| //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by Chris Lattner and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines the interfaces that X86 uses to lower LLVM code into a | 
 | // selection DAG. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "X86.h" | 
 | #include "X86InstrBuilder.h" | 
 | #include "X86ISelLowering.h" | 
 | #include "X86TargetMachine.h" | 
 | #include "llvm/CallingConv.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/SelectionDAG.h" | 
 | #include "llvm/CodeGen/SSARegMap.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include "llvm/ADT/VectorExtras.h" | 
 | using namespace llvm; | 
 |  | 
 | // FIXME: temporary. | 
 | #include "llvm/Support/CommandLine.h" | 
 | static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden, | 
 |                                   cl::desc("Enable fastcc on X86")); | 
 |  | 
 | X86TargetLowering::X86TargetLowering(TargetMachine &TM) | 
 |   : TargetLowering(TM) { | 
 |   Subtarget = &TM.getSubtarget<X86Subtarget>(); | 
 |   X86ScalarSSE = Subtarget->hasSSE2(); | 
 |  | 
 |   // Set up the TargetLowering object. | 
 |  | 
 |   // X86 is weird, it always uses i8 for shift amounts and setcc results. | 
 |   setShiftAmountType(MVT::i8); | 
 |   setSetCCResultType(MVT::i8); | 
 |   setSetCCResultContents(ZeroOrOneSetCCResult); | 
 |   setSchedulingPreference(SchedulingForRegPressure); | 
 |   setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0 | 
 |   setStackPointerRegisterToSaveRestore(X86::ESP); | 
 |    | 
 |   // Set up the register classes. | 
 |   addRegisterClass(MVT::i8, X86::R8RegisterClass); | 
 |   addRegisterClass(MVT::i16, X86::R16RegisterClass); | 
 |   addRegisterClass(MVT::i32, X86::R32RegisterClass); | 
 |  | 
 |   // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this | 
 |   // operation. | 
 |   setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote); | 
 |   setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote); | 
 |   setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote); | 
 |  | 
 |   if (X86ScalarSSE) | 
 |     // No SSE i64 SINT_TO_FP, so expand i32 UINT_TO_FP instead. | 
 |     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Expand); | 
 |   else | 
 |     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote); | 
 |  | 
 |   // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have | 
 |   // this operation. | 
 |   setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote); | 
 |   setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote); | 
 |   // SSE has no i16 to fp conversion, only i32 | 
 |   if (X86ScalarSSE) | 
 |     setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote); | 
 |   else { | 
 |     setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom); | 
 |     setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom); | 
 |   } | 
 |  | 
 |   // We can handle SINT_TO_FP and FP_TO_SINT from/to i64 even though i64 | 
 |   // isn't legal. | 
 |   setOperationAction(ISD::SINT_TO_FP       , MVT::i64  , Custom); | 
 |   setOperationAction(ISD::FP_TO_SINT       , MVT::i64  , Custom); | 
 |  | 
 |   // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have | 
 |   // this operation. | 
 |   setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote); | 
 |   setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote); | 
 |  | 
 |   if (X86ScalarSSE) { | 
 |     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote); | 
 |   } else { | 
 |     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom); | 
 |     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom); | 
 |   } | 
 |  | 
 |   // Handle FP_TO_UINT by promoting the destination to a larger signed | 
 |   // conversion. | 
 |   setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote); | 
 |   setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote); | 
 |   setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote); | 
 |  | 
 |   if (X86ScalarSSE && !Subtarget->hasSSE3()) | 
 |     // Expand FP_TO_UINT into a select. | 
 |     // FIXME: We would like to use a Custom expander here eventually to do | 
 |     // the optimal thing for SSE vs. the default expansion in the legalizer. | 
 |     setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Expand); | 
 |   else | 
 |     // With SSE3 we can use fisttpll to convert to a signed i64. | 
 |     setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote); | 
 |  | 
 |   setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand); | 
 |   setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand); | 
 |  | 
 |   setOperationAction(ISD::BRCOND           , MVT::Other, Custom); | 
 |   setOperationAction(ISD::BRCONDTWOWAY     , MVT::Other, Expand); | 
 |   setOperationAction(ISD::BRTWOWAY_CC      , MVT::Other, Expand); | 
 |   setOperationAction(ISD::BR_CC            , MVT::Other, Expand); | 
 |   setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand); | 
 |   setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand); | 
 |   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand); | 
 |   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand); | 
 |   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand); | 
 |   setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand); | 
 |   setOperationAction(ISD::SEXTLOAD         , MVT::i1   , Expand); | 
 |   setOperationAction(ISD::FREM             , MVT::f64  , Expand); | 
 |   setOperationAction(ISD::CTPOP            , MVT::i8   , Expand); | 
 |   setOperationAction(ISD::CTTZ             , MVT::i8   , Expand); | 
 |   setOperationAction(ISD::CTLZ             , MVT::i8   , Expand); | 
 |   setOperationAction(ISD::CTPOP            , MVT::i16  , Expand); | 
 |   setOperationAction(ISD::CTTZ             , MVT::i16  , Expand); | 
 |   setOperationAction(ISD::CTLZ             , MVT::i16  , Expand); | 
 |   setOperationAction(ISD::CTPOP            , MVT::i32  , Expand); | 
 |   setOperationAction(ISD::CTTZ             , MVT::i32  , Expand); | 
 |   setOperationAction(ISD::CTLZ             , MVT::i32  , Expand); | 
 |   setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom); | 
 |   setOperationAction(ISD::BSWAP            , MVT::i16  , Expand); | 
 |  | 
 |   setOperationAction(ISD::READIO           , MVT::i1   , Expand); | 
 |   setOperationAction(ISD::READIO           , MVT::i8   , Expand); | 
 |   setOperationAction(ISD::READIO           , MVT::i16  , Expand); | 
 |   setOperationAction(ISD::READIO           , MVT::i32  , Expand); | 
 |   setOperationAction(ISD::WRITEIO          , MVT::i1   , Expand); | 
 |   setOperationAction(ISD::WRITEIO          , MVT::i8   , Expand); | 
 |   setOperationAction(ISD::WRITEIO          , MVT::i16  , Expand); | 
 |   setOperationAction(ISD::WRITEIO          , MVT::i32  , Expand); | 
 |  | 
 |   // These should be promoted to a larger select which is supported. | 
 |   setOperationAction(ISD::SELECT           , MVT::i1   , Promote); | 
 |   setOperationAction(ISD::SELECT           , MVT::i8   , Promote); | 
 |  | 
 |   // X86 wants to expand cmov itself. | 
 |   setOperationAction(ISD::SELECT          , MVT::i16  , Custom); | 
 |   setOperationAction(ISD::SELECT          , MVT::i32  , Custom); | 
 |   setOperationAction(ISD::SELECT          , MVT::f32  , Custom); | 
 |   setOperationAction(ISD::SELECT          , MVT::f64  , Custom); | 
 |   setOperationAction(ISD::SETCC           , MVT::i8   , Custom); | 
 |   setOperationAction(ISD::SETCC           , MVT::i16  , Custom); | 
 |   setOperationAction(ISD::SETCC           , MVT::i32  , Custom); | 
 |   setOperationAction(ISD::SETCC           , MVT::f32  , Custom); | 
 |   setOperationAction(ISD::SETCC           , MVT::f64  , Custom); | 
 |   // X86 ret instruction may pop stack. | 
 |   setOperationAction(ISD::RET             , MVT::Other, Custom); | 
 |   // Darwin ABI issue. | 
 |   setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom); | 
 |   setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom); | 
 |   setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom); | 
 |   // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) | 
 |   setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom); | 
 |   setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom); | 
 |   setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom); | 
 |   // X86 wants to expand memset / memcpy itself. | 
 |   setOperationAction(ISD::MEMSET          , MVT::Other, Custom); | 
 |   setOperationAction(ISD::MEMCPY          , MVT::Other, Custom); | 
 |  | 
 |   // We don't have line number support yet. | 
 |   setOperationAction(ISD::LOCATION, MVT::Other, Expand); | 
 |   setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); | 
 |   setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand); | 
 |  | 
 |   // VASTART needs to be custom lowered to use the VarArgsFrameIndex | 
 |   setOperationAction(ISD::VASTART           , MVT::Other, Custom); | 
 |    | 
 |   // Use the default implementation. | 
