| //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Owen Anderson and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass transforms loops by placing phi nodes at the end of the loops for |
| // all values that are live across the loop boundary. For example, it turns |
| // the left into the right code: |
| // |
| // for (...) for (...) |
| // if (c) if(c) |
| // X1 = ... X1 = ... |
| // else else |
| // X2 = ... X2 = ... |
| // X3 = phi(X1, X2) X3 = phi(X1, X2) |
| // ... = X3 + 4 X4 = phi(X3) |
| // ... = X4 + 4 |
| // |
| // This is still valid LLVM; the extra phi nodes are purely redundant, and will |
| // be trivially eliminated by InstCombine. The major benefit of this |
| // transformation is that it makes many other loop optimizations, such as |
| // LoopUnswitching, simpler. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Support/CFG.h" |
| #include <algorithm> |
| #include <map> |
| |
| using namespace llvm; |
| |
| namespace { |
| static Statistic<> NumLCSSA("lcssa", |
| "Number of live out of a loop variables"); |
| |
| class LCSSA : public FunctionPass { |
| public: |
| |
| |
| LoopInfo *LI; // Loop information |
| DominatorTree *DT; // Dominator Tree for the current Function... |
| DominanceFrontier *DF; // Current Dominance Frontier |
| std::vector<BasicBlock*> LoopBlocks; |
| |
| virtual bool runOnFunction(Function &F); |
| bool visitSubloop(Loop* L); |
| void processInstruction(Instruction* Instr, |
| const std::vector<BasicBlock*>& exitBlocks); |
| |
| /// This transformation requires natural loop information & requires that |
| /// loop preheaders be inserted into the CFG. It maintains both of these, |
| /// as well as the CFG. It also requires dominator information. |
| /// |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addRequired<LoopInfo>(); |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<DominanceFrontier>(); |
| } |
| private: |
| SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L); |
| Value *getValueDominatingBlock(BasicBlock *BB, |
| std::map<BasicBlock*, Value*>& PotDoms) { |
| return getValueDominatingDTNode(DT->getNode(BB), PotDoms); |
| } |
| Value *getValueDominatingDTNode(DominatorTree::Node *Node, |
| std::map<BasicBlock*, Value*>& PotDoms); |
| |
| /// inLoop - returns true if the given block is within the current loop |
| const bool inLoop(BasicBlock* B) { |
| return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); |
| } |
| }; |
| |
| RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); |
| } |
| |
| FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); } |
| const PassInfo *llvm::LCSSAID = X.getPassInfo(); |
| |
| /// runOnFunction - Process all loops in the function, inner-most out. |
| bool LCSSA::runOnFunction(Function &F) { |
| bool changed = false; |
| |
| LI = &getAnalysis<LoopInfo>(); |
| DF = &getAnalysis<DominanceFrontier>(); |
| DT = &getAnalysis<DominatorTree>(); |
| |
| for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) { |
| changed |= visitSubloop(*I); |
| } |
| |
| return changed; |
| } |
| |
| /// visitSubloop - Recursively process all subloops, and then process the given |
| /// loop if it has live-out values. |
| bool LCSSA::visitSubloop(Loop* L) { |
| for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) |
| visitSubloop(*I); |
| |
| // Speed up queries by creating a sorted list of blocks |
| LoopBlocks.clear(); |
| LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); |
| std::sort(LoopBlocks.begin(), LoopBlocks.end()); |
| |
| SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L); |
| |
| // If no values are affected, we can save a lot of work, since we know that |
| // nothing will be changed. |
| if (AffectedValues.empty()) |
| return false; |
| |
| std::vector<BasicBlock*> exitBlocks; |
| L->getExitBlocks(exitBlocks); |
| |
| |
| // Iterate over all affected values for this loop and insert Phi nodes |
| // for them in the appropriate exit blocks |
| |
| for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), |
| E = AffectedValues.end(); I != E; ++I) { |
| processInstruction(*I, exitBlocks); |
| } |
| |
| assert(L->isLCSSAForm()); |
| |
| return true; |
| } |
| |
| /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, |
| /// eliminate all out-of-loop uses. |
| void LCSSA::processInstruction(Instruction* Instr, |
| const std::vector<BasicBlock*>& exitBlocks) |
| { |
| ++NumLCSSA; // We are applying the transformation |
| |
| std::map<BasicBlock*, Value*> Phis; |
| |
| // Add the base instruction to the Phis list. This makes tracking down |
| // the dominating values easier when we're filling in Phi nodes. This will |
| // be removed later, before we perform use replacement. |
| Phis[Instr->getParent()] = Instr; |
| |
| // Phi nodes that need to be IDF-processed |
| std::vector<PHINode*> workList; |
| |
| for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(), |
| BBE = exitBlocks.end(); BBI != BBE; ++BBI) { |
