blob: 0afd399e299c6bc79de6cfad885beb8b3b7662da [file] [log] [blame]
//===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
//
// This file contains a printer that converts from our internal
// representation of machine-dependent LLVM code to Intel-format
// assembly language. This printer is the output mechanism used
// by `llc' and `lli -print-machineinstrs' on X86.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include "Support/StringExtras.h"
#include "Support/CommandLine.h"
namespace {
// FIXME: This should be automatically picked up by autoconf from the C
// frontend
cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden,
cl::desc("Emit X86 assembly code suitable for consumption by cygwin"));
struct Printer : public MachineFunctionPass {
/// Output stream on which we're printing assembly code.
///
std::ostream &O;
/// Target machine description which we query for reg. names, data
/// layout, etc.
///
TargetMachine &TM;
/// Name-mangler for global names.
///
Mangler *Mang;
Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
/// We name each basic block in a Function with a unique number, so
/// that we can consistently refer to them later. This is cleared
/// at the beginning of each call to runOnMachineFunction().
///
typedef std::map<const Value *, unsigned> ValueMapTy;
ValueMapTy NumberForBB;
/// Cache of mangled name for current function. This is
/// recalculated at the beginning of each call to
/// runOnMachineFunction().
///
std::string CurrentFnName;
virtual const char *getPassName() const {
return "X86 Assembly Printer";
}
void checkImplUses (const TargetInstrDescriptor &Desc);
void printMachineInstruction(const MachineInstr *MI);
void printOp(const MachineOperand &MO,
bool elideOffsetKeyword = false);
void printMemReference(const MachineInstr *MI, unsigned Op);
void printConstantPool(MachineConstantPool *MCP);
bool runOnMachineFunction(MachineFunction &F);
std::string ConstantExprToString(const ConstantExpr* CE);
std::string valToExprString(const Value* V);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
void printConstantValueOnly(const Constant* CV);
void printSingleConstantValue(const Constant* CV);
};
} // end of anonymous namespace
/// createX86CodePrinterPass - Returns a pass that prints the X86
/// assembly code for a MachineFunction to the given output stream,
/// using the given target machine description. This should work
/// regardless of whether the function is in SSA form.
///
FunctionPass *createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
return new Printer(o, tm);
}
/// valToExprString - Helper function for ConstantExprToString().
/// Appends result to argument string S.
///
std::string Printer::valToExprString(const Value* V) {
std::string S;
bool failed = false;
if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV))
S += std::string(CB == ConstantBool::True ? "1" : "0");
else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
S += itostr(CI->getValue());
else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
S += utostr(CI->getValue());
else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
S += ftostr(CFP->getValue());
else if (isa<ConstantPointerNull>(CV))
S += "0";
else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
S += valToExprString(CPR->getValue());
else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
S += ConstantExprToString(CE);
else
failed = true;
} else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
S += Mang->getValueName(GV);
}
else
failed = true;
if (failed) {
assert(0 && "Cannot convert value to string");
S += "<illegal-value>";
}
return S;
}
/// ConstantExprToString - Convert a ConstantExpr to an asm expression
/// and return this as a string.
///
std::string Printer::ConstantExprToString(const ConstantExpr* CE) {
const TargetData &TD = TM.getTargetData();
switch(CE->getOpcode()) {
case Instruction::GetElementPtr:
{ // generate a symbolic expression for the byte address
const Value* ptrVal = CE->getOperand(0);
std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec))
return "(" + valToExprString(ptrVal) + ") + " + utostr(Offset);
else
return valToExprString(ptrVal);
}
case Instruction::Cast:
// Support only non-converting or widening casts for now, that is,
// ones that do not involve a change in value. This assertion is
// not a complete check.
{
Constant *Op = CE->getOperand(0);
const Type *OpTy = Op->getType(), *Ty = CE->getType();
assert(((isa<PointerType>(OpTy)
&& (Ty == Type::LongTy || Ty == Type::ULongTy))
|| (isa<PointerType>(Ty)
&& (OpTy == Type::LongTy || OpTy == Type::ULongTy)))
|| (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
&& (OpTy->isLosslesslyConvertibleTo(Ty))))
&& "FIXME: Don't yet support this kind of constant cast expr");
return "(" + valToExprString(Op) + ")";
}
case Instruction::Add:
return "(" + valToExprString(CE->getOperand(0)) + ") + ("
+ valToExprString(CE->getOperand(1)) + ")";
default:
assert(0 && "Unsupported operator in ConstantExprToString()");
return "";
}
}
/// printSingleConstantValue - Print a single constant value.