 |   setOperationAction(ISD::VAARG             , MVT::Other, Expand); | 
 |   setOperationAction(ISD::VACOPY            , MVT::Other, Expand); | 
 |   setOperationAction(ISD::VAEND             , MVT::Other, Expand); | 
 |   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);  | 
 |   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand); | 
 |   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand); | 
 |  | 
 |   if (X86ScalarSSE) { | 
 |     // Set up the FP register classes. | 
 |     addRegisterClass(MVT::f32, X86::FR32RegisterClass); | 
 |     addRegisterClass(MVT::f64, X86::FR64RegisterClass); | 
 |  | 
 |     // SSE has no load+extend ops | 
 |     setOperationAction(ISD::EXTLOAD,  MVT::f32, Expand); | 
 |     setOperationAction(ISD::ZEXTLOAD, MVT::f32, Expand); | 
 |  | 
 |     // Use ANDPD to simulate FABS. | 
 |     setOperationAction(ISD::FABS , MVT::f64, Custom); | 
 |     setOperationAction(ISD::FABS , MVT::f32, Custom); | 
 |  | 
 |     // Use XORP to simulate FNEG. | 
 |     setOperationAction(ISD::FNEG , MVT::f64, Custom); | 
 |     setOperationAction(ISD::FNEG , MVT::f32, Custom); | 
 |  | 
 |     // We don't support sin/cos/fmod | 
 |     setOperationAction(ISD::FSIN , MVT::f64, Expand); | 
 |     setOperationAction(ISD::FCOS , MVT::f64, Expand); | 
 |     setOperationAction(ISD::FREM , MVT::f64, Expand); | 
 |     setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
 |     setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
 |     setOperationAction(ISD::FREM , MVT::f32, Expand); | 
 |  | 
 |     // Expand FP immediates into loads from the stack, except for the special | 
 |     // cases we handle. | 
 |     setOperationAction(ISD::ConstantFP, MVT::f64, Expand); | 
 |     setOperationAction(ISD::ConstantFP, MVT::f32, Expand); | 
 |     addLegalFPImmediate(+0.0); // xorps / xorpd | 
 |   } else { | 
 |     // Set up the FP register classes. | 
 |     addRegisterClass(MVT::f64, X86::RFPRegisterClass); | 
 |      | 
 |     setOperationAction(ISD::UNDEF, MVT::f64, Expand); | 
 |      | 
 |     if (!UnsafeFPMath) { | 
 |       setOperationAction(ISD::FSIN           , MVT::f64  , Expand); | 
 |       setOperationAction(ISD::FCOS           , MVT::f64  , Expand); | 
 |     } | 
 |  | 
 |     setOperationAction(ISD::ConstantFP, MVT::f64, Expand); | 
 |     addLegalFPImmediate(+0.0); // FLD0 | 
 |     addLegalFPImmediate(+1.0); // FLD1 | 
 |     addLegalFPImmediate(-0.0); // FLD0/FCHS | 
 |     addLegalFPImmediate(-1.0); // FLD1/FCHS | 
 |   } | 
 |  | 
 |   if (TM.getSubtarget<X86Subtarget>().hasMMX()) { | 
 |     addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass); | 
 |     addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); | 
 |     addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); | 
 |  | 
 |     // FIXME: We don't support any ConstantVec's yet.  We should custom expand | 
 |     // the ones we do! | 
 |     setOperationAction(ISD::ConstantVec, MVT::v8i8,  Expand); | 
 |     setOperationAction(ISD::ConstantVec, MVT::v4i16, Expand); | 
 |     setOperationAction(ISD::ConstantVec, MVT::v2i32, Expand); | 
 |   } | 
 |  | 
 |   if (TM.getSubtarget<X86Subtarget>().hasSSE1()) { | 
 |     addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); | 
 |  | 
 |     // FIXME: We don't support any ConstantVec's yet.  We should custom expand | 
 |     // the ones we do! | 
 |     setOperationAction(ISD::ConstantVec, MVT::v4f32, Expand); | 
 |   } | 
 |  | 
 |   if (TM.getSubtarget<X86Subtarget>().hasSSE2()) { | 
 |     addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); | 
 |     addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); | 
 |     addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); | 
 |     addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); | 
 |     addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); | 
 |  | 
 |  | 
 |     // FIXME: We don't support any ConstantVec's yet.  We should custom expand | 
 |     // the ones we do! | 
 |     setOperationAction(ISD::ConstantVec, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::ConstantVec, MVT::v16i8, Expand); | 
 |     setOperationAction(ISD::ConstantVec, MVT::v8i16, Expand); | 
 |     setOperationAction(ISD::ConstantVec, MVT::v4i32, Expand); | 
 |     setOperationAction(ISD::ConstantVec, MVT::v2i64, Expand); | 
 |   } | 
 |  | 
 |   computeRegisterProperties(); | 
 |  | 
 |   // FIXME: These should be based on subtarget info. Plus, the values should | 
 |   // be smaller when we are in optimizing for size mode. | 
 |   maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores | 
 |   maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores | 
 |   maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores | 
 |   allowUnalignedMemoryAccesses = true; // x86 supports it! | 
 | } | 
 |  | 
 | std::vector<SDOperand> | 
 | X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { | 
 |   if (F.getCallingConv() == CallingConv::Fast && EnableFastCC) | 
 |     return LowerFastCCArguments(F, DAG); | 
 |   return LowerCCCArguments(F, DAG); | 
 | } | 
 |  | 
 | std::pair<SDOperand, SDOperand> | 
 | X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, | 
 |                                bool isVarArg, unsigned CallingConv, | 
 |                                bool isTailCall, | 
 |                                SDOperand Callee, ArgListTy &Args, | 
 |                                SelectionDAG &DAG) { | 
 |   assert((!isVarArg || CallingConv == CallingConv::C) && | 
 |          "Only C takes varargs!"); | 
 |  | 
 |   // If the callee is a GlobalAddress node (quite common, every direct call is) | 
 |   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. | 
 |   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) | 
 |     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); | 
 |   else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) | 
 |     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); | 
 |  | 
 |   if (CallingConv == CallingConv::Fast && EnableFastCC) | 
 |     return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG); | 
 |   return  LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                    C Calling Convention implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | std::vector<SDOperand> | 
 | X86TargetLowering::LowerCCCArguments(Function &F, SelectionDAG &DAG) { | 
 |   std::vector<SDOperand> ArgValues; | 
 |  | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   MachineFrameInfo *MFI = MF.getFrameInfo(); | 
 |  | 
 |   // Add DAG nodes to load the arguments...  On entry to a function on the X86, | 
 |   // the stack frame looks like this: | 
 |   // | 
 |   // [ESP] -- return address | 
 |   // [ESP + 4] -- first argument (leftmost lexically) | 
 |   // [ESP + 8] -- second argument, if first argument is four bytes in size | 
 |   //    ... | 
 |   // | 
 |   unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot | 
 |   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { | 
 |     MVT::ValueType ObjectVT = getValueType(I->getType()); | 
 |     unsigned ArgIncrement = 4; | 
 |     unsigned ObjSize; | 
 |     switch (ObjectVT) { | 
 |     default: assert(0 && "Unhandled argument type!"); | 
 |     case MVT::i1: | 
 |     case MVT::i8:  ObjSize = 1;                break; | 
 |     case MVT::i16: ObjSize = 2;                break; | 
 |     case MVT::i32: ObjSize = 4;                break; | 
 |     case MVT::i64: ObjSize = ArgIncrement = 8; break; | 
 |     case MVT::f32: ObjSize = 4;                break; | 
 |     case MVT::f64: ObjSize = ArgIncrement = 8; break; | 
 |     } | 
 |     // Create the frame index object for this incoming parameter... | 
 |     int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); | 
 |  | 
 |     // Create the SelectionDAG nodes corresponding to a load from this parameter | 
 |     SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
 |  | 
 |     // Don't codegen dead arguments.  FIXME: remove this check when we can nuke | 
 |     // dead loads. | 
 |     SDOperand ArgValue; | 
 |     if (!I->use_empty()) | 
 |       ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, | 
 |                              DAG.getSrcValue(NULL)); | 
 |     else { | 
 |       if (MVT::isInteger(ObjectVT)) | 
 |         ArgValue = DAG.getConstant(0, ObjectVT); | 
 |       else | 
 |         ArgValue = DAG.getConstantFP(0, ObjectVT); | 
 |     } | 
 |     ArgValues.push_back(ArgValue); | 
 |  | 
 |     ArgOffset += ArgIncrement;   // Move on to the next argument... | 
 |   } | 
 |  | 
 |   // If the function takes variable number of arguments, make a frame index for | 
 |   // the start of the first vararg value... for expansion of llvm.va_start. | 
 |   if (F.isVarArg()) | 
 |     VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); | 
 |   ReturnAddrIndex = 0;     // No return address slot generated yet. | 
 |   BytesToPopOnReturn = 0;  // Callee pops nothing. | 
 |   BytesCallerReserves = ArgOffset; | 
 |  | 
