreds(MachineBasicBlock *BB); |
| void RemoveExtraEdges(BBInfo &BBI); |
| bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); |
| bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); |
| bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, |
| unsigned NumDups1, unsigned NumDups2); |
| void PredicateBlock(BBInfo &BBI, |
| MachineBasicBlock::iterator E, |
| SmallVectorImpl<MachineOperand> &Cond, |
| SmallSet<unsigned, 4> &Redefs, |
| SmallSet<unsigned, 4> *LaterRedefs = 0); |
| void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, |
| SmallVectorImpl<MachineOperand> &Cond, |
| SmallSet<unsigned, 4> &Redefs, |
| bool IgnoreBr = false); |
| void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); |
| |
| bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, |
| unsigned Cycle, unsigned Extra, |
| const BranchProbability &Prediction) const { |
| return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, |
| Prediction); |
| } |
| |
| bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, |
| unsigned TCycle, unsigned TExtra, |
| MachineBasicBlock &FBB, |
| unsigned FCycle, unsigned FExtra, |
| const BranchProbability &Prediction) const { |
| return TCycle > 0 && FCycle > 0 && |
| TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, |
| Prediction); |
| } |
| |
| // blockAlwaysFallThrough - Block ends without a terminator. |
| bool blockAlwaysFallThrough(BBInfo &BBI) const { |
| return BBI.IsBrAnalyzable && BBI.TrueBB == NULL; |
| } |
| |
| // IfcvtTokenCmp - Used to sort if-conversion candidates. |
| static bool IfcvtTokenCmp(IfcvtToken *C1, IfcvtToken *C2) { |
| int Incr1 = (C1->Kind == ICDiamond) |
| ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; |
| int Incr2 = (C2->Kind == ICDiamond) |
| ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; |
| if (Incr1 > Incr2) |
| return true; |
| else if (Incr1 == Incr2) { |
| // Favors subsumption. |
| if (C1->NeedSubsumption == false && C2->NeedSubsumption == true) |
| return true; |
| else if (C1->NeedSubsumption == C2->NeedSubsumption) { |
| // Favors diamond over triangle, etc. |
| if ((unsigned)C1->Kind < (unsigned)C2->Kind) |
| return true; |
| else if (C1->Kind == C2->Kind) |
| return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); |
| } |
| } |
| return false; |
| } |
| }; |
| |
| char IfConverter::ID = 0; |
| } |
| |
| char &llvm::IfConverterID = IfConverter::ID; |
| |
| INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) |
| INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false) |
| |
| bool IfConverter::runOnMachineFunction(MachineFunction &MF) { |
| TLI = MF.getTarget().getTargetLowering(); |
| TII = MF.getTarget().getInstrInfo(); |
| TRI = MF.getTarget().getRegisterInfo(); |
| MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); |
| InstrItins = MF.getTarget().getInstrItineraryData(); |
| if (!TII) return false; |
| |
| // Tail merge tend to expose more if-conversion opportunities. |
| BranchFolder BF(true, false); |
| bool BFChange = BF.OptimizeFunction(MF, TII, |
| MF.getTarget().getRegisterInfo(), |
| getAnalysisIfAvailable<MachineModuleInfo>()); |
| |
| DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" |
| << MF.getFunction()->getName() << "\'"); |
| |
| if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { |
| DEBUG(dbgs() << " skipped\n"); |
| return false; |
| } |
| DEBUG(dbgs() << "\n"); |
| |
| MF.RenumberBlocks(); |
| BBAnalysis.resize(MF.getNumBlockIDs()); |
| |
| std::vector<IfcvtToken*> Tokens; |
| MadeChange = false; |
| unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + |
| NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; |
| while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { |
| // Do an initial analysis for each basic block and find all the potential |
| // candidates to perform if-conversion. |
| bool Change = false; |
| AnalyzeBlocks(MF, Tokens); |
| while (!Tokens.empty()) { |
| IfcvtToken *Token = Tokens.back(); |
| Tokens.pop_back(); |
| BBInfo &BBI = Token->BBI; |
| IfcvtKind Kind = Token->Kind; |
| unsigned NumDups = Token->NumDups; |
| unsigned NumDups2 = Token->NumDups2; |
| |
| delete Token; |
| |
| // If the block has been evicted out of the queue or it has already been |
| // marked dead (due to it being predicated), then skip it. |
| if (BBI.IsDone) |
| BBI.IsEnqueued = false; |
| if (!BBI.IsEnqueued) |
| continue; |
| |
| BBI.IsEnqueued = false; |
| |
| bool RetVal = false; |
| switch (Kind) { |
| default: llvm_unreachable("Unexpected!"); |
| case ICSimple: |
| case ICSimpleFalse: { |
| bool isFalse = Kind == ICSimpleFalse; |
| if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; |
| DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? |
| " false" : "") |
| << "): BB#" << BBI.BB->getNumber() << " (" |
| << ((Kind == ICSimpleFalse) |
| ? BBI.FalseBB->getNumber() |
| : BBI.TrueBB->getNumber()) << ") "); |
| RetVal = IfConvertSimple(BBI, Kind); |
| DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); |
| if (RetVal) { |
| if (isFalse) ++NumSimpleFalse; |
| else ++NumSimple; |
| } |
| break; |
| } |
| case ICTriangle: |
| case ICTriangleRev: |
| case ICTriangleFalse: |
| case ICTriangleFRev: { |
| bool isFalse = Kind == ICTriangleFalse; |
| bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); |
| if (DisableTriangle && !isFalse && !isRev) break; |
| if (DisableTriangleR && !isFalse && isRev) break; |
| if (DisableTriangleF && isFalse && !isRev) break; |
| if (DisableTriangleFR && isFalse && isRev) break; |
| DEBUG(dbgs() << "Ifcvt (Triangle"); |
| if (isFalse) |
| DEBUG(dbgs() << " false"); |
| if (isRev) |
| DEBUG(dbgs() << " rev"); |
| DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:" |
| << BBI.TrueBB->getNumber() << ",F:" |
| << BBI.FalseBB->getNumber() << ") "); |