///
void
Printer::printSingleConstantValue(const Constant* CV)
{
assert(CV->getType() != Type::VoidTy &&
CV->getType() != Type::TypeTy &&
CV->getType() != Type::LabelTy &&
"Unexpected type for Constant");
assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV))
&& "Aggregate types should be handled outside this function");
const Type *type = CV->getType();
O << "\t";
switch(type->getPrimitiveID())
{
case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
O << ".byte";
break;
case Type::UShortTyID: case Type::ShortTyID:
O << ".word";
break;
case Type::UIntTyID: case Type::IntTyID: case Type::PointerTyID:
O << ".long";
break;
case Type::ULongTyID: case Type::LongTyID:
O << ".quad";
break;
case Type::FloatTyID:
O << ".long";
break;
case Type::DoubleTyID:
O << ".quad";
break;
case Type::ArrayTyID:
if ((cast<ArrayType>(type)->getElementType() == Type::UByteTy) ||
(cast<ArrayType>(type)->getElementType() == Type::SByteTy))
O << ".string";
else
assert (0 && "Can't handle printing this type of array");
break;
default:
assert (0 && "Can't handle printing this type of thing");
break;
}
O << "\t";
if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV))
{
// Constant expression built from operators, constants, and
// symbolic addrs
O << ConstantExprToString(CE) << "\n";
}
else if (type->isPrimitiveType())
{
if (type->isFloatingPoint()) {
// FP Constants are printed as integer constants to avoid losing
// precision...
double Val = cast<ConstantFP>(CV)->getValue();
if (type == Type::FloatTy) {
float FVal = (float)Val;
char *ProxyPtr = (char*)&FVal; // Abide by C TBAA rules
O << *(unsigned int*)ProxyPtr;
} else if (type == Type::DoubleTy) {
char *ProxyPtr = (char*)&Val; // Abide by C TBAA rules
O << *(uint64_t*)ProxyPtr;
} else {
assert(0 && "Unknown floating point type!");
}
O << "\t# " << type->getDescription() << " value: " << Val << "\n";
} else {
WriteAsOperand(O, CV, false, false) << "\n";
}
}
else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV))
{
// This is a constant address for a global variable or method.
// Use the name of the variable or method as the address value.
O << Mang->getValueName(CPR->getValue()) << "\n";
}
else if (isa<ConstantPointerNull>(CV))
{
// Null pointer value
O << "0\n";
}
else
{
assert(0 && "Unknown elementary type for constant");
}
}
/// isStringCompatible - Can we treat the specified array as a string?
/// Only if it is an array of ubytes or non-negative sbytes.
///
static bool isStringCompatible(const ConstantArray *CVA) {
const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
if (ETy == Type::UByteTy) return true;
if (ETy != Type::SByteTy) return false;
for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
return false;
return true;
}
/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
return (X&7)+'0';
}
/// getAsCString - Return the specified array as a C compatible
/// string, only if the predicate isStringCompatible is true.
///
static std::string getAsCString(const ConstantArray *CVA) {
assert(isStringCompatible(CVA) && "Array is not string compatible!");
std::string Result;
const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
Result = "\"";
for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
if (C == '"') {
Result += "\\\"";
} else if (C == '\\') {
Result += "\\\\";
} else if (isprint(C)) {
Result += C;
} else {
switch(C) {
case '\b': Result += "\\b"; break;
case '\f': Result += "\\f"; break;
case '\n': Result += "\\n"; break;
case '\r': Result += "\\r"; break;
case '\t': Result += "\\t"; break;
default:
Result += '\\';
Result += toOctal(C >> 6);
Result += toOctal(C >> 3);
Result += toOctal(C >> 0);
break;
}
}
}
Result += "\"";
return Result;
}
// Print a constant value or values (it may be an aggregate).