 |   // Finally, inform the code generator which regs we return values in. | 
 |   switch (getValueType(F.getReturnType())) { | 
 |   default: assert(0 && "Unknown type!"); | 
 |   case MVT::isVoid: break; | 
 |   case MVT::i1: | 
 |   case MVT::i8: | 
 |   case MVT::i16: | 
 |   case MVT::i32: | 
 |     MF.addLiveOut(X86::EAX); | 
 |     break; | 
 |   case MVT::i64: | 
 |     MF.addLiveOut(X86::EAX); | 
 |     MF.addLiveOut(X86::EDX); | 
 |     break; | 
 |   case MVT::f32: | 
 |   case MVT::f64: | 
 |     MF.addLiveOut(X86::ST0); | 
 |     break; | 
 |   } | 
 |   return ArgValues; | 
 | } | 
 |  | 
 | std::pair<SDOperand, SDOperand> | 
 | X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy, | 
 |                                   bool isVarArg, bool isTailCall, | 
 |                                   SDOperand Callee, ArgListTy &Args, | 
 |                                   SelectionDAG &DAG) { | 
 |   // Count how many bytes are to be pushed on the stack. | 
 |   unsigned NumBytes = 0; | 
 |  | 
 |   if (Args.empty()) { | 
 |     // Save zero bytes. | 
 |     Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(0, getPointerTy())); | 
 |   } else { | 
 |     for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
 |       switch (getValueType(Args[i].second)) { | 
 |       default: assert(0 && "Unknown value type!"); | 
 |       case MVT::i1: | 
 |       case MVT::i8: | 
 |       case MVT::i16: | 
 |       case MVT::i32: | 
 |       case MVT::f32: | 
 |         NumBytes += 4; | 
 |         break; | 
 |       case MVT::i64: | 
 |       case MVT::f64: | 
 |         NumBytes += 8; | 
 |         break; | 
 |       } | 
 |  | 
 |     Chain = DAG.getCALLSEQ_START(Chain, | 
 |                                  DAG.getConstant(NumBytes, getPointerTy())); | 
 |  | 
 |     // Arguments go on the stack in reverse order, as specified by the ABI. | 
 |     unsigned ArgOffset = 0; | 
 |     SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32); | 
 |     std::vector<SDOperand> Stores; | 
 |  | 
 |     for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
 |       SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
 |       PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
 |  | 
 |       switch (getValueType(Args[i].second)) { | 
 |       default: assert(0 && "Unexpected ValueType for argument!"); | 
 |       case MVT::i1: | 
 |       case MVT::i8: | 
 |       case MVT::i16: | 
 |         // Promote the integer to 32 bits.  If the input type is signed use a | 
 |         // sign extend, otherwise use a zero extend. | 
 |         if (Args[i].second->isSigned()) | 
 |           Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); | 
 |         else | 
 |           Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); | 
 |  | 
 |         // FALL THROUGH | 
 |       case MVT::i32: | 
 |       case MVT::f32: | 
 |         Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
 |                                      Args[i].first, PtrOff, | 
 |                                      DAG.getSrcValue(NULL))); | 
 |         ArgOffset += 4; | 
 |         break; | 
 |       case MVT::i64: | 
 |       case MVT::f64: | 
 |         Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
 |                                      Args[i].first, PtrOff, | 
 |                                      DAG.getSrcValue(NULL))); | 
 |         ArgOffset += 8; | 
 |         break; | 
 |       } | 
 |     } | 
 |     Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); | 
 |   } | 
 |  | 
 |   std::vector<MVT::ValueType> RetVals; | 
 |   MVT::ValueType RetTyVT = getValueType(RetTy); | 
 |   RetVals.push_back(MVT::Other); | 
 |  | 
 |   // The result values produced have to be legal.  Promote the result. | 
 |   switch (RetTyVT) { | 
 |   case MVT::isVoid: break; | 
 |   default: | 
 |     RetVals.push_back(RetTyVT); | 
 |     break; | 
 |   case MVT::i1: | 
 |   case MVT::i8: | 
 |   case MVT::i16: | 
 |     RetVals.push_back(MVT::i32); | 
 |     break; | 
 |   case MVT::f32: | 
 |     if (X86ScalarSSE) | 
 |       RetVals.push_back(MVT::f32); | 
 |     else | 
 |       RetVals.push_back(MVT::f64); | 
 |     break; | 
 |   case MVT::i64: | 
 |     RetVals.push_back(MVT::i32); | 
 |     RetVals.push_back(MVT::i32); | 
 |     break; | 
 |   } | 
 |  | 
 |   std::vector<MVT::ValueType> NodeTys; | 
 |   NodeTys.push_back(MVT::Other);   // Returns a chain | 
 |   NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use. | 
 |   std::vector<SDOperand> Ops; | 
 |   Ops.push_back(Chain); | 
 |   Ops.push_back(Callee); | 
 |  | 
 |   // FIXME: Do not generate X86ISD::TAILCALL for now. | 
 |   Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); | 
 |   SDOperand InFlag = Chain.getValue(1); | 
 |  | 
 |   NodeTys.clear(); | 
 |   NodeTys.push_back(MVT::Other);   // Returns a chain | 
 |   NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use. | 
 |   Ops.clear(); | 
 |   Ops.push_back(Chain); | 
 |   Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); | 
 |   Ops.push_back(DAG.getConstant(0, getPointerTy())); | 
 |   Ops.push_back(InFlag); | 
 |   Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); | 
 |   InFlag = Chain.getValue(1); | 
 |    | 
 |   SDOperand RetVal; | 
 |   if (RetTyVT != MVT::isVoid) { | 
 |     switch (RetTyVT) { | 
 |     default: assert(0 && "Unknown value type to return!"); | 
 |     case MVT::i1: | 
 |     case MVT::i8: | 
 |       RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); | 
 |       Chain = RetVal.getValue(1); | 
 |       if (RetTyVT == MVT::i1)  | 
 |         RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); | 
 |       break; | 
 |     case MVT::i16: | 
 |       RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); | 
 |       Chain = RetVal.getValue(1); | 
 |       break; | 
 |     case MVT::i32: | 
 |       RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); | 
 |       Chain = RetVal.getValue(1); | 
 |       break; | 
 |     case MVT::i64: { | 
 |       SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); | 
 |       SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32,  | 
 |                                         Lo.getValue(2)); | 
 |       RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); | 
 |       Chain = Hi.getValue(1); | 
 |       break; | 
 |     } | 
 |     case MVT::f32: | 
 |     case MVT::f64: { | 
 |       std::vector<MVT::ValueType> Tys; | 
 |       Tys.push_back(MVT::f64); | 
 |       Tys.push_back(MVT::Other); | 
 |       Tys.push_back(MVT::Flag); | 
 |       std::vector<SDOperand> Ops; | 
 |       Ops.push_back(Chain); | 
 |       Ops.push_back(InFlag); | 
 |       RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); | 
 |       Chain  = RetVal.getValue(1); | 
 |       InFlag = RetVal.getValue(2); | 
 |       if (X86ScalarSSE) { | 
 |         // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This | 
 |         // shouldn't be necessary except that RFP cannot be live across | 
 |         // multiple blocks. When stackifier is fixed, they can be uncoupled. | 
 |         MachineFunction &MF = DAG.getMachineFunction(); | 
 |         int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); | 
 |         SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
 |         Tys.clear(); | 
 |         Tys.push_back(MVT::Other); | 
 |         Ops.clear(); | 
 |         Ops.push_back(Chain); | 
 |         Ops.push_back(RetVal); | 
 |         Ops.push_back(StackSlot); | 
 |         Ops.push_back(DAG.getValueType(RetTyVT)); | 
 |         Ops.push_back(InFlag); | 
 |         Chain = DAG.getNode(X86ISD::FST, Tys, Ops); | 
 |         RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, | 
 |                              DAG.getSrcValue(NULL)); | 
 |         Chain = RetVal.getValue(1); | 
 |       } | 
 |  | 
 |       if (RetTyVT == MVT::f32 && !X86ScalarSSE) | 
 |         // FIXME: we would really like to remember that this FP_ROUND | 
 |         // operation is okay to eliminate if we allow excess FP precision. | 
 |         RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); | 
 |       break; | 
 |     } | 
 |     } | 
 |   } | 
 |  | 
 |   return std::make_pair(RetVal, Chain); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                    Fast Calling Convention implementation | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // The X86 'fast' calling convention passes up to two integer arguments in | 
 | // registers (an appropriate portion of EAX/EDX), passes arguments in C order, | 
 | // and requires that the callee pop its arguments off the stack (allowing proper | 
 | // tail calls), and has the same return value conventions as C calling convs. | 
 | // | 
 | // This calling convention always arranges for the callee pop value to be 8n+4 | 
 | // bytes, which is needed for tail recursion elimination and stack alignment | 
 | // reasons. | 
 | // | 
 | // Note that this can be enhanced in the future to pass fp vals in registers | 