| RetVal = IfConvertTriangle(BBI, Kind); |
| DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); |
| if (RetVal) { |
| if (isFalse) { |
| if (isRev) ++NumTriangleFRev; |
| else ++NumTriangleFalse; |
| } else { |
| if (isRev) ++NumTriangleRev; |
| else ++NumTriangle; |
| } |
| } |
| break; |
| } |
| case ICDiamond: { |
| if (DisableDiamond) break; |
| DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:" |
| << BBI.TrueBB->getNumber() << ",F:" |
| << BBI.FalseBB->getNumber() << ") "); |
| RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2); |
| DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); |
| if (RetVal) ++NumDiamonds; |
| break; |
| } |
| } |
| |
| Change |= RetVal; |
| |
| NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + |
| NumTriangleFalse + NumTriangleFRev + NumDiamonds; |
| if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) |
| break; |
| } |
| |
| if (!Change) |
| break; |
| MadeChange |= Change; |
| } |
| |
| // Delete tokens in case of early exit. |
| while (!Tokens.empty()) { |
| IfcvtToken *Token = Tokens.back(); |
| Tokens.pop_back(); |
| delete Token; |
| } |
| |
| Tokens.clear(); |
| BBAnalysis.clear(); |
| |
| if (MadeChange && IfCvtBranchFold) { |
| BranchFolder BF(false, false); |
| BF.OptimizeFunction(MF, TII, |
| MF.getTarget().getRegisterInfo(), |
| getAnalysisIfAvailable<MachineModuleInfo>()); |
| } |
| |
| MadeChange |= BFChange; |
| return MadeChange; |
| } |
| |
| /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given |
| /// its 'true' successor. |
| static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, |
| MachineBasicBlock *TrueBB) { |
| for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), |
| E = BB->succ_end(); SI != E; ++SI) { |
| MachineBasicBlock *SuccBB = *SI; |
| if (SuccBB != TrueBB) |
| return SuccBB; |
| } |
| return NULL; |
| } |
| |
| /// ReverseBranchCondition - Reverse the condition of the end of the block |
| /// branch. Swap block's 'true' and 'false' successors. |
| bool IfConverter::ReverseBranchCondition(BBInfo &BBI) { |
| DebugLoc dl; // FIXME: this is nowhere |
| if (!TII->ReverseBranchCondition(BBI.BrCond)) { |
| TII->RemoveBranch(*BBI.BB); |
| TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); |
| std::swap(BBI.TrueBB, BBI.FalseBB); |
| return true; |
| } |
| return false; |
| } |
| |
| /// getNextBlock - Returns the next block in the function blocks ordering. If |
| /// it is the end, returns NULL. |
| static inline MachineBasicBlock *getNextBlock(MachineBasicBlock *BB) { |
| MachineFunction::iterator I = BB; |
| MachineFunction::iterator E = BB->getParent()->end(); |
| if (++I == E) |
| return NULL; |
| return I; |
| } |
| |
| /// ValidSimple - Returns true if the 'true' block (along with its |
| /// predecessor) forms a valid simple shape for ifcvt. It also returns the |
| /// number of instructions that the ifcvt would need to duplicate if performed |
| /// in Dups. |
| bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, |
| const BranchProbability &Prediction) const { |
| Dups = 0; |
| if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) |
| return false; |
| |
| if (TrueBBI.IsBrAnalyzable) |
| return false; |
| |
| if (TrueBBI.BB->pred_size() > 1) { |
| if (TrueBBI.CannotBeCopied || |
| !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, |
| Prediction)) |
| return false; |
| Dups = TrueBBI.NonPredSize; |
| } |
| |
| return true; |
| } |
| |
| /// ValidTriangle - Returns true if the 'true' and 'false' blocks (along |
| /// with their common predecessor) forms a valid triangle shape for ifcvt. |
| /// If 'FalseBranch' is true, it checks if 'true' block's false branch |
| /// branches to the 'false' block rather than the other way around. It also |
| /// returns the number of instructions that the ifcvt would need to duplicate |
| /// if performed in 'Dups'. |
| bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, |
| bool FalseBranch, unsigned &Dups, |
| const BranchProbability &Prediction) const { |
| Dups = 0; |
| if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) |
| return false; |
| |
| if (TrueBBI.BB->pred_size() > 1) { |
| if (TrueBBI.CannotBeCopied) |
| return false; |
| |
| unsigned Size = TrueBBI.NonPredSize; |
| if (TrueBBI.IsBrAnalyzable) { |
| if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) |
| // Ends with an unconditional branch. It will be removed. |
| --Size; |
| else { |
| MachineBasicBlock *FExit = FalseBranch |
| ? TrueBBI.TrueBB : TrueBBI.FalseBB; |
| if (FExit) |
| // Require a conditional branch |
| ++Size; |
| } |
| } |
| if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) |
| return false; |
| Dups = Size; |
| } |
| |
| MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; |
| if (!TExit && blockAlwaysFallThrough(TrueBBI)) { |
| MachineFunction::iterator I = TrueBBI.BB; |
| if (++I == TrueBBI.BB->getParent()->end()) |
| return false; |
| TExit = I; |
| } |
| return TExit && TExit == FalseBBI.BB; |
| } |
| |
| /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along |
| /// with their common predecessor) forms a valid diamond shape for ifcvt. |
| bool IfConverter::ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, |
| unsigned &Dups1, unsigned &Dups2) const { |
| Dups1 = Dups2 = 0; |
| if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || |
| FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) |
| return false; |
| |
| MachineBasicBlock *TT = TrueBBI.TrueBB; |
| MachineBasicBlock *FT = FalseBBI.TrueBB; |
| |
| if (!TT && blockAlwaysFallThrough(TrueBBI)) |
| TT = getNextBlock(TrueBBI.BB); |
| if (!FT && blockAlwaysFallThrough(FalseBBI)) |
| FT = getNextBlock(FalseBBI.BB); |
| if (TT != FT) |
| return false; |