// Uses printSingleConstantValue() to print each individual value.
void Printer::printConstantValueOnly(const Constant *CV) {
const TargetData &TD = TM.getTargetData();
if (CV->isNullValue()) {
O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n";
} else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
if (isStringCompatible(CVA)) {
// print the string alone and return
O << "\t.string\t" << getAsCString(CVA) << "\n";
} else { // Not a string. Print the values in successive locations
const std::vector<Use> &constValues = CVA->getValues();
for (unsigned i=0; i < constValues.size(); i++)
printConstantValueOnly(cast<Constant>(constValues[i].get()));
}
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
// Print the fields in successive locations. Pad to align if needed!
const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
const std::vector<Use>& constValues = CVS->getValues();
unsigned sizeSoFar = 0;
for (unsigned i=0, N = constValues.size(); i < N; i++) {
const Constant* field = cast<Constant>(constValues[i].get());
// Check if padding is needed and insert one or more 0s.
unsigned fieldSize = TD.getTypeSize(field->getType());
unsigned padSize = ((i == N-1? cvsLayout->StructSize
: cvsLayout->MemberOffsets[i+1])
- cvsLayout->MemberOffsets[i]) - fieldSize;
sizeSoFar += fieldSize + padSize;
// Now print the actual field value
printConstantValueOnly(field);
// Insert the field padding unless it's zero bytes...
O << "\t.zero\t " << padSize << "\n";
}
assert(sizeSoFar == cvsLayout->StructSize &&
"Layout of constant struct may be incorrect!");
} else
printSingleConstantValue(CV);
}
/// printConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void Printer::printConstantPool(MachineConstantPool *MCP) {
const std::vector<Constant*> &CP = MCP->getConstants();
const TargetData &TD = TM.getTargetData();
if (CP.empty()) return;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
O << "\t.section .rodata\n";
O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
<< "\n";
O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
<< *CP[i] << "\n";
printConstantValueOnly (CP[i]);
}
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool Printer::runOnMachineFunction(MachineFunction &MF) {
// BBNumber is used here so that a given Printer will never give two
// BBs the same name. (If you have a better way, please let me know!)
static unsigned BBNumber = 0;
O << "\n\n";
// What's my mangled name?
CurrentFnName = Mang->getValueName(MF.getFunction());
// Print out constants referenced by the function
printConstantPool(MF.getConstantPool());
// Print out labels for the function.
O << "\t.text\n";
O << "\t.align 16\n";
O << "\t.globl\t" << CurrentFnName << "\n";
if (!EmitCygwin)
O << "\t.type\t" << CurrentFnName << ", @function\n";
O << CurrentFnName << ":\n";
// Number each basic block so that we can consistently refer to them
// in PC-relative references.
NumberForBB.clear();
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
NumberForBB[I->getBasicBlock()] = BBNumber++;
}
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
O << ".LBB" << NumberForBB[I->getBasicBlock()] << ":\t# "
<< I->getBasicBlock()->getName() << "\n";
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printMachineInstruction(*II);
}
}
// We didn't modify anything.
return false;
}
static bool isScale(const MachineOperand &MO) {
return MO.isImmediate() &&
(MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
}
static bool isMem(const MachineInstr *MI, unsigned Op) {
if (MI->getOperand(Op).isFrameIndex()) return true;
if (MI->getOperand(Op).isConstantPoolIndex()) return true;
return Op+4 <= MI->getNumOperands() &&
MI->getOperand(Op ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
}
void Printer::printOp(const MachineOperand &MO,
bool elideOffsetKeyword /* = false */) {
const MRegisterInfo &RI = *TM.getRegisterInfo();
switch (MO.getType()) {
case MachineOperand::MO_VirtualRegister:
if (Value *V = MO.getVRegValueOrNull()) {
O << "<" << V->getName() << ">";
return;
}
// FALLTHROUGH
case MachineOperand::MO_MachineRegister:
if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
// Bug Workaround: See note in Printer::doInitialization about %.