 | // (when we have a global fp allocator) and do other tricks. | 
 | // | 
 |  | 
 | /// AddLiveIn - This helper function adds the specified physical register to the | 
 | /// MachineFunction as a live in value.  It also creates a corresponding virtual | 
 | /// register for it. | 
 | static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, | 
 |                           TargetRegisterClass *RC) { | 
 |   assert(RC->contains(PReg) && "Not the correct regclass!"); | 
 |   unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); | 
 |   MF.addLiveIn(PReg, VReg); | 
 |   return VReg; | 
 | } | 
 |  | 
 |  | 
 | std::vector<SDOperand> | 
 | X86TargetLowering::LowerFastCCArguments(Function &F, SelectionDAG &DAG) { | 
 |   std::vector<SDOperand> ArgValues; | 
 |  | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   MachineFrameInfo *MFI = MF.getFrameInfo(); | 
 |  | 
 |   // Add DAG nodes to load the arguments...  On entry to a function the stack | 
 |   // frame looks like this: | 
 |   // | 
 |   // [ESP] -- return address | 
 |   // [ESP + 4] -- first nonreg argument (leftmost lexically) | 
 |   // [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size | 
 |   //    ... | 
 |   unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot | 
 |  | 
 |   // Keep track of the number of integer regs passed so far.  This can be either | 
 |   // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both | 
 |   // used). | 
 |   unsigned NumIntRegs = 0; | 
 |  | 
 |   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { | 
 |     MVT::ValueType ObjectVT = getValueType(I->getType()); | 
 |     unsigned ArgIncrement = 4; | 
 |     unsigned ObjSize = 0; | 
 |     SDOperand ArgValue; | 
 |  | 
 |     switch (ObjectVT) { | 
 |     default: assert(0 && "Unhandled argument type!"); | 
 |     case MVT::i1: | 
 |     case MVT::i8: | 
 |       if (NumIntRegs < 2) { | 
 |         if (!I->use_empty()) { | 
 |           unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL, | 
 |                                     X86::R8RegisterClass); | 
 |           ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i8); | 
 |           DAG.setRoot(ArgValue.getValue(1)); | 
 |           if (ObjectVT == MVT::i1) | 
 |             // FIXME: Should insert a assertzext here. | 
 |             ArgValue = DAG.getNode(ISD::TRUNCATE, MVT::i1, ArgValue); | 
 |         } | 
 |         ++NumIntRegs; | 
 |         break; | 
 |       } | 
 |  | 
 |       ObjSize = 1; | 
 |       break; | 
 |     case MVT::i16: | 
 |       if (NumIntRegs < 2) { | 
 |         if (!I->use_empty()) { | 
 |           unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX, | 
 |                                     X86::R16RegisterClass); | 
 |           ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i16); | 
 |           DAG.setRoot(ArgValue.getValue(1)); | 
 |         } | 
 |         ++NumIntRegs; | 
 |         break; | 
 |       } | 
 |       ObjSize = 2; | 
 |       break; | 
 |     case MVT::i32: | 
 |       if (NumIntRegs < 2) { | 
 |         if (!I->use_empty()) { | 
 |           unsigned VReg = AddLiveIn(MF,NumIntRegs ? X86::EDX : X86::EAX, | 
 |                                     X86::R32RegisterClass); | 
 |           ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32); | 
 |           DAG.setRoot(ArgValue.getValue(1)); | 
 |         } | 
 |         ++NumIntRegs; | 
 |         break; | 
 |       } | 
 |       ObjSize = 4; | 
 |       break; | 
 |     case MVT::i64: | 
 |       if (NumIntRegs == 0) { | 
 |         if (!I->use_empty()) { | 
 |           unsigned BotReg = AddLiveIn(MF, X86::EAX, X86::R32RegisterClass); | 
 |           unsigned TopReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); | 
 |  | 
 |           SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32); | 
 |           SDOperand Hi  = DAG.getCopyFromReg(Low.getValue(1), TopReg, MVT::i32); | 
 |           DAG.setRoot(Hi.getValue(1)); | 
 |  | 
 |           ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); | 
 |         } | 
 |         NumIntRegs = 2; | 
 |         break; | 
 |       } else if (NumIntRegs == 1) { | 
 |         if (!I->use_empty()) { | 
 |           unsigned BotReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); | 
 |           SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32); | 
 |           DAG.setRoot(Low.getValue(1)); | 
 |  | 
 |           // Load the high part from memory. | 
 |           // Create the frame index object for this incoming parameter... | 
 |           int FI = MFI->CreateFixedObject(4, ArgOffset); | 
 |           SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
 |           SDOperand Hi = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN, | 
 |                                      DAG.getSrcValue(NULL)); | 
 |           ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); | 
 |         } | 
 |         ArgOffset += 4; | 
 |         NumIntRegs = 2; | 
 |         break; | 
 |       } | 
 |       ObjSize = ArgIncrement = 8; | 
 |       break; | 
 |     case MVT::f32: ObjSize = 4;                break; | 
 |     case MVT::f64: ObjSize = ArgIncrement = 8; break; | 
 |     } | 
 |  | 
 |     // Don't codegen dead arguments.  FIXME: remove this check when we can nuke | 
 |     // dead loads. | 
 |     if (ObjSize && !I->use_empty()) { | 
 |       // Create the frame index object for this incoming parameter... | 
 |       int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); | 
 |  | 
 |       // Create the SelectionDAG nodes corresponding to a load from this | 
 |       // parameter. | 
 |       SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
 |  | 
 |       ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, | 
 |                              DAG.getSrcValue(NULL)); | 
 |     } else if (ArgValue.Val == 0) { | 
 |       if (MVT::isInteger(ObjectVT)) | 
 |         ArgValue = DAG.getConstant(0, ObjectVT); | 
 |       else | 
 |         ArgValue = DAG.getConstantFP(0, ObjectVT); | 
 |     } | 
 |     ArgValues.push_back(ArgValue); | 
 |  | 
 |     if (ObjSize) | 
 |       ArgOffset += ArgIncrement;   // Move on to the next argument. | 
 |   } | 
 |  | 
 |   // Make sure the instruction takes 8n+4 bytes to make sure the start of the | 
 |   // arguments and the arguments after the retaddr has been pushed are aligned. | 
 |   if ((ArgOffset & 7) == 0) | 
 |     ArgOffset += 4; | 
 |  | 
 |   VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs. | 
 |   ReturnAddrIndex = 0;             // No return address slot generated yet. | 
 |   BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments. | 
 |   BytesCallerReserves = 0; | 
 |  | 
 |   // Finally, inform the code generator which regs we return values in. | 
 |   switch (getValueType(F.getReturnType())) { | 
 |   default: assert(0 && "Unknown type!"); | 
 |   case MVT::isVoid: break; | 
 |   case MVT::i1: | 
 |   case MVT::i8: | 
 |   case MVT::i16: | 
 |   case MVT::i32: | 
 |     MF.addLiveOut(X86::EAX); | 
 |     break; | 
 |   case MVT::i64: | 
 |     MF.addLiveOut(X86::EAX); | 
 |     MF.addLiveOut(X86::EDX); | 
 |     break; | 
 |   case MVT::f32: | 
 |   case MVT::f64: | 
 |     MF.addLiveOut(X86::ST0); | 
 |     break; | 
 |   } | 
 |   return ArgValues; | 
 | } | 
 |  | 
 | std::pair<SDOperand, SDOperand> | 
 | X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, | 
 |                                      bool isTailCall, SDOperand Callee, | 
 |                                      ArgListTy &Args, SelectionDAG &DAG) { | 
 |   // Count how many bytes are to be pushed on the stack. | 
 |   unsigned NumBytes = 0; | 
 |  | 
 |   // Keep track of the number of integer regs passed so far.  This can be either | 
 |   // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both | 
 |   // used). | 
 |   unsigned NumIntRegs = 0; | 
 |  | 
 |   for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
 |     switch (getValueType(Args[i].second)) { | 
 |     default: assert(0 && "Unknown value type!"); | 
 |     case MVT::i1: | 
 |     case MVT::i8: | 
 |     case MVT::i16: | 
 |     case MVT::i32: | 
 |       if (NumIntRegs < 2) { | 
 |         ++NumIntRegs; | 
 |         break; | 
 |       } | 
 |       // fall through | 
 |     case MVT::f32: | 
 |       NumBytes += 4; | 
 |       break; | 
 |     case MVT::i64: | 
 |       if (NumIntRegs == 0) { | 
 |         NumIntRegs = 2; | 
 |         break; | 
 |       } else if (NumIntRegs == 1) { | 
 |         NumIntRegs = 2; | 
 |         NumBytes += 4; | 
 |         break; | 
 |       } | 
 |  | 
 |       // fall through | 
 |     case MVT::f64: | 
 |       NumBytes += 8; | 
 |       break; | 
 |     } | 
 |  | 
 |   // Make sure the instruction takes 8n+4 bytes to make sure the start of the | 
 |   // arguments and the arguments after the retaddr has been pushed are aligned. | 
 |   if ((NumBytes & 7) == 0) | 
 |     NumBytes += 4; | 
 |  | 
 |   Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); | 
 |  | 