| if (TT == NULL && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) |
| return false; |
| if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) |
| return false; |
| |
| // FIXME: Allow true block to have an early exit? |
| if (TrueBBI.FalseBB || FalseBBI.FalseBB || |
| (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)) |
| return false; |
| |
| // Count duplicate instructions at the beginning of the true and false blocks. |
| MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); |
| MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); |
| MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); |
| MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); |
| while (TIB != TIE && FIB != FIE) { |
| // Skip dbg_value instructions. These do not count. |
| if (TIB->isDebugValue()) { |
| while (TIB != TIE && TIB->isDebugValue()) |
| ++TIB; |
| if (TIB == TIE) |
| break; |
| } |
| if (FIB->isDebugValue()) { |
| while (FIB != FIE && FIB->isDebugValue()) |
| ++FIB; |
| if (FIB == FIE) |
| break; |
| } |
| if (!TIB->isIdenticalTo(FIB)) |
| break; |
| ++Dups1; |
| ++TIB; |
| ++FIB; |
| } |
| |
| // Now, in preparation for counting duplicate instructions at the ends of the |
| // blocks, move the end iterators up past any branch instructions. |
| while (TIE != TIB) { |
| --TIE; |
| if (!TIE->isBranch()) |
| break; |
| } |
| while (FIE != FIB) { |
| --FIE; |
| if (!FIE->isBranch()) |
| break; |
| } |
| |
| // If Dups1 includes all of a block, then don't count duplicate |
| // instructions at the end of the blocks. |
| if (TIB == TIE || FIB == FIE) |
| return true; |
| |
| // Count duplicate instructions at the ends of the blocks. |
| while (TIE != TIB && FIE != FIB) { |
| // Skip dbg_value instructions. These do not count. |
| if (TIE->isDebugValue()) { |
| while (TIE != TIB && TIE->isDebugValue()) |
| --TIE; |
| if (TIE == TIB) |
| break; |
| } |
| if (FIE->isDebugValue()) { |
| while (FIE != FIB && FIE->isDebugValue()) |
| --FIE; |
| if (FIE == FIB) |
| break; |
| } |
| if (!TIE->isIdenticalTo(FIE)) |
| break; |
| ++Dups2; |
| --TIE; |
| --FIE; |
| } |
| |
| return true; |
| } |
| |
| /// ScanInstructions - Scan all the instructions in the block to determine if |
| /// the block is predicable. In most cases, that means all the instructions |
| /// in the block are isPredicable(). Also checks if the block contains any |
| /// instruction which can clobber a predicate (e.g. condition code register). |
| /// If so, the block is not predicable unless it's the last instruction. |
| void IfConverter::ScanInstructions(BBInfo &BBI) { |
| if (BBI.IsDone) |
| return; |
| |
| bool AlreadyPredicated = BBI.Predicate.size() > 0; |
| // First analyze the end of BB branches. |
| BBI.TrueBB = BBI.FalseBB = NULL; |
| BBI.BrCond.clear(); |
| BBI.IsBrAnalyzable = |
| !TII->AnalyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); |
| BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == NULL; |
| |
| if (BBI.BrCond.size()) { |
| // No false branch. This BB must end with a conditional branch and a |
| // fallthrough. |
| if (!BBI.FalseBB) |
| BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); |
| if (!BBI.FalseBB) { |
| // Malformed bcc? True and false blocks are the same? |
| BBI.IsUnpredicable = true; |
| return; |
| } |
| } |
| |
| // Then scan all the instructions. |
| BBI.NonPredSize = 0; |
| BBI.ExtraCost = 0; |
| BBI.ExtraCost2 = 0; |
| BBI.ClobbersPred = false; |
| for (MachineBasicBlock::iterator I = BBI.BB->begin(), E = BBI.BB->end(); |
| I != E; ++I) { |
| if (I->isDebugValue()) |
| continue; |
| |
| if (I->isNotDuplicable()) |
| BBI.CannotBeCopied = true; |
| |
| bool isPredicated = TII->isPredicated(I); |
| bool isCondBr = BBI.IsBrAnalyzable && I->isConditionalBranch(); |
| |
| if (!isCondBr) { |
| if (!isPredicated) { |
| BBI.NonPredSize++; |
| unsigned ExtraPredCost = 0; |
| unsigned NumCycles = TII->getInstrLatency(InstrItins, &*I, |
| &ExtraPredCost); |
| if (NumCycles > 1) |
| BBI.ExtraCost += NumCycles-1; |
| BBI.ExtraCost2 += ExtraPredCost; |
| } else if (!AlreadyPredicated) { |
| // FIXME: This instruction is already predicated before the |
| // if-conversion pass. It's probably something like a conditional move. |
| // Mark this block unpredicable for now. |
| BBI.IsUnpredicable = true; |
| return; |
| } |
| } |
| |
| if (BBI.ClobbersPred && !isPredicated) { |
| // Predicate modification instruction should end the block (except for |
| // already predicated instructions and end of block branches). |
| if (isCondBr) { |
| // A conditional branch is not predicable, but it may be eliminated. |
| continue; |
| } |
| |
| // Predicate may have been modified, the subsequent (currently) |
| // unpredicated instructions cannot be correctly predicated. |
| BBI.IsUnpredicable = true; |
| return; |
| } |
| |
| // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are |
| // still potentially predicable. |
| std::vector<MachineOperand> PredDefs; |
| if (TII->DefinesPredicate(I, PredDefs)) |
| BBI.ClobbersPred = true; |
| |
| if (!TII->isPredicable(I)) { |
| BBI.IsUnpredicable = true; |
| return; |
| } |
| } |
| } |
| |
| /// FeasibilityAnalysis - Determine if the block is a suitable candidate to be |
| /// predicated by the specified predicate. |
| bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, |
| SmallVectorImpl<MachineOperand> &Pred, |
| bool isTriangle, bool RevBranch) { |
| // If the block is dead or unpredicable, then it cannot be predicated. |
| if (BBI.IsDone || BBI.IsUnpredicable) |
| return false; |
| |
| // If it is already predicated, check if its predicate subsumes the new |
| // predicate. |
| if (BBI.Predicate.size() && !TII->SubsumesPredicate(BBI.Predicate, Pred)) |
| return false; |
| |
| if (BBI.BrCond.size()) { |
| if (!isTriangle) |