| Value*& phi = Phis[*BBI]; |
| if (phi == 0 && |
| DT->getNode(Instr->getParent())->dominates(DT->getNode(*BBI))) { |
| phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa", |
| (*BBI)->begin()); |
| workList.push_back(cast<PHINode>(phi)); |
| } |
| } |
| |
| // Phi nodes that need to have their incoming values filled. |
| std::vector<PHINode*> needIncomingValues; |
| |
| // Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where |
| // necessary. Keep track of these new Phi's in the "Phis" map. |
| while (!workList.empty()) { |
| PHINode *CurPHI = workList.back(); |
| workList.pop_back(); |
| |
| // Even though we've removed this Phi from the work list, we still need |
| // to fill in its incoming values. |
| needIncomingValues.push_back(CurPHI); |
| |
| // Get the current Phi's DF, and insert Phi nodes. Add these new |
| // nodes to our worklist. |
| DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent()); |
| if (it != DF->end()) { |
| const DominanceFrontier::DomSetType &S = it->second; |
| for (DominanceFrontier::DomSetType::const_iterator P = S.begin(), |
| PE = S.end(); P != PE; ++P) { |
| if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*P))) { |
| Value *&Phi = Phis[*P]; |
| if (Phi == 0) { |
| // Still doesn't have operands... |
| Phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa", |
| (*P)->begin()); |
| |
| workList.push_back(cast<PHINode>(Phi)); |
| } |
| } |
| } |
| } |
| } |
| |
| // Fill in all Phis we've inserted that need their incoming values filled in. |
| for (std::vector<PHINode*>::iterator IVI = needIncomingValues.begin(), |
| IVE = needIncomingValues.end(); IVI != IVE; ++IVI) |
| for (pred_iterator PI = pred_begin((*IVI)->getParent()), |
| E = pred_end((*IVI)->getParent()); PI != E; ++PI) |
| (*IVI)->addIncoming(getValueDominatingBlock(*PI, Phis), |
| *PI); |
| |
| // Find all uses of the affected value, and replace them with the |
| // appropriate Phi. |
| std::vector<Instruction*> Uses; |
| for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end(); |
| UI != UE; ++UI) { |
| Instruction* use = cast<Instruction>(*UI); |
| BasicBlock* UserBB = use->getParent(); |
| if (PHINode* p = dyn_cast<PHINode>(use)) { |
| unsigned OperandNo = UI.getOperandNo(); |
| UserBB = p->getIncomingBlock(OperandNo/2); |
| } |
| |
| // Don't need to update uses within the loop body. |
| if (!inLoop(use->getParent())) |
| Uses.push_back(use); |
| } |
| |
| for (std::vector<Instruction*>::iterator II = Uses.begin(), IE = Uses.end(); |
| II != IE; ++II) { |
| if (PHINode* phi = dyn_cast<PHINode>(*II)) { |
| for (unsigned int i = 0; i < phi->getNumIncomingValues(); ++i) { |
| if (phi->getIncomingValue(i) == Instr) { |
| Value* dominator = |
| getValueDominatingBlock(phi->getIncomingBlock(i), Phis); |
| phi->setIncomingValue(i, dominator); |
| } |
| } |
| } else { |
| Value *NewVal = getValueDominatingBlock((*II)->getParent(), Phis); |
| (*II)->replaceUsesOfWith(Instr, NewVal); |
| } |
| } |
| } |
| |
| /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that |
| /// are used by instructions outside of it. |
| SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) { |
| |
| // FIXME: For large loops, we may be able to avoid a lot of use-scanning |
| // by using dominance information. In particular, if a block does not |
| // dominate any of the loop exits, then none of the values defined in the |
| // block could be used outside the loop. |
| |
| SetVector<Instruction*> AffectedValues; |
| for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); |
| BB != E; ++BB) { |
| for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; |
| ++UI) { |
| BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); |
| if (PHINode* p = dyn_cast<PHINode>(*UI)) { |
| unsigned OperandNo = UI.getOperandNo(); |
| UserBB = p->getIncomingBlock(OperandNo/2); |
| } |
| |
| if (!inLoop(UserBB)) { |
| AffectedValues.insert(I); |
| break; |
| } |
| } |
| } |
| return AffectedValues; |
| } |
| |
| /// getValueDominatingBlock - Return the value within the potential dominators |
| /// map that dominates the given block. |
| Value *LCSSA::getValueDominatingDTNode(DominatorTree::Node *Node, |
| std::map<BasicBlock*, Value*>& PotDoms) { |
| // FIXME: The following assertion should be in place rather than the if |
| // statement. Currently, this is due to the fact that LCSSA isn't smart |
| // enough to avoid inserting IDF Phis that don't dominate any uses. In some |
| // of those cases, it could ask us to provide a dominating value for a block |
| // that has none, so we need to return undef. |
| //assert(Node != 0 && "Didn't find dom value?"); |
| if (Node == 0) return UndefValue::get(PotDoms.begin()->second->getType()); |
| |
| Value *&CacheSlot = PotDoms[Node->getBlock()]; |
| if (CacheSlot) return CacheSlot; |
| |
| // Otherwise, return the value of the idom and remember this for next time. |
| return CacheSlot = getValueDominatingDTNode(Node->getIDom(), PotDoms); |
| } |