 |   // Arguments go on the stack in reverse order, as specified by the ABI. | 
 |   unsigned ArgOffset = 0; | 
 |   SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32); | 
 |   NumIntRegs = 0; | 
 |   std::vector<SDOperand> Stores; | 
 |   std::vector<SDOperand> RegValuesToPass; | 
 |   for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
 |     switch (getValueType(Args[i].second)) { | 
 |     default: assert(0 && "Unexpected ValueType for argument!"); | 
 |     case MVT::i1: | 
 |       Args[i].first = DAG.getNode(ISD::ANY_EXTEND, MVT::i8, Args[i].first); | 
 |       // Fall through. | 
 |     case MVT::i8: | 
 |     case MVT::i16: | 
 |     case MVT::i32: | 
 |       if (NumIntRegs < 2) { | 
 |         RegValuesToPass.push_back(Args[i].first); | 
 |         ++NumIntRegs; | 
 |         break; | 
 |       } | 
 |       // Fall through | 
 |     case MVT::f32: { | 
 |       SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
 |       PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
 |       Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
 |                                    Args[i].first, PtrOff, | 
 |                                    DAG.getSrcValue(NULL))); | 
 |       ArgOffset += 4; | 
 |       break; | 
 |     } | 
 |     case MVT::i64: | 
 |       if (NumIntRegs < 2) {    // Can pass part of it in regs? | 
 |         SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, | 
 |                                    Args[i].first, DAG.getConstant(1, MVT::i32)); | 
 |         SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, | 
 |                                    Args[i].first, DAG.getConstant(0, MVT::i32)); | 
 |         RegValuesToPass.push_back(Lo); | 
 |         ++NumIntRegs; | 
 |         if (NumIntRegs < 2) {   // Pass both parts in regs? | 
 |           RegValuesToPass.push_back(Hi); | 
 |           ++NumIntRegs; | 
 |         } else { | 
 |           // Pass the high part in memory. | 
 |           SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
 |           PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
 |           Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
 |                                        Hi, PtrOff, DAG.getSrcValue(NULL))); | 
 |           ArgOffset += 4; | 
 |         } | 
 |         break; | 
 |       } | 
 |       // Fall through | 
 |     case MVT::f64: | 
 |       SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
 |       PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
 |       Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
 |                                    Args[i].first, PtrOff, | 
 |                                    DAG.getSrcValue(NULL))); | 
 |       ArgOffset += 8; | 
 |       break; | 
 |     } | 
 |   } | 
 |   if (!Stores.empty()) | 
 |     Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); | 
 |  | 
 |   // Make sure the instruction takes 8n+4 bytes to make sure the start of the | 
 |   // arguments and the arguments after the retaddr has been pushed are aligned. | 
 |   if ((ArgOffset & 7) == 0) | 
 |     ArgOffset += 4; | 
 |  | 
 |   std::vector<MVT::ValueType> RetVals; | 
 |   MVT::ValueType RetTyVT = getValueType(RetTy); | 
 |  | 
 |   RetVals.push_back(MVT::Other); | 
 |  | 
 |   // The result values produced have to be legal.  Promote the result. | 
 |   switch (RetTyVT) { | 
 |   case MVT::isVoid: break; | 
 |   default: | 
 |     RetVals.push_back(RetTyVT); | 
 |     break; | 
 |   case MVT::i1: | 
 |   case MVT::i8: | 
 |   case MVT::i16: | 
 |     RetVals.push_back(MVT::i32); | 
 |     break; | 
 |   case MVT::f32: | 
 |     if (X86ScalarSSE) | 
 |       RetVals.push_back(MVT::f32); | 
 |     else | 
 |       RetVals.push_back(MVT::f64); | 
 |     break; | 
 |   case MVT::i64: | 
 |     RetVals.push_back(MVT::i32); | 
 |     RetVals.push_back(MVT::i32); | 
 |     break; | 
 |   } | 
 |  | 
 |   // Build a sequence of copy-to-reg nodes chained together with token chain | 
 |   // and flag operands which copy the outgoing args into registers. | 
 |   SDOperand InFlag; | 
 |   for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) { | 
 |     unsigned CCReg; | 
 |     SDOperand RegToPass = RegValuesToPass[i]; | 
 |     switch (RegToPass.getValueType()) { | 
 |     default: assert(0 && "Bad thing to pass in regs"); | 
 |     case MVT::i8: | 
 |       CCReg = (i == 0) ? X86::AL  : X86::DL; | 
 |       break; | 
 |     case MVT::i16: | 
 |       CCReg = (i == 0) ? X86::AX  : X86::DX; | 
 |       break; | 
 |     case MVT::i32: | 
 |       CCReg = (i == 0) ? X86::EAX : X86::EDX; | 
 |       break; | 
 |     } | 
 |  | 
 |     Chain = DAG.getCopyToReg(Chain, CCReg, RegToPass, InFlag); | 
 |     InFlag = Chain.getValue(1); | 
 |   } | 
 |  | 
 |   std::vector<MVT::ValueType> NodeTys; | 
 |   NodeTys.push_back(MVT::Other);   // Returns a chain | 
 |   NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use. | 
 |   std::vector<SDOperand> Ops; | 
 |   Ops.push_back(Chain); | 
 |   Ops.push_back(Callee); | 
 |   if (InFlag.Val) | 
 |     Ops.push_back(InFlag); | 
 |  | 
 |   // FIXME: Do not generate X86ISD::TAILCALL for now. | 
 |   Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); | 
 |   InFlag = Chain.getValue(1); | 
 |  | 
 |   NodeTys.clear(); | 
 |   NodeTys.push_back(MVT::Other);   // Returns a chain | 
 |   NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use. | 
 |   Ops.clear(); | 
 |   Ops.push_back(Chain); | 
 |   Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); | 
 |   Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); | 
 |   Ops.push_back(InFlag); | 
 |   Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); | 
 |   InFlag = Chain.getValue(1); | 
 |    | 
 |   SDOperand RetVal; | 
 |   if (RetTyVT != MVT::isVoid) { | 
 |     switch (RetTyVT) { | 
 |     default: assert(0 && "Unknown value type to return!"); | 
 |     case MVT::i1: | 
 |     case MVT::i8: | 
 |       RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); | 
 |       Chain = RetVal.getValue(1); | 
 |       if (RetTyVT == MVT::i1)  | 
 |         RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); | 
 |       break; | 
 |     case MVT::i16: | 
 |       RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); | 
 |       Chain = RetVal.getValue(1); | 
 |       break; | 
 |     case MVT::i32: | 
 |       RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); | 
 |       Chain = RetVal.getValue(1); | 
 |       break; | 
 |     case MVT::i64: { | 
 |       SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); | 
 |       SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32,  | 
 |                                         Lo.getValue(2)); | 
 |       RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); | 
 |       Chain = Hi.getValue(1); | 
 |       break; | 
 |     } | 
 |     case MVT::f32: | 
 |     case MVT::f64: { | 
 |       std::vector<MVT::ValueType> Tys; | 
 |       Tys.push_back(MVT::f64); | 
 |       Tys.push_back(MVT::Other); | 
 |       Tys.push_back(MVT::Flag); | 
 |       std::vector<SDOperand> Ops; | 
 |       Ops.push_back(Chain); | 
 |       Ops.push_back(InFlag); | 
 |       RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); | 
 |       Chain  = RetVal.getValue(1); | 
 |       InFlag = RetVal.getValue(2); | 
 |       if (X86ScalarSSE) { | 
 |         // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This | 
 |         // shouldn't be necessary except that RFP cannot be live across | 
 |         // multiple blocks. When stackifier is fixed, they can be uncoupled. | 
 |         MachineFunction &MF = DAG.getMachineFunction(); | 
 |         int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); | 
 |         SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
 |         Tys.clear(); | 
 |         Tys.push_back(MVT::Other); | 
 |         Ops.clear(); | 
 |         Ops.push_back(Chain); | 
 |         Ops.push_back(RetVal); | 
 |         Ops.push_back(StackSlot); | 
 |         Ops.push_back(DAG.getValueType(RetTyVT)); | 
 |         Ops.push_back(InFlag); | 
 |         Chain = DAG.getNode(X86ISD::FST, Tys, Ops); | 
 |         RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, | 
 |                              DAG.getSrcValue(NULL)); | 
 |         Chain = RetVal.getValue(1); | 
 |       } | 
 |  | 
 |       if (RetTyVT == MVT::f32 && !X86ScalarSSE) | 
 |         // FIXME: we would really like to remember that this FP_ROUND | 
 |         // operation is okay to eliminate if we allow excess FP precision. | 
 |         RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); | 
 |       break; | 
 |     } | 
 |     } | 
 |   } | 
 |  | 
 |   return std::make_pair(RetVal, Chain); | 
 | } | 
 |  | 
 | SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { | 
 |   if (ReturnAddrIndex == 0) { | 
 |     // Set up a frame object for the return address. | 
 |     MachineFunction &MF = DAG.getMachineFunction(); | 
 |     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); | 