| return false; |
| |
| // Test predicate subsumption. |
| SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); |
| SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); |
| if (RevBranch) { |
| if (TII->ReverseBranchCondition(Cond)) |
| return false; |
| } |
| if (TII->ReverseBranchCondition(RevPred) || |
| !TII->SubsumesPredicate(Cond, RevPred)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// AnalyzeBlock - Analyze the structure of the sub-CFG starting from |
| /// the specified block. Record its successors and whether it looks like an |
| /// if-conversion candidate. |
| IfConverter::BBInfo &IfConverter::AnalyzeBlock(MachineBasicBlock *BB, |
| std::vector<IfcvtToken*> &Tokens) { |
| BBInfo &BBI = BBAnalysis[BB->getNumber()]; |
| |
| if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) |
| return BBI; |
| |
| BBI.BB = BB; |
| BBI.IsBeingAnalyzed = true; |
| |
| ScanInstructions(BBI); |
| |
| // Unanalyzable or ends with fallthrough or unconditional branch, or if is not |
| // considered for ifcvt anymore. |
| if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { |
| BBI.IsBeingAnalyzed = false; |
| BBI.IsAnalyzed = true; |
| return BBI; |
| } |
| |
| // Do not ifcvt if either path is a back edge to the entry block. |
| if (BBI.TrueBB == BB || BBI.FalseBB == BB) { |
| BBI.IsBeingAnalyzed = false; |
| BBI.IsAnalyzed = true; |
| return BBI; |
| } |
| |
| // Do not ifcvt if true and false fallthrough blocks are the same. |
| if (!BBI.FalseBB) { |
| BBI.IsBeingAnalyzed = false; |
| BBI.IsAnalyzed = true; |
| return BBI; |
| } |
| |
| BBInfo &TrueBBI = AnalyzeBlock(BBI.TrueBB, Tokens); |
| BBInfo &FalseBBI = AnalyzeBlock(BBI.FalseBB, Tokens); |
| |
| if (TrueBBI.IsDone && FalseBBI.IsDone) { |
| BBI.IsBeingAnalyzed = false; |
| BBI.IsAnalyzed = true; |
| return BBI; |
| } |
| |
| SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); |
| bool CanRevCond = !TII->ReverseBranchCondition(RevCond); |
| |
| unsigned Dups = 0; |
| unsigned Dups2 = 0; |
| bool TNeedSub = TrueBBI.Predicate.size() > 0; |
| bool FNeedSub = FalseBBI.Predicate.size() > 0; |
| bool Enqueued = false; |
| |
| BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); |
| |
| if (CanRevCond && ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2) && |
| MeetIfcvtSizeLimit(*TrueBBI.BB, (TrueBBI.NonPredSize - (Dups + Dups2) + |
| TrueBBI.ExtraCost), TrueBBI.ExtraCost2, |
| *FalseBBI.BB, (FalseBBI.NonPredSize - (Dups + Dups2) + |
| FalseBBI.ExtraCost),FalseBBI.ExtraCost2, |
| Prediction) && |
| FeasibilityAnalysis(TrueBBI, BBI.BrCond) && |
| FeasibilityAnalysis(FalseBBI, RevCond)) { |
| // Diamond: |
| // EBB |
| // / \_ |
| // | | |
| // TBB FBB |
| // \ / |
| // TailBB |
| // Note TailBB can be empty. |
| Tokens.push_back(new IfcvtToken(BBI, ICDiamond, TNeedSub|FNeedSub, Dups, |
| Dups2)); |
| Enqueued = true; |
| } |
| |
| if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && |
| MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, |
| TrueBBI.ExtraCost2, Prediction) && |
| FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { |
| // Triangle: |
| // EBB |
| // | \_ |
| // | | |
| // | TBB |
| // | / |
| // FBB |
| Tokens.push_back(new IfcvtToken(BBI, ICTriangle, TNeedSub, Dups)); |
| Enqueued = true; |
| } |
| |
| if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && |
| MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, |
| TrueBBI.ExtraCost2, Prediction) && |
| FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { |
| Tokens.push_back(new IfcvtToken(BBI, ICTriangleRev, TNeedSub, Dups)); |
| Enqueued = true; |
| } |
| |
| if (ValidSimple(TrueBBI, Dups, Prediction) && |
| MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, |
| TrueBBI.ExtraCost2, Prediction) && |
| FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { |
| // Simple (split, no rejoin): |
| // EBB |
| // | \_ |
| // | | |
| // | TBB---> exit |
| // | |
| // FBB |
| Tokens.push_back(new IfcvtToken(BBI, ICSimple, TNeedSub, Dups)); |
| Enqueued = true; |
| } |
| |
| if (CanRevCond) { |
| // Try the other path... |
| if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, |
| Prediction.getCompl()) && |
| MeetIfcvtSizeLimit(*FalseBBI.BB, |
| FalseBBI.NonPredSize + FalseBBI.ExtraCost, |
| FalseBBI.ExtraCost2, Prediction.getCompl()) && |
| FeasibilityAnalysis(FalseBBI, RevCond, true)) { |
| Tokens.push_back(new IfcvtToken(BBI, ICTriangleFalse, FNeedSub, Dups)); |
| Enqueued = true; |
| } |
| |
| if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, |
| Prediction.getCompl()) && |
| MeetIfcvtSizeLimit(*FalseBBI.BB, |
| FalseBBI.NonPredSize + FalseBBI.ExtraCost, |
| FalseBBI.ExtraCost2, Prediction.getCompl()) && |
| FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { |
| Tokens.push_back(new IfcvtToken(BBI, ICTriangleFRev, FNeedSub, Dups)); |
| Enqueued = true; |
| } |
| |
| if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && |
| MeetIfcvtSizeLimit(*FalseBBI.BB, |
| FalseBBI.NonPredSize + FalseBBI.ExtraCost, |
| FalseBBI.ExtraCost2, Prediction.getCompl()) && |
| FeasibilityAnalysis(FalseBBI, RevCond)) { |
| Tokens.push_back(new IfcvtToken(BBI, ICSimpleFalse, FNeedSub, Dups)); |
| Enqueued = true; |
| } |
| } |
| |
| BBI.IsEnqueued = Enqueued; |
| BBI.IsBeingAnalyzed = false; |
| BBI.IsAnalyzed = true; |
| return BBI; |
| } |
| |
| /// AnalyzeBlocks - Analyze all blocks and find entries for all if-conversion |
| /// candidates. |
| void IfConverter::AnalyzeBlocks(MachineFunction &MF, |
| std::vector<IfcvtToken*> &Tokens) { |
| for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { |
| MachineBasicBlock *BB = I; |
| AnalyzeBlock(BB, Tokens); |
| } |
| |
| // Sort to favor more complex ifcvt scheme. |
| std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp); |
| } |