O << "%" << RI.get(MO.getReg()).Name;
else
O << "%reg" << MO.getReg();
return;
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
O << (int)MO.getImmedValue();
return;
case MachineOperand::MO_PCRelativeDisp: {
ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue());
assert (i != NumberForBB.end()
&& "Could not find a BB in the NumberForBB map!");
O << ".LBB" << i->second << " # PC rel: " << MO.getVRegValue()->getName();
return;
}
case MachineOperand::MO_GlobalAddress:
if (!elideOffsetKeyword)
O << "OFFSET ";
O << Mang->getValueName(MO.getGlobal());
return;
case MachineOperand::MO_ExternalSymbol:
O << MO.getSymbolName();
return;
default:
O << "<unknown operand type>"; return;
}
}
static const std::string sizePtr(const TargetInstrDescriptor &Desc) {
switch (Desc.TSFlags & X86II::ArgMask) {
default: assert(0 && "Unknown arg size!");
case X86II::Arg8: return "BYTE PTR";
case X86II::Arg16: return "WORD PTR";
case X86II::Arg32: return "DWORD PTR";
case X86II::Arg64: return "QWORD PTR";
case X86II::ArgF32: return "DWORD PTR";
case X86II::ArgF64: return "QWORD PTR";
case X86II::ArgF80: return "XWORD PTR";
}
}
void Printer::printMemReference(const MachineInstr *MI, unsigned Op) {
assert(isMem(MI, Op) && "Invalid memory reference!");
if (MI->getOperand(Op).isFrameIndex()) {
O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
if (MI->getOperand(Op+3).getImmedValue())
O << " + " << MI->getOperand(Op+3).getImmedValue();
O << "]";
return;
} else if (MI->getOperand(Op).isConstantPoolIndex()) {
O << "[.CPI" << CurrentFnName << "_"
<< MI->getOperand(Op).getConstantPoolIndex();
if (MI->getOperand(Op+3).getImmedValue())
O << " + " << MI->getOperand(Op+3).getImmedValue();
O << "]";
return;
}
const MachineOperand &BaseReg = MI->getOperand(Op);
int ScaleVal = MI->getOperand(Op+1).getImmedValue();
const MachineOperand &IndexReg = MI->getOperand(Op+2);
int DispVal = MI->getOperand(Op+3).getImmedValue();
O << "[";
bool NeedPlus = false;
if (BaseReg.getReg()) {
printOp(BaseReg);
NeedPlus = true;
}
if (IndexReg.getReg()) {
if (NeedPlus) O << " + ";
if (ScaleVal != 1)
O << ScaleVal << "*";
printOp(IndexReg);
NeedPlus = true;
}
if (DispVal) {
if (NeedPlus)
if (DispVal > 0)
O << " + ";
else {
O << " - ";
DispVal = -DispVal;
}
O << DispVal;
}
O << "]";
}
/// checkImplUses - Emit the implicit-use registers for the
/// instruction described by DESC, if its PrintImplUses flag is set.
///
void Printer::checkImplUses (const TargetInstrDescriptor &Desc) {
const MRegisterInfo &RI = *TM.getRegisterInfo();
if (Desc.TSFlags & X86II::PrintImplUses) {
for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
// Bug Workaround: See note in Printer::doInitialization about %.
O << ", %" << RI.get(*p).Name;
}
}
}
/// printMachineInstruction -- Print out a single X86 LLVM instruction
/// MI in Intel syntax to the current output stream.
///
void Printer::printMachineInstruction(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
const TargetInstrInfo &TII = TM.getInstrInfo();
const TargetInstrDescriptor &Desc = TII.get(Opcode);
switch (Desc.TSFlags & X86II::FormMask) {
case X86II::Pseudo:
// Print pseudo-instructions as comments; either they should have been
// turned into real instructions by now, or they don't need to be
// seen by the assembler (e.g., IMPLICIT_USEs.)