 |   } | 
 |  | 
 |   return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | std::pair<SDOperand, SDOperand> X86TargetLowering:: | 
 | LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, | 
 |                         SelectionDAG &DAG) { | 
 |   SDOperand Result; | 
 |   if (Depth)        // Depths > 0 not supported yet! | 
 |     Result = DAG.getConstant(0, getPointerTy()); | 
 |   else { | 
 |     SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); | 
 |     if (!isFrameAddress) | 
 |       // Just load the return address | 
 |       Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI, | 
 |                            DAG.getSrcValue(NULL)); | 
 |     else | 
 |       Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI, | 
 |                            DAG.getConstant(4, MVT::i32)); | 
 |   } | 
 |   return std::make_pair(Result, Chain); | 
 | } | 
 |  | 
 | /// getCondBrOpcodeForX86CC - Returns the X86 conditional branch opcode | 
 | /// which corresponds to the condition code. | 
 | static unsigned getCondBrOpcodeForX86CC(unsigned X86CC) { | 
 |   switch (X86CC) { | 
 |   default: assert(0 && "Unknown X86 conditional code!"); | 
 |   case X86ISD::COND_A:  return X86::JA; | 
 |   case X86ISD::COND_AE: return X86::JAE; | 
 |   case X86ISD::COND_B:  return X86::JB; | 
 |   case X86ISD::COND_BE: return X86::JBE; | 
 |   case X86ISD::COND_E:  return X86::JE; | 
 |   case X86ISD::COND_G:  return X86::JG; | 
 |   case X86ISD::COND_GE: return X86::JGE; | 
 |   case X86ISD::COND_L:  return X86::JL; | 
 |   case X86ISD::COND_LE: return X86::JLE; | 
 |   case X86ISD::COND_NE: return X86::JNE; | 
 |   case X86ISD::COND_NO: return X86::JNO; | 
 |   case X86ISD::COND_NP: return X86::JNP; | 
 |   case X86ISD::COND_NS: return X86::JNS; | 
 |   case X86ISD::COND_O:  return X86::JO; | 
 |   case X86ISD::COND_P:  return X86::JP; | 
 |   case X86ISD::COND_S:  return X86::JS; | 
 |   } | 
 | } | 
 |  | 
 | /// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 | 
 | /// specific condition code. It returns a false if it cannot do a direct | 
 | /// translation. X86CC is the translated CondCode. Flip is set to true if the | 
 | /// the order of comparison operands should be flipped. | 
 | static bool translateX86CC(SDOperand CC, bool isFP, unsigned &X86CC, | 
 |                            bool &Flip) { | 
 |   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
 |   Flip = false; | 
 |   X86CC = X86ISD::COND_INVALID; | 
 |   if (!isFP) { | 
 |     switch (SetCCOpcode) { | 
 |     default: break; | 
 |     case ISD::SETEQ:  X86CC = X86ISD::COND_E;  break; | 
 |     case ISD::SETGT:  X86CC = X86ISD::COND_G;  break; | 
 |     case ISD::SETGE:  X86CC = X86ISD::COND_GE; break; | 
 |     case ISD::SETLT:  X86CC = X86ISD::COND_L;  break; | 
 |     case ISD::SETLE:  X86CC = X86ISD::COND_LE; break; | 
 |     case ISD::SETNE:  X86CC = X86ISD::COND_NE; break; | 
 |     case ISD::SETULT: X86CC = X86ISD::COND_B;  break; | 
 |     case ISD::SETUGT: X86CC = X86ISD::COND_A;  break; | 
 |     case ISD::SETULE: X86CC = X86ISD::COND_BE; break; | 
 |     case ISD::SETUGE: X86CC = X86ISD::COND_AE; break; | 
 |     } | 
 |   } else { | 
 |     // On a floating point condition, the flags are set as follows: | 
 |     // ZF  PF  CF   op | 
 |     //  0 | 0 | 0 | X > Y | 
 |     //  0 | 0 | 1 | X < Y | 
 |     //  1 | 0 | 0 | X == Y | 
 |     //  1 | 1 | 1 | unordered | 
 |     switch (SetCCOpcode) { | 
 |     default: break; | 
 |     case ISD::SETUEQ: | 
 |     case ISD::SETEQ: X86CC = X86ISD::COND_E;  break; | 
 |     case ISD::SETOLE: Flip = true; // Fallthrough | 
 |     case ISD::SETOGT: | 
 |     case ISD::SETGT: X86CC = X86ISD::COND_A;  break; | 
 |     case ISD::SETOLT: Flip = true; // Fallthrough | 
 |     case ISD::SETOGE: | 
 |     case ISD::SETGE: X86CC = X86ISD::COND_AE; break; | 
 |     case ISD::SETUGE: Flip = true; // Fallthrough | 
 |     case ISD::SETULT: | 
 |     case ISD::SETLT: X86CC = X86ISD::COND_B;  break; | 
 |     case ISD::SETUGT: Flip = true; // Fallthrough | 
 |     case ISD::SETULE: | 
 |     case ISD::SETLE: X86CC = X86ISD::COND_BE; break; | 
 |     case ISD::SETONE: | 
 |     case ISD::SETNE: X86CC = X86ISD::COND_NE; break; | 
 |     case ISD::SETUO: X86CC = X86ISD::COND_P;  break; | 
 |     case ISD::SETO:  X86CC = X86ISD::COND_NP; break; | 
 |     } | 
 |   } | 
 |  | 
 |   return X86CC != X86ISD::COND_INVALID; | 
 | } | 
 |  | 
 | /// hasFPCMov - is there a floating point cmov for the specific X86 condition | 
 | /// code. Current x86 isa includes the following FP cmov instructions: | 
 | /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. | 
 | static bool hasFPCMov(unsigned X86CC) { | 
 |   switch (X86CC) { | 
 |   default: | 
 |     return false; | 
 |   case X86ISD::COND_B: | 
 |   case X86ISD::COND_BE: | 
 |   case X86ISD::COND_E: | 
 |   case X86ISD::COND_P: | 
 |   case X86ISD::COND_A: | 
 |   case X86ISD::COND_AE: | 
 |   case X86ISD::COND_NE: | 
 |   case X86ISD::COND_NP: | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 | MachineBasicBlock * | 
 | X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, | 
 |                                            MachineBasicBlock *BB) { | 
 |   switch (MI->getOpcode()) { | 
 |   default: assert(false && "Unexpected instr type to insert"); | 
 |   case X86::CMOV_FR32: | 
 |   case X86::CMOV_FR64: { | 
 |     // To "insert" a SELECT_CC instruction, we actually have to insert the | 
 |     // diamond control-flow pattern.  The incoming instruction knows the | 
 |     // destination vreg to set, the condition code register to branch on, the | 
 |     // true/false values to select between, and a branch opcode to use. | 
 |     const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
 |     ilist<MachineBasicBlock>::iterator It = BB; | 
 |     ++It; | 
 |    | 
 |     //  thisMBB: | 
 |     //  ... | 
 |     //   TrueVal = ... | 
 |     //   cmpTY ccX, r1, r2 | 
 |     //   bCC copy1MBB | 
 |     //   fallthrough --> copy0MBB | 
 |     MachineBasicBlock *thisMBB = BB; | 
 |     MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); | 
 |     MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); | 
 |     unsigned Opc = getCondBrOpcodeForX86CC(MI->getOperand(3).getImmedValue()); | 
 |     BuildMI(BB, Opc, 1).addMBB(sinkMBB); | 
 |     MachineFunction *F = BB->getParent(); | 
 |     F->getBasicBlockList().insert(It, copy0MBB); | 
 |     F->getBasicBlockList().insert(It, sinkMBB); | 
 |     // Update machine-CFG edges | 
 |     BB->addSuccessor(copy0MBB); | 
 |     BB->addSuccessor(sinkMBB); | 
 |    | 
 |     //  copy0MBB: | 
 |     //   %FalseValue = ... | 
 |     //   # fallthrough to sinkMBB | 
 |     BB = copy0MBB; | 
 |    | 
 |     // Update machine-CFG edges | 
 |     BB->addSuccessor(sinkMBB); | 
 |    | 
 |     //  sinkMBB: | 
 |     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
 |     //  ... | 
 |     BB = sinkMBB; | 
 |     BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg()) | 
 |       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) | 
 |       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); | 
 |  | 
 |     delete MI;   // The pseudo instruction is gone now. | 
 |     return BB; | 
 |   } | 
 |  | 
 |   case X86::FP_TO_INT16_IN_MEM: | 
 |   case X86::FP_TO_INT32_IN_MEM: | 
 |   case X86::FP_TO_INT64_IN_MEM: { | 
 |     // Change the floating point control register to use "round towards zero" | 
 |     // mode when truncating to an integer value. | 
 |     MachineFunction *F = BB->getParent(); | 
 |     int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); | 
 |     addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); | 
 |  | 
 |     // Load the old value of the high byte of the control word... | 
 |     unsigned OldCW = | 
 |       F->getSSARegMap()->createVirtualRegister(X86::R16RegisterClass); | 
 |     addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx); | 
 |  | 
 |     // Set the high part to be round to zero... | 
 |     addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F); | 
 |  | 
 |     // Reload the modified control word now... | 
 |     addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); | 
 |  | 
 |     // Restore the memory image of control word to original value | 
 |     addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW); | 
 |  | 
 |     // Get the X86 opcode to use. | 
 |     unsigned Opc; | 
 |     switch (MI->getOpcode()) { | 
 |     default: assert(0 && "illegal opcode!"); | 
 |     case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break; | 
 |     case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break; | 
 |     case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break; | 
 |     } | 
 |  | 
 |     X86AddressMode AM; | 
 |     MachineOperand &Op = MI->getOperand(0); | 
 |     if (Op.isRegister()) { | 
 |       AM.BaseType = X86AddressMode::RegBase; | 
 |       AM.Base.Reg = Op.getReg(); | 
 |     } else { | 
 |       AM.BaseType = X86AddressMode::FrameIndexBase; | 