| |
| /// canFallThroughTo - Returns true either if ToBB is the next block after BB or |
| /// that all the intervening blocks are empty (given BB can fall through to its |
| /// next block). |
| static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) { |
| MachineFunction::iterator PI = BB; |
| MachineFunction::iterator I = llvm::next(PI); |
| MachineFunction::iterator TI = ToBB; |
| MachineFunction::iterator E = BB->getParent()->end(); |
| while (I != TI) { |
| // Check isSuccessor to avoid case where the next block is empty, but |
| // it's not a successor. |
| if (I == E || !I->empty() || !PI->isSuccessor(I)) |
| return false; |
| PI = I++; |
| } |
| return true; |
| } |
| |
| /// InvalidatePreds - Invalidate predecessor BB info so it would be re-analyzed |
| /// to determine if it can be if-converted. If predecessor is already enqueued, |
| /// dequeue it! |
| void IfConverter::InvalidatePreds(MachineBasicBlock *BB) { |
| for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(), |
| E = BB->pred_end(); PI != E; ++PI) { |
| BBInfo &PBBI = BBAnalysis[(*PI)->getNumber()]; |
| if (PBBI.IsDone || PBBI.BB == BB) |
| continue; |
| PBBI.IsAnalyzed = false; |
| PBBI.IsEnqueued = false; |
| } |
| } |
| |
| /// InsertUncondBranch - Inserts an unconditional branch from BB to ToBB. |
| /// |
| static void InsertUncondBranch(MachineBasicBlock *BB, MachineBasicBlock *ToBB, |
| const TargetInstrInfo *TII) { |
| DebugLoc dl; // FIXME: this is nowhere |
| SmallVector<MachineOperand, 0> NoCond; |
| TII->InsertBranch(*BB, ToBB, NULL, NoCond, dl); |
| } |
| |
| /// RemoveExtraEdges - Remove true / false edges if either / both are no longer |
| /// successors. |
| void IfConverter::RemoveExtraEdges(BBInfo &BBI) { |
| MachineBasicBlock *TBB = NULL, *FBB = NULL; |
| SmallVector<MachineOperand, 4> Cond; |
| if (!TII->AnalyzeBranch(*BBI.BB, TBB, FBB, Cond)) |
| BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); |
| } |
| |
| /// InitPredRedefs / UpdatePredRedefs - Defs by predicated instructions are |
| /// modeled as read + write (sort like two-address instructions). These |
| /// routines track register liveness and add implicit uses to if-converted |
| /// instructions to conform to the model. |
| static void InitPredRedefs(MachineBasicBlock *BB, SmallSet<unsigned,4> &Redefs, |
| const TargetRegisterInfo *TRI) { |
| for (MachineBasicBlock::livein_iterator I = BB->livein_begin(), |
| E = BB->livein_end(); I != E; ++I) { |
| unsigned Reg = *I; |
| Redefs.insert(Reg); |
| for (const uint16_t *Subreg = TRI->getSubRegisters(Reg); |
| *Subreg; ++Subreg) |
| Redefs.insert(*Subreg); |
| } |
| } |
| |
| static void UpdatePredRedefs(MachineInstr *MI, SmallSet<unsigned,4> &Redefs, |
| const TargetRegisterInfo *TRI, |
| bool AddImpUse = false) { |
| SmallVector<unsigned, 4> Defs; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| if (MO.isDef()) |
| Defs.push_back(Reg); |
| else if (MO.isKill()) { |
| Redefs.erase(Reg); |
| for (const uint16_t *SR = TRI->getSubRegisters(Reg); *SR; ++SR) |
| Redefs.erase(*SR); |
| } |
| } |
| for (unsigned i = 0, e = Defs.size(); i != e; ++i) { |
| unsigned Reg = Defs[i]; |
| if (Redefs.count(Reg)) { |
| if (AddImpUse) |
| // Treat predicated update as read + write. |
| MI->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, |
| true/*IsImp*/,false/*IsKill*/)); |
| } else { |
| Redefs.insert(Reg); |
| for (const uint16_t *SR = TRI->getSubRegisters(Reg); *SR; ++SR) |
| Redefs.insert(*SR); |
| } |
| } |
| } |
| |
| static void UpdatePredRedefs(MachineBasicBlock::iterator I, |
| MachineBasicBlock::iterator E, |
| SmallSet<unsigned,4> &Redefs, |
| const TargetRegisterInfo *TRI) { |
| while (I != E) { |
| UpdatePredRedefs(I, Redefs, TRI); |
| ++I; |
| } |
| } |
| |
| /// IfConvertSimple - If convert a simple (split, no rejoin) sub-CFG. |
| /// |
| bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { |
| BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
| BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
| BBInfo *CvtBBI = &TrueBBI; |
| BBInfo *NextBBI = &FalseBBI; |
| |
| SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); |
| if (Kind == ICSimpleFalse) |
| std::swap(CvtBBI, NextBBI); |
| |
| if (CvtBBI->IsDone || |
| (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) { |
| // Something has changed. It's no longer safe to predicate this block. |
| BBI.IsAnalyzed = false; |
| CvtBBI->IsAnalyzed = false; |
| return false; |
| } |
| |
| if (Kind == ICSimpleFalse) |
| if (TII->ReverseBranchCondition(Cond)) |
| llvm_unreachable("Unable to reverse branch condition!"); |
| |
| // Initialize liveins to the first BB. These are potentiall redefined by |
| // predicated instructions. |
| SmallSet<unsigned, 4> Redefs; |
| InitPredRedefs(CvtBBI->BB, Redefs, TRI); |
| InitPredRedefs(NextBBI->BB, Redefs, TRI); |
| |
| if (CvtBBI->BB->pred_size() > 1) { |
| BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); |
| // Copy instructions in the true block, predicate them, and add them to |
| // the entry block. |
| CopyAndPredicateBlock(BBI, *CvtBBI, Cond, Redefs); |
| } else { |
| PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond, Redefs); |
| |
| // Merge converted block into entry block. |
| BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); |
| MergeBlocks(BBI, *CvtBBI); |
| } |
| |
| bool IterIfcvt = true; |
| if (!canFallThroughTo(BBI.BB, NextBBI->BB)) { |
| InsertUncondBranch(BBI.BB, NextBBI->BB, TII); |
| BBI.HasFallThrough = false; |
| // Now ifcvt'd block will look like this: |
| // BB: |
| // ... |
| // t, f = cmp |
| // if t op |
| // b BBf |
| // |
| // We cannot further ifcvt this block because the unconditional branch |
| // will have to be predicated on the new condition, that will not be |