O << "# ";
if (Opcode == X86::PHI) {
printOp(MI->getOperand(0));
O << " = phi ";
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
if (i != 1) O << ", ";
O << "[";
printOp(MI->getOperand(i));
O << ", ";
printOp(MI->getOperand(i+1));
O << "]";
}
} else {
unsigned i = 0;
if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() ||
MI->getOperand(0).opIsDefAndUse())) {
printOp(MI->getOperand(0));
O << " = ";
++i;
}
O << TII.getName(MI->getOpcode());
for (unsigned e = MI->getNumOperands(); i != e; ++i) {
O << " ";
if (MI->getOperand(i).opIsDefOnly() ||
MI->getOperand(i).opIsDefAndUse()) O << "*";
printOp(MI->getOperand(i));
if (MI->getOperand(i).opIsDefOnly() ||
MI->getOperand(i).opIsDefAndUse()) O << "*";
}
}
O << "\n";
return;
case X86II::RawFrm:
// The accepted forms of Raw instructions are:
// 1. nop - No operand required
// 2. jmp foo - PC relative displacement operand
// 3. call bar - GlobalAddress Operand or External Symbol Operand
//
assert(MI->getNumOperands() == 0 ||
(MI->getNumOperands() == 1 &&
(MI->getOperand(0).isPCRelativeDisp() ||
MI->getOperand(0).isGlobalAddress() ||
MI->getOperand(0).isExternalSymbol())) &&
"Illegal raw instruction!");
O << TII.getName(MI->getOpcode()) << " ";
if (MI->getNumOperands() == 1) {
printOp(MI->getOperand(0), true); // Don't print "OFFSET"...
}
O << "\n";
return;
case X86II::AddRegFrm: {
// There are currently two forms of acceptable AddRegFrm instructions.
// Either the instruction JUST takes a single register (like inc, dec, etc),
// or it takes a register and an immediate of the same size as the register
// (move immediate f.e.). Note that this immediate value might be stored as
// an LLVM value, to represent, for example, loading the address of a global
// into a register. The initial register might be duplicated if this is a
// M_2_ADDR_REG instruction
//
assert(MI->getOperand(0).isRegister() &&
(MI->getNumOperands() == 1 ||
(MI->getNumOperands() == 2 &&
(MI->getOperand(1).getVRegValueOrNull() ||
MI->getOperand(1).isImmediate() ||
MI->getOperand(1).isRegister() ||
MI->getOperand(1).isGlobalAddress() ||
MI->getOperand(1).isExternalSymbol()))) &&
"Illegal form for AddRegFrm instruction!");
unsigned Reg = MI->getOperand(0).getReg();
O << TII.getName(MI->getOpCode()) << " ";
printOp(MI->getOperand(0));
if (MI->getNumOperands() == 2 &&
(!MI->getOperand(1).isRegister() ||
MI->getOperand(1).getVRegValueOrNull() ||
MI->getOperand(1).isGlobalAddress() ||
MI->getOperand(1).isExternalSymbol())) {
O << ", ";
printOp(MI->getOperand(1));
}
checkImplUses(Desc);
O << "\n";
return;
}
case X86II::MRMDestReg: {
// There are two acceptable forms of MRMDestReg instructions, those with 2,
// 3 and 4 operands:
//
// 2 Operands: this is for things like mov that do not read a second input
//
// 3 Operands: in this form, the first two registers (the destination, and
// the first operand) should be the same, post register allocation. The 3rd
// operand is an additional input. This should be for things like add
// instructions.
//
// 4 Operands: This form is for instructions which are 3 operands forms, but
// have a constant argument as well.
//
bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
assert(MI->getOperand(0).isRegister() &&
(MI->getNumOperands() == 2 ||
(isTwoAddr && MI->getOperand(1).isRegister() &&
MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
(MI->getNumOperands() == 3 ||
(MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate()))))
&& "Bad format for MRMDestReg!");
O << TII.getName(MI->getOpCode()) << " ";
printOp(MI->getOperand(0));
O << ", ";
printOp(MI->getOperand(1+isTwoAddr));
if (MI->getNumOperands() == 4) {
O << ", ";
printOp(MI->getOperand(3));
}
O << "\n";
return;
}
case X86II::MRMDestMem: {
// These instructions are the same as MRMDestReg, but instead of having a
// register reference for the mod/rm field, it's a memory reference.