 |       AM.Base.FrameIndex = Op.getFrameIndex(); | 
 |     } | 
 |     Op = MI->getOperand(1); | 
 |     if (Op.isImmediate()) | 
 |       AM.Scale = Op.getImmedValue(); | 
 |     Op = MI->getOperand(2); | 
 |     if (Op.isImmediate()) | 
 |       AM.IndexReg = Op.getImmedValue(); | 
 |     Op = MI->getOperand(3); | 
 |     if (Op.isGlobalAddress()) { | 
 |       AM.GV = Op.getGlobal(); | 
 |     } else { | 
 |       AM.Disp = Op.getImmedValue(); | 
 |     } | 
 |     addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(MI->getOperand(4).getReg()); | 
 |  | 
 |     // Reload the original control word now. | 
 |     addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); | 
 |  | 
 |     delete MI;   // The pseudo instruction is gone now. | 
 |     return BB; | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                           X86 Custom Lowering Hooks | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// LowerOperation - Provide custom lowering hooks for some operations. | 
 | /// | 
 | SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { | 
 |   switch (Op.getOpcode()) { | 
 |   default: assert(0 && "Should not custom lower this!"); | 
 |   case ISD::SHL_PARTS: | 
 |   case ISD::SRA_PARTS: | 
 |   case ISD::SRL_PARTS: { | 
 |     assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && | 
 |            "Not an i64 shift!"); | 
 |     bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; | 
 |     SDOperand ShOpLo = Op.getOperand(0); | 
 |     SDOperand ShOpHi = Op.getOperand(1); | 
 |     SDOperand ShAmt  = Op.getOperand(2); | 
 |     SDOperand Tmp1 = isSRA ? DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, | 
 |                                          DAG.getConstant(31, MVT::i8)) | 
 |                            : DAG.getConstant(0, MVT::i32); | 
 |  | 
 |     SDOperand Tmp2, Tmp3; | 
 |     if (Op.getOpcode() == ISD::SHL_PARTS) { | 
 |       Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt); | 
 |       Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt); | 
 |     } else { | 
 |       Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt); | 
 |       Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt); | 
 |     } | 
 |  | 
 |     SDOperand InFlag = DAG.getNode(X86ISD::TEST, MVT::Flag, | 
 |                                    ShAmt, DAG.getConstant(32, MVT::i8)); | 
 |  | 
 |     SDOperand Hi, Lo; | 
 |     SDOperand CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); | 
 |  | 
 |     std::vector<MVT::ValueType> Tys; | 
 |     Tys.push_back(MVT::i32); | 
 |     Tys.push_back(MVT::Flag); | 
 |     std::vector<SDOperand> Ops; | 
 |     if (Op.getOpcode() == ISD::SHL_PARTS) { | 
 |       Ops.push_back(Tmp2); | 
 |       Ops.push_back(Tmp3); | 
 |       Ops.push_back(CC); | 
 |       Ops.push_back(InFlag); | 
 |       Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
 |       InFlag = Hi.getValue(1); | 
 |  | 
 |       Ops.clear(); | 
 |       Ops.push_back(Tmp3); | 
 |       Ops.push_back(Tmp1); | 
 |       Ops.push_back(CC); | 
 |       Ops.push_back(InFlag); | 
 |       Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
 |     } else { | 
 |       Ops.push_back(Tmp2); | 
 |       Ops.push_back(Tmp3); | 
 |       Ops.push_back(CC); | 
 |       Ops.push_back(InFlag); | 
 |       Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
 |       InFlag = Lo.getValue(1); | 
 |  | 
 |       Ops.clear(); | 
 |       Ops.push_back(Tmp3); | 
 |       Ops.push_back(Tmp1); | 
 |       Ops.push_back(CC); | 
 |       Ops.push_back(InFlag); | 
 |       Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
 |     } | 
 |  | 
 |     Tys.clear(); | 
 |     Tys.push_back(MVT::i32); | 
 |     Tys.push_back(MVT::i32); | 
 |     Ops.clear(); | 
 |     Ops.push_back(Lo); | 
 |     Ops.push_back(Hi); | 
 |     return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); | 
 |   } | 
 |   case ISD::SINT_TO_FP: { | 
 |     assert(Op.getOperand(0).getValueType() <= MVT::i64 && | 
 |            Op.getOperand(0).getValueType() >= MVT::i16 && | 
 |            "Unknown SINT_TO_FP to lower!"); | 
 |  | 
 |     SDOperand Result; | 
 |     MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); | 
 |     unsigned Size = MVT::getSizeInBits(SrcVT)/8; | 
 |     MachineFunction &MF = DAG.getMachineFunction(); | 
 |     int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); | 
 |     SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
 |     SDOperand Chain = DAG.getNode(ISD::STORE, MVT::Other, | 
 |                                   DAG.getEntryNode(), Op.getOperand(0), | 
 |                                   StackSlot, DAG.getSrcValue(NULL)); | 
 |  | 
 |     // Build the FILD | 
 |     std::vector<MVT::ValueType> Tys; | 
 |     Tys.push_back(MVT::f64); | 
 |     Tys.push_back(MVT::Other); | 
 |     if (X86ScalarSSE) Tys.push_back(MVT::Flag); | 
 |     std::vector<SDOperand> Ops; | 
 |     Ops.push_back(Chain); | 
 |     Ops.push_back(StackSlot); | 
 |     Ops.push_back(DAG.getValueType(SrcVT)); | 
 |     Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD, | 
 |                          Tys, Ops); | 
 |  | 
 |     if (X86ScalarSSE) { | 
 |       Chain = Result.getValue(1); | 
 |       SDOperand InFlag = Result.getValue(2); | 
 |  | 
 |       // FIXME: Currently the FST is flagged to the FILD_FLAG. This | 
 |       // shouldn't be necessary except that RFP cannot be live across | 
 |       // multiple blocks. When stackifier is fixed, they can be uncoupled. | 
 |       MachineFunction &MF = DAG.getMachineFunction(); | 
 |       int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); | 
 |       SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
 |       std::vector<MVT::ValueType> Tys; | 
 |       Tys.push_back(MVT::Other); | 
 |       std::vector<SDOperand> Ops; | 
 |       Ops.push_back(Chain); | 
 |       Ops.push_back(Result); | 
 |       Ops.push_back(StackSlot); | 
 |       Ops.push_back(DAG.getValueType(Op.getValueType())); | 
 |       Ops.push_back(InFlag); | 
 |       Chain = DAG.getNode(X86ISD::FST, Tys, Ops); | 
 |       Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, | 
 |                            DAG.getSrcValue(NULL)); | 
 |     } | 
 |  | 
 |     return Result; | 
 |   } | 
 |   case ISD::FP_TO_SINT: { | 
 |     assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && | 
 |            "Unknown FP_TO_SINT to lower!"); | 
 |     // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary | 
 |     // stack slot. | 
 |     MachineFunction &MF = DAG.getMachineFunction(); | 
 |     unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; | 
 |     int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); | 
 |     SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
 |  | 
 |     unsigned Opc; | 
 |     switch (Op.getValueType()) { | 
 |     default: assert(0 && "Invalid FP_TO_SINT to lower!"); | 
 |     case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; | 
 |     case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; | 
 |     case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; | 
 |     } | 
 |  | 
 |     SDOperand Chain = DAG.getEntryNode(); | 
 |     SDOperand Value = Op.getOperand(0); | 
 |     if (X86ScalarSSE) { | 
 |       assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); | 
 |       Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, StackSlot,  | 
 |                           DAG.getSrcValue(0)); | 
 |       std::vector<MVT::ValueType> Tys; | 
 |       Tys.push_back(MVT::f64); | 
 |       Tys.push_back(MVT::Other); | 
 |       std::vector<SDOperand> Ops; | 
 |       Ops.push_back(Chain); | 
 |       Ops.push_back(StackSlot); | 
 |       Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType())); | 
 |       Value = DAG.getNode(X86ISD::FLD, Tys, Ops); | 
 |       Chain = Value.getValue(1); | 
 |       SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); | 
 |       StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
 |     } | 
 |  | 
 |     // Build the FP_TO_INT*_IN_MEM | 
 |     std::vector<SDOperand> Ops; | 
 |     Ops.push_back(Chain); | 
 |     Ops.push_back(Value); | 
 |     Ops.push_back(StackSlot); | 
 |     SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops); | 
 |  | 
 |     // Load the result. | 
 |     return DAG.getLoad(Op.getValueType(), FIST, StackSlot, | 
 |                        DAG.getSrcValue(NULL)); | 
 |   } | 
 |   case ISD::READCYCLECOUNTER: { | 
 |     std::vector<MVT::ValueType> Tys; | 
 |     Tys.push_back(MVT::Other); | 
 |     Tys.push_back(MVT::Flag); | 
 |     std::vector<SDOperand> Ops; | 
 |     Ops.push_back(Op.getOperand(0)); | 
 |     SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, Ops); | 
 |     Ops.clear(); | 
 |     Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1))); | 
 |     Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX,  | 
 |                                      MVT::i32, Ops[0].getValue(2))); | 