| // available if cmp executes. |
| IterIfcvt = false; |
| } |
| |
| RemoveExtraEdges(BBI); |
| |
| // Update block info. BB can be iteratively if-converted. |
| if (!IterIfcvt) |
| BBI.IsDone = true; |
| InvalidatePreds(BBI.BB); |
| CvtBBI->IsDone = true; |
| |
| // FIXME: Must maintain LiveIns. |
| return true; |
| } |
| |
| /// IfConvertTriangle - If convert a triangle sub-CFG. |
| /// |
| bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { |
| BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
| BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
| BBInfo *CvtBBI = &TrueBBI; |
| BBInfo *NextBBI = &FalseBBI; |
| DebugLoc dl; // FIXME: this is nowhere |
| |
| SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); |
| if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) |
| std::swap(CvtBBI, NextBBI); |
| |
| if (CvtBBI->IsDone || |
| (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) { |
| // Something has changed. It's no longer safe to predicate this block. |
| BBI.IsAnalyzed = false; |
| CvtBBI->IsAnalyzed = false; |
| return false; |
| } |
| |
| if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) |
| if (TII->ReverseBranchCondition(Cond)) |
| llvm_unreachable("Unable to reverse branch condition!"); |
| |
| if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { |
| if (ReverseBranchCondition(*CvtBBI)) { |
| // BB has been changed, modify its predecessors (except for this |
| // one) so they don't get ifcvt'ed based on bad intel. |
| for (MachineBasicBlock::pred_iterator PI = CvtBBI->BB->pred_begin(), |
| E = CvtBBI->BB->pred_end(); PI != E; ++PI) { |
| MachineBasicBlock *PBB = *PI; |
| if (PBB == BBI.BB) |
| continue; |
| BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; |
| if (PBBI.IsEnqueued) { |
| PBBI.IsAnalyzed = false; |
| PBBI.IsEnqueued = false; |
| } |
| } |
| } |
| } |
| |
| // Initialize liveins to the first BB. These are potentially redefined by |
| // predicated instructions. |
| SmallSet<unsigned, 4> Redefs; |
| InitPredRedefs(CvtBBI->BB, Redefs, TRI); |
| InitPredRedefs(NextBBI->BB, Redefs, TRI); |
| |
| bool HasEarlyExit = CvtBBI->FalseBB != NULL; |
| if (CvtBBI->BB->pred_size() > 1) { |
| BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); |
| // Copy instructions in the true block, predicate them, and add them to |
| // the entry block. |
| CopyAndPredicateBlock(BBI, *CvtBBI, Cond, Redefs, true); |
| } else { |
| // Predicate the 'true' block after removing its branch. |
| CvtBBI->NonPredSize -= TII->RemoveBranch(*CvtBBI->BB); |
| PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond, Redefs); |
| |
| // Now merge the entry of the triangle with the true block. |
| BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); |
| MergeBlocks(BBI, *CvtBBI, false); |
| } |
| |
| // If 'true' block has a 'false' successor, add an exit branch to it. |
| if (HasEarlyExit) { |
| SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), |
| CvtBBI->BrCond.end()); |
| if (TII->ReverseBranchCondition(RevCond)) |
| llvm_unreachable("Unable to reverse branch condition!"); |
| TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, NULL, RevCond, dl); |
| BBI.BB->addSuccessor(CvtBBI->FalseBB); |
| } |
| |
| // Merge in the 'false' block if the 'false' block has no other |
| // predecessors. Otherwise, add an unconditional branch to 'false'. |
| bool FalseBBDead = false; |
| bool IterIfcvt = true; |
| bool isFallThrough = canFallThroughTo(BBI.BB, NextBBI->BB); |
| if (!isFallThrough) { |
| // Only merge them if the true block does not fallthrough to the false |
| // block. By not merging them, we make it possible to iteratively |
| // ifcvt the blocks. |
| if (!HasEarlyExit && |
| NextBBI->BB->pred_size() == 1 && !NextBBI->HasFallThrough) { |
| MergeBlocks(BBI, *NextBBI); |
| FalseBBDead = true; |
| } else { |
| InsertUncondBranch(BBI.BB, NextBBI->BB, TII); |
| BBI.HasFallThrough = false; |
| } |
| // Mixed predicated and unpredicated code. This cannot be iteratively |
| // predicated. |
| IterIfcvt = false; |
| } |
| |
| RemoveExtraEdges(BBI); |
| |
| // Update block info. BB can be iteratively if-converted. |
| if (!IterIfcvt) |
| BBI.IsDone = true; |
| InvalidatePreds(BBI.BB); |
| CvtBBI->IsDone = true; |
| if (FalseBBDead) |
| NextBBI->IsDone = true; |
| |
| // FIXME: Must maintain LiveIns. |
| return true; |
| } |
| |
| /// IfConvertDiamond - If convert a diamond sub-CFG. |
| /// |
| bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, |
| unsigned NumDups1, unsigned NumDups2) { |
| BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
| BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
| MachineBasicBlock *TailBB = TrueBBI.TrueBB; |
| // True block must fall through or end with an unanalyzable terminator. |
| if (!TailBB) { |
| if (blockAlwaysFallThrough(TrueBBI)) |
| TailBB = FalseBBI.TrueBB; |
| assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); |
| } |
| |
| if (TrueBBI.IsDone || FalseBBI.IsDone || |
| TrueBBI.BB->pred_size() > 1 || |
| FalseBBI.BB->pred_size() > 1) { |
| // Something has changed. It's no longer safe to predicate these blocks. |
| BBI.IsAnalyzed = false; |
| TrueBBI.IsAnalyzed = false; |
| FalseBBI.IsAnalyzed = false; |
| return false; |
| } |
| |
| // Put the predicated instructions from the 'true' block before the |
| // instructions from the 'false' block, unless the true block would clobber |
| // the predicate, in which case, do the opposite. |
| BBInfo *BBI1 = &TrueBBI; |
| BBInfo *BBI2 = &FalseBBI; |
| SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); |
| if (TII->ReverseBranchCondition(RevCond)) |
| llvm_unreachable("Unable to reverse branch condition!"); |
| SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; |
| SmallVector<MachineOperand, 4> *Cond2 = &RevCond; |