//
assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!");
O << TII.getName(MI->getOpCode()) << " " << sizePtr(Desc) << " ";
printMemReference(MI, 0);
O << ", ";
printOp(MI->getOperand(4));
O << "\n";
return;
}
case X86II::MRMSrcReg: {
// There is a two forms that are acceptable for MRMSrcReg instructions,
// those with 3 and 2 operands:
//
// 3 Operands: in this form, the last register (the second input) is the
// ModR/M input. The first two operands should be the same, post register
// allocation. This is for things like: add r32, r/m32
//
// 2 Operands: this is for things like mov that do not read a second input
//
assert(MI->getOperand(0).isRegister() &&
MI->getOperand(1).isRegister() &&
(MI->getNumOperands() == 2 ||
(MI->getNumOperands() == 3 && MI->getOperand(2).isRegister()))
&& "Bad format for MRMSrcReg!");
if (MI->getNumOperands() == 3 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << TII.getName(MI->getOpCode()) << " ";
printOp(MI->getOperand(0));
O << ", ";
printOp(MI->getOperand(MI->getNumOperands()-1));
O << "\n";
return;
}
case X86II::MRMSrcMem: {
// These instructions are the same as MRMSrcReg, but instead of having a
// register reference for the mod/rm field, it's a memory reference.
//
assert(MI->getOperand(0).isRegister() &&
(MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
(MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() &&
isMem(MI, 2))
&& "Bad format for MRMDestReg!");
if (MI->getNumOperands() == 2+4 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << TII.getName(MI->getOpCode()) << " ";
printOp(MI->getOperand(0));
O << ", " << sizePtr(Desc) << " ";
printMemReference(MI, MI->getNumOperands()-4);
O << "\n";
return;
}
case X86II::MRMS0r: case X86II::MRMS1r:
case X86II::MRMS2r: case X86II::MRMS3r:
case X86II::MRMS4r: case X86II::MRMS5r:
case X86II::MRMS6r: case X86II::MRMS7r: {
// In this form, the following are valid formats:
// 1. sete r
// 2. cmp reg, immediate
// 2. shl rdest, rinput <implicit CL or 1>
// 3. sbb rdest, rinput, immediate [rdest = rinput]
//
assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
assert((MI->getNumOperands() != 2 ||
MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
"Bad MRMSxR format!");
assert((MI->getNumOperands() < 3 ||
(MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
"Bad MRMSxR format!");
if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
O << TII.getName(MI->getOpCode()) << " ";
printOp(MI->getOperand(0));
if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
O << ", ";
printOp(MI->getOperand(MI->getNumOperands()-1));
}
checkImplUses(Desc);
O << "\n";
return;
}
case X86II::MRMS0m: case X86II::MRMS1m:
case X86II::MRMS2m: case X86II::MRMS3m:
case X86II::MRMS4m: case X86II::MRMS5m:
case X86II::MRMS6m: case X86II::MRMS7m: {
// In this form, the following are valid formats:
// 1. sete [m]
// 2. cmp [m], immediate
// 2. shl [m], rinput <implicit CL or 1>
// 3. sbb [m], immediate
//
assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
isMem(MI, 0) && "Bad MRMSxM format!");
assert((MI->getNumOperands() != 5 || MI->getOperand(4).isImmediate()) &&
"Bad MRMSxM format!");
// Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
// is misassembled by gas in intel_syntax mode as its 32-bit
// equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
// opcode bytes instead of the instruction.
if (MI->getOpCode() == X86::FSTPr80) {
if ((MI->getOperand(0).getReg() == X86::ESP)
&& (MI->getOperand(1).getImmedValue() == 1)) {
int DispVal = MI->getOperand(3).getImmedValue();
if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
unsigned int val = (unsigned int) DispVal;
O << ".byte 0xdb, 0xbc, 0x24\n\t";
O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
} else { // 1 byte disp.
unsigned char val = (unsigned char) DispVal;
O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex << (unsigned) val
<< std::dec << "\t# ";
}
}
}
// Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is
// misassembled by gas in intel_syntax mode as its 32-bit
// equivalent "fld DWORD PTR [...]". Workaround: Output the raw
// opcode bytes instead of the instruction.
if (MI->getOpCode() == X86::FLDr80) {
if ((MI->getOperand(0).getReg() == X86::ESP)
&& (MI->getOperand(1).getImmedValue() == 1)) {
int DispVal = MI->getOperand(3).getImmedValue();
if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
unsigned int val = (unsigned int) DispVal;
O << ".byte 0xdb, 0xac, 0x24\n\t";
O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
} else { // 1 byte disp.