| |
| // Figure out the more profitable ordering. |
| bool DoSwap = false; |
| if (TrueBBI.ClobbersPred && !FalseBBI.ClobbersPred) |
| DoSwap = true; |
| else if (TrueBBI.ClobbersPred == FalseBBI.ClobbersPred) { |
| if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) |
| DoSwap = true; |
| } |
| if (DoSwap) { |
| std::swap(BBI1, BBI2); |
| std::swap(Cond1, Cond2); |
| } |
| |
| // Remove the conditional branch from entry to the blocks. |
| BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB); |
| |
| // Initialize liveins to the first BB. These are potentially redefined by |
| // predicated instructions. |
| SmallSet<unsigned, 4> Redefs; |
| InitPredRedefs(BBI1->BB, Redefs, TRI); |
| |
| // Remove the duplicated instructions at the beginnings of both paths. |
| MachineBasicBlock::iterator DI1 = BBI1->BB->begin(); |
| MachineBasicBlock::iterator DI2 = BBI2->BB->begin(); |
| MachineBasicBlock::iterator DIE1 = BBI1->BB->end(); |
| MachineBasicBlock::iterator DIE2 = BBI2->BB->end(); |
| // Skip dbg_value instructions |
| while (DI1 != DIE1 && DI1->isDebugValue()) |
| ++DI1; |
| while (DI2 != DIE2 && DI2->isDebugValue()) |
| ++DI2; |
| BBI1->NonPredSize -= NumDups1; |
| BBI2->NonPredSize -= NumDups1; |
| |
| // Skip past the dups on each side separately since there may be |
| // differing dbg_value entries. |
| for (unsigned i = 0; i < NumDups1; ++DI1) { |
| if (!DI1->isDebugValue()) |
| ++i; |
| } |
| while (NumDups1 != 0) { |
| ++DI2; |
| if (!DI2->isDebugValue()) |
| --NumDups1; |
| } |
| |
| UpdatePredRedefs(BBI1->BB->begin(), DI1, Redefs, TRI); |
| BBI.BB->splice(BBI.BB->end(), BBI1->BB, BBI1->BB->begin(), DI1); |
| BBI2->BB->erase(BBI2->BB->begin(), DI2); |
| |
| // Remove branch from 'true' block and remove duplicated instructions. |
| BBI1->NonPredSize -= TII->RemoveBranch(*BBI1->BB); |
| DI1 = BBI1->BB->end(); |
| for (unsigned i = 0; i != NumDups2; ) { |
| // NumDups2 only counted non-dbg_value instructions, so this won't |
| // run off the head of the list. |
| assert (DI1 != BBI1->BB->begin()); |
| --DI1; |
| // skip dbg_value instructions |
| if (!DI1->isDebugValue()) |
| ++i; |
| } |
| BBI1->BB->erase(DI1, BBI1->BB->end()); |
| |
| // Remove 'false' block branch and find the last instruction to predicate. |
| BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB); |
| DI2 = BBI2->BB->end(); |
| while (NumDups2 != 0) { |
| // NumDups2 only counted non-dbg_value instructions, so this won't |
| // run off the head of the list. |
| assert (DI2 != BBI2->BB->begin()); |
| --DI2; |
| // skip dbg_value instructions |
| if (!DI2->isDebugValue()) |
| --NumDups2; |
| } |
| |
| // Remember which registers would later be defined by the false block. |
| // This allows us not to predicate instructions in the true block that would |
| // later be re-defined. That is, rather than |
| // subeq r0, r1, #1 |
| // addne r0, r1, #1 |
| // generate: |
| // sub r0, r1, #1 |
| // addne r0, r1, #1 |
| SmallSet<unsigned, 4> RedefsByFalse; |
| SmallSet<unsigned, 4> ExtUses; |
| if (TII->isProfitableToUnpredicate(*BBI1->BB, *BBI2->BB)) { |
| for (MachineBasicBlock::iterator FI = BBI2->BB->begin(); FI != DI2; ++FI) { |
| if (FI->isDebugValue()) |
| continue; |
| SmallVector<unsigned, 4> Defs; |
| for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = FI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| if (MO.isDef()) { |
| Defs.push_back(Reg); |
| } else if (!RedefsByFalse.count(Reg)) { |
| // These are defined before ctrl flow reach the 'false' instructions. |
| // They cannot be modified by the 'true' instructions. |
| ExtUses.insert(Reg); |
| for (const uint16_t *SR = TRI->getSubRegisters(Reg); *SR; ++SR) |
| ExtUses.insert(*SR); |
| } |
| } |
| |
| for (unsigned i = 0, e = Defs.size(); i != e; ++i) { |
| unsigned Reg = Defs[i]; |
| if (!ExtUses.count(Reg)) { |
| RedefsByFalse.insert(Reg); |
| for (const uint16_t *SR = TRI->getSubRegisters(Reg); *SR; ++SR) |
| RedefsByFalse.insert(*SR); |
| } |
| } |
| } |
| } |
| |
| // Predicate the 'true' block. |
| PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1, Redefs, &RedefsByFalse); |
| |
| // Predicate the 'false' block. |
| PredicateBlock(*BBI2, DI2, *Cond2, Redefs); |
| |
| // Merge the true block into the entry of the diamond. |
| MergeBlocks(BBI, *BBI1, TailBB == 0); |
| MergeBlocks(BBI, *BBI2, TailBB == 0); |
| |
| // If the if-converted block falls through or unconditionally branches into |
| // the tail block, and the tail block does not have other predecessors, then |
| // fold the tail block in as well. Otherwise, unless it falls through to the |
| // tail, add a unconditional branch to it. |
| if (TailBB) { |
| BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; |
| bool CanMergeTail = !TailBBI.HasFallThrough; |
| // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; |
| // check if there are any other predecessors besides those. |
| unsigned NumPreds = TailBB->pred_size(); |
| if (NumPreds > 1) |
| CanMergeTail = false; |
| else if (NumPreds == 1 && CanMergeTail) { |
| MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); |
| if (*PI != BBI1->BB && *PI != BBI2->BB) |
| CanMergeTail = false; |
| } |
| if (CanMergeTail) { |
| MergeBlocks(BBI, TailBBI); |
| TailBBI.IsDone = true; |
| } else { |
| BBI.BB->addSuccessor(TailBB); |
| InsertUncondBranch(BBI.BB, TailBB, TII); |
| BBI.HasFallThrough = false; |
| } |
| } |
| |
| // RemoveExtraEdges won't work if the block has an unanalyzable branch, |
| // which can happen here if TailBB is unanalyzable and is merged, so |
| // explicitly remove BBI1 and BBI2 as successors. |
| BBI.BB->removeSuccessor(BBI1->BB); |
| BBI.BB->removeSuccessor(BBI2->BB); |
| RemoveExtraEdges(BBI); |
| |
| // Update block info. |
| BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; |
| InvalidatePreds(BBI.BB); |
| |
| // FIXME: Must maintain LiveIns. |
| return true; |
| } |
| |
| static bool MaySpeculate(const MachineInstr *MI, |
| SmallSet<unsigned, 4> &LaterRedefs, |
| const TargetInstrInfo *TII) { |
| bool SawStore = true; |
| if (!MI->isSafeToMove(TII, 0, SawStore)) |
| return false; |
| |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| if (MO.isDef() && !LaterRedefs.count(Reg)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// PredicateBlock - Predicate instructions from the start of the block to the |
| /// specified end with the specified condition. |
| void IfConverter::PredicateBlock(BBInfo &BBI, |
| MachineBasicBlock::iterator E, |
| SmallVectorImpl<MachineOperand> &Cond, |
| SmallSet<unsigned, 4> &Redefs, |
| SmallSet<unsigned, 4> *LaterRedefs) { |
| bool AnyUnpred = false; |
| bool MaySpec = LaterRedefs != 0; |
| for (MachineBasicBlock::iterator I = BBI.BB->begin(); I != E; ++I) { |
| if (I->isDebugValue() || TII->isPredicated(I)) |
| continue; |
| // It may be possible not to predicate an instruction if it's the 'true' |
| // side of a diamond and the 'false' side may re-define the instruction's |
| // defs. |
| if (MaySpec && MaySpeculate(I, *LaterRedefs, TII)) { |
| AnyUnpred = true; |
| continue; |
| } |
| // If any instruction is predicated, then every instruction after it must |
| // be predicated. |
| MaySpec = false; |
| if (!TII->PredicateInstruction(I, Cond)) { |
| #ifndef NDEBUG |
| dbgs() << "Unable to predicate " << *I << "!\n"; |
| #endif |
| llvm_unreachable(0); |
| } |
| |
| // If the predicated instruction now redefines a register as the result of |
| // if-conversion, add an implicit kill. |
| UpdatePredRedefs(I, Redefs, TRI, true); |
| } |
| |
| std::copy(Cond.begin(), Cond.end(), std::back_inserter(BBI.Predicate)); |
| |
| BBI.IsAnalyzed = false; |
| BBI.NonPredSize = 0; |
| |
| ++NumIfConvBBs; |
| if (AnyUnpred) |
| ++NumUnpred; |
| } |
| |
| /// CopyAndPredicateBlock - Copy and predicate instructions from source BB to |
| /// the destination block. Skip end of block branches if IgnoreBr is true. |
| void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, |
| SmallVectorImpl<MachineOperand> &Cond, |
| SmallSet<unsigned, 4> &Redefs, |
| bool IgnoreBr) { |
| MachineFunction &MF = *ToBBI.BB->getParent(); |
| |
| for (MachineBasicBlock::iterator I = FromBBI.BB->begin(), |
| E = FromBBI.BB->end(); I != E; ++I) { |
| // Do not copy the end of the block branches. |
| if (IgnoreBr && I->isBranch()) |
| break; |
| |
| MachineInstr *MI = MF.CloneMachineInstr(I); |
| ToBBI.BB->insert(ToBBI.BB->end(), MI); |
| ToBBI.NonPredSize++; |
| unsigned ExtraPredCost = 0; |
| unsigned NumCycles = TII->getInstrLatency(InstrItins, &*I, &ExtraPredCost); |
| if (NumCycles > 1) |
| ToBBI.ExtraCost += NumCycles-1; |
| ToBBI.ExtraCost2 += ExtraPredCost; |
| |
| if (!TII->isPredicated(I) && !MI->isDebugValue()) { |
| if (!TII->PredicateInstruction(MI, Cond)) { |
| #ifndef NDEBUG |
| dbgs() << "Unable to predicate " << *I << "!\n"; |
| #endif |
| llvm_unreachable(0); |
| } |
| } |
| |
| // If the predicated instruction now redefines a register as the result of |
| // if-conversion, add an implicit kill. |
| UpdatePredRedefs(MI, Redefs, TRI, true); |
| } |
| |
| if (!IgnoreBr) { |
| std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(), |
| FromBBI.BB->succ_end()); |
| MachineBasicBlock *NBB = getNextBlock(FromBBI.BB); |
| MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : NULL; |
| |
| for (unsigned i = 0, e = Succs.size(); i != e; ++i) { |
| MachineBasicBlock *Succ = Succs[i]; |
| // Fallthrough edge can't be transferred. |
| if (Succ == FallThrough) |
| continue; |
| ToBBI.BB->addSuccessor(Succ); |
| } |
| } |
| |
| std::copy(FromBBI.Predicate.begin(), FromBBI.Predicate.end(), |
| std::back_inserter(ToBBI.Predicate)); |
| std::copy(Cond.begin(), Cond.end(), std::back_inserter(ToBBI.Predicate)); |
| |
| ToBBI.ClobbersPred |= FromBBI.ClobbersPred; |
| ToBBI.IsAnalyzed = false; |
| |
| ++NumDupBBs; |
| } |
| |
| /// MergeBlocks - Move all instructions from FromBB to the end of ToBB. |
| /// This will leave FromBB as an empty block, so remove all of its |
| /// successor edges except for the fall-through edge. If AddEdges is true, |
| /// i.e., when FromBBI's branch is being moved, add those successor edges to |
| /// ToBBI. |
| void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { |
| ToBBI.BB->splice(ToBBI.BB->end(), |
| FromBBI.BB, FromBBI.BB->begin(), FromBBI.BB->end()); |
| |
| std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(), |
| FromBBI.BB->succ_end()); |
| MachineBasicBlock *NBB = getNextBlock(FromBBI.BB); |
| MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : NULL; |
| |
| for (unsigned i = 0, e = Succs.size(); i != e; ++i) { |
| MachineBasicBlock *Succ = Succs[i]; |
| // Fallthrough edge can't be transferred. |
| if (Succ == FallThrough) |
| continue; |
| FromBBI.BB->removeSuccessor(Succ); |
| if (AddEdges) |
| ToBBI.BB->addSuccessor(Succ); |
| } |
| |
| // Now FromBBI always falls through to the next block! |
| if (NBB && !FromBBI.BB->isSuccessor(NBB)) |
| FromBBI.BB->addSuccessor(NBB); |
| |
| std::copy(FromBBI.Predicate.begin(), FromBBI.Predicate.end(), |
| std::back_inserter(ToBBI.Predicate)); |
| FromBBI.Predicate.clear(); |
| |
| ToBBI.NonPredSize += FromBBI.NonPredSize; |
| ToBBI.ExtraCost += FromBBI.ExtraCost; |
| ToBBI.ExtraCost2 += FromBBI.ExtraCost2; |
| FromBBI.NonPredSize = 0; |
| FromBBI.ExtraCost = 0; |
| FromBBI.ExtraCost2 = 0; |
| |
| ToBBI.ClobbersPred |= FromBBI.ClobbersPred; |
| ToBBI.HasFallThrough = FromBBI.HasFallThrough; |
| ToBBI.IsAnalyzed = false; |
| FromBBI.IsAnalyzed = false; |
| } |