unsigned char val = (unsigned char) DispVal;
O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
<< std::dec << "\t# ";
}
}
}
// Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an
// invalid opcode, saying "64 bit operations are only supported in
// 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
// [...]", which is wrong. Workaround: Output the raw opcode bytes
// instead of the instruction.
if (MI->getOpCode() == X86::FILDr64) {
if ((MI->getOperand(0).getReg() == X86::ESP)
&& (MI->getOperand(1).getImmedValue() == 1)) {
int DispVal = MI->getOperand(3).getImmedValue();
if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
unsigned int val = (unsigned int) DispVal;
O << ".byte 0xdf, 0xac, 0x24\n\t";
O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
} else { // 1 byte disp.
unsigned char val = (unsigned char) DispVal;
O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
<< std::dec << "\t# ";
}
}
}
// Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as
// an invalid opcode, saying "64 bit operations are only
// supported in 64 bit modes." libopcodes disassembles it as
// "fistpll DWORD PTR [...]", which is wrong. Workaround: Output
// "fistpll DWORD PTR " instead, which is what libopcodes is
// expecting to see.
if (MI->getOpCode() == X86::FISTPr64) {
O << "fistpll DWORD PTR ";
printMemReference(MI, 0);
if (MI->getNumOperands() == 5) {
O << ", ";
printOp(MI->getOperand(4));
}
O << "\t# ";
}
O << TII.getName(MI->getOpCode()) << " ";
O << sizePtr(Desc) << " ";
printMemReference(MI, 0);
if (MI->getNumOperands() == 5) {
O << ", ";
printOp(MI->getOperand(4));
}
O << "\n";
return;
}
default:
O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
}
}
bool Printer::doInitialization(Module &M) {
// Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
//
// Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
// instruction as a reference to the register named sp, and if you try to
// reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
// before being looked up in the symbol table. This creates spurious
// `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
// mode, and decorate all register names with percent signs.
O << "\t.intel_syntax\n";
Mang = new Mangler(M, EmitCygwin);
return false; // success
}
// SwitchSection - Switch to the specified section of the executable if we are
// not already in it!
//
static void SwitchSection(std::ostream &OS, std::string &CurSection,
const char *NewSection) {
if (CurSection != NewSection) {
CurSection = NewSection;
if (!CurSection.empty())
OS << "\t" << NewSection << "\n";
}
}
bool Printer::doFinalization(Module &M) {
const TargetData &TD = TM.getTargetData();
std::string CurSection;
// Print out module-level global variables here.
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
if (I->hasInitializer()) { // External global require no code
O << "\n\n";
std::string name = Mang->getValueName(I);
Constant *C = I->getInitializer();
unsigned Size = TD.getTypeSize(C->getType());
unsigned Align = TD.getTypeAlignment(C->getType());
if (C->isNullValue() &&
(I->hasLinkOnceLinkage() || I->hasInternalLinkage())) {
SwitchSection(O, CurSection, ".data");
if (I->hasInternalLinkage())
O << "\t.local " << name << "\n";
O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
<< "," << (unsigned)TD.getTypeAlignment(C->getType());
O << "\t\t# ";
WriteAsOperand(O, I, true, true, &M);
O << "\n";
} else {
switch (I->getLinkage()) {
case GlobalValue::LinkOnceLinkage:
// Nonnull linkonce -> weak
O << "\t.weak " << name << "\n";
SwitchSection(O, CurSection, "");
O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << "\t.globl " << name << "\n";
// FALL THROUGH
case GlobalValue::InternalLinkage:
if (C->isNullValue())
SwitchSection(O, CurSection, ".bss");
else
SwitchSection(O, CurSection, ".data");
break;
}
O << "\t.align " << Align << "\n";
O << "\t.type " << name << ",@object\n";
O << "\t.size " << name << "," << Size << "\n";
O << name << ":\t\t\t\t# ";
WriteAsOperand(O, I, true, true, &M);
O << " = ";
WriteAsOperand(O, C, false, false, &M);
O << "\n";
printConstantValueOnly(C);
}
}
delete Mang;
return false; // success
}