 |     Ops.push_back(Ops[1].getValue(1)); | 
 |     Tys[0] = Tys[1] = MVT::i32; | 
 |     Tys.push_back(MVT::Other); | 
 |     return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); | 
 |   } | 
 |   case ISD::FABS: { | 
 |     MVT::ValueType VT = Op.getValueType(); | 
 |     const Type *OpNTy =  MVT::getTypeForValueType(VT); | 
 |     std::vector<Constant*> CV; | 
 |     if (VT == MVT::f64) { | 
 |       CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)))); | 
 |       CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
 |     } else { | 
 |       CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)))); | 
 |       CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
 |       CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
 |       CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
 |     } | 
 |     Constant *CS = ConstantStruct::get(CV); | 
 |     SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); | 
 |     SDOperand Mask  | 
 |       = DAG.getNode(X86ISD::LOAD_PACK, | 
 |                     VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); | 
 |     return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); | 
 |   } | 
 |   case ISD::FNEG: { | 
 |     MVT::ValueType VT = Op.getValueType(); | 
 |     const Type *OpNTy =  MVT::getTypeForValueType(VT); | 
 |     std::vector<Constant*> CV; | 
 |     if (VT == MVT::f64) { | 
 |       CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63))); | 
 |       CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
 |     } else { | 
 |       CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31))); | 
 |       CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
 |       CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
 |       CV.push_back(ConstantFP::get(OpNTy, 0.0)); | 
 |     } | 
 |     Constant *CS = ConstantStruct::get(CV); | 
 |     SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); | 
 |     SDOperand Mask  | 
 |       = DAG.getNode(X86ISD::LOAD_PACK, | 
 |                     VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); | 
 |     return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); | 
 |   } | 
 |   case ISD::SETCC: { | 
 |     assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); | 
 |     SDOperand Cond; | 
 |     SDOperand CC = Op.getOperand(2); | 
 |     ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
 |     bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType()); | 
 |     bool Flip; | 
 |     unsigned X86CC; | 
 |     if (translateX86CC(CC, isFP, X86CC, Flip)) { | 
 |       if (Flip) | 
 |         Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, | 
 |                            Op.getOperand(1), Op.getOperand(0)); | 
 |       else | 
 |         Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, | 
 |                            Op.getOperand(0), Op.getOperand(1)); | 
 |       return DAG.getNode(X86ISD::SETCC, MVT::i8,  | 
 |                          DAG.getConstant(X86CC, MVT::i8), Cond); | 
 |     } else { | 
 |       assert(isFP && "Illegal integer SetCC!"); | 
 |  | 
 |       Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, | 
 |                          Op.getOperand(0), Op.getOperand(1)); | 
 |       std::vector<MVT::ValueType> Tys; | 
 |       std::vector<SDOperand> Ops; | 
 |       switch (SetCCOpcode) { | 
 |       default: assert(false && "Illegal floating point SetCC!"); | 
 |       case ISD::SETOEQ: {  // !PF & ZF | 
 |         Tys.push_back(MVT::i8); | 
 |         Tys.push_back(MVT::Flag); | 
 |         Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8)); | 
 |         Ops.push_back(Cond); | 
 |         SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
 |         SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, | 
 |                                      DAG.getConstant(X86ISD::COND_E, MVT::i8), | 
 |                                      Tmp1.getValue(1)); | 
 |         return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); | 
 |       } | 
 |       case ISD::SETUNE: {  // PF | !ZF | 
 |         Tys.push_back(MVT::i8); | 
 |         Tys.push_back(MVT::Flag); | 
 |         Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8)); | 
 |         Ops.push_back(Cond); | 
 |         SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
 |         SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, | 
 |                                      DAG.getConstant(X86ISD::COND_NE, MVT::i8), | 
 |                                      Tmp1.getValue(1)); | 
 |         return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); | 
 |       } | 
 |       } | 
 |     } | 
 |   } | 
 |   case ISD::SELECT: { | 
 |     MVT::ValueType VT = Op.getValueType(); | 
 |     bool isFP      = MVT::isFloatingPoint(VT); | 
 |     bool isFPStack = isFP && !X86ScalarSSE; | 
 |     bool isFPSSE   = isFP && X86ScalarSSE; | 
 |     bool addTest   = false; | 
 |     SDOperand Op0 = Op.getOperand(0); | 
 |     SDOperand Cond, CC; | 
 |     if (Op0.getOpcode() == ISD::SETCC) | 
 |       Op0 = LowerOperation(Op0, DAG); | 
 |  | 
 |     if (Op0.getOpcode() == X86ISD::SETCC) { | 
 |       // If condition flag is set by a X86ISD::CMP, then make a copy of it | 
 |       // (since flag operand cannot be shared). If the X86ISD::SETCC does not | 
 |       // have another use it will be eliminated. | 
 |       // If the X86ISD::SETCC has more than one use, then it's probably better | 
 |       // to use a test instead of duplicating the X86ISD::CMP (for register | 
 |       // pressure reason). | 
 |       if (Op0.getOperand(1).getOpcode() == X86ISD::CMP) { | 
 |         if (!Op0.hasOneUse()) { | 
 |           std::vector<MVT::ValueType> Tys; | 
 |           for (unsigned i = 0; i < Op0.Val->getNumValues(); ++i) | 
 |             Tys.push_back(Op0.Val->getValueType(i)); | 
 |           std::vector<SDOperand> Ops; | 
 |           for (unsigned i = 0; i < Op0.getNumOperands(); ++i) | 
 |             Ops.push_back(Op0.getOperand(i)); | 
 |           Op0 = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
 |         } | 
 |  | 
 |         CC   = Op0.getOperand(0); | 
 |         Cond = Op0.getOperand(1); | 
 |         // Make a copy as flag result cannot be used by more than one. | 
 |         Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, | 
 |                            Cond.getOperand(0), Cond.getOperand(1)); | 
 |         addTest = | 
 |           isFPStack && !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended()); | 
 |       } else | 
 |         addTest = true; | 
 |     } else | 
 |       addTest = true; | 
 |  | 
 |     if (addTest) { | 
 |       CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); | 
 |       Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Op0, Op0); | 
 |     } | 
 |  | 
 |     std::vector<MVT::ValueType> Tys; | 
 |     Tys.push_back(Op.getValueType()); | 
 |     Tys.push_back(MVT::Flag); | 
 |     std::vector<SDOperand> Ops; | 
 |     // X86ISD::CMOV means set the result (which is operand 1) to the RHS if | 
 |     // condition is true. | 
 |     Ops.push_back(Op.getOperand(2)); | 
 |     Ops.push_back(Op.getOperand(1)); | 
 |     Ops.push_back(CC); | 
 |     Ops.push_back(Cond); | 
 |     return DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
 |   } | 
 |   case ISD::BRCOND: { | 
 |     bool addTest = false; | 
 |     SDOperand Cond  = Op.getOperand(1); | 
 |     SDOperand Dest  = Op.getOperand(2); | 
 |     SDOperand CC; | 
 |     if (Cond.getOpcode() == ISD::SETCC) | 
 |       Cond = LowerOperation(Cond, DAG); | 
 |  | 
 |     if (Cond.getOpcode() == X86ISD::SETCC) { | 
 |       // If condition flag is set by a X86ISD::CMP, then make a copy of it | 
 |       // (since flag operand cannot be shared). If the X86ISD::SETCC does not | 
 |       // have another use it will be eliminated. | 
 |       // If the X86ISD::SETCC has more than one use, then it's probably better | 
 |       // to use a test instead of duplicating the X86ISD::CMP (for register | 
 |       // pressure reason). | 
 |       if (Cond.getOperand(1).getOpcode() == X86ISD::CMP) { | 
 |         if (!Cond.hasOneUse()) { | 
 |           std::vector<MVT::ValueType> Tys; | 
 |           for (unsigned i = 0; i < Cond.Val->getNumValues(); ++i) | 
 |             Tys.push_back(Cond.Val->getValueType(i)); | 
 |           std::vector<SDOperand> Ops; | 
 |           for (unsigned i = 0; i < Cond.getNumOperands(); ++i) | 
 |             Ops.push_back(Cond.getOperand(i)); | 
 |           Cond = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
 |         } | 
 |  | 
 |         CC   = Cond.getOperand(0); | 
 |         Cond = Cond.getOperand(1); | 
 |         // Make a copy as flag result cannot be used by more than one. | 
 |         Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, | 
 |                            Cond.getOperand(0), Cond.getOperand(1)); | 
 |       } else | 
 |         addTest = true; | 
 |     } else | 
 |       addTest = true; | 
 |  | 
 |     if (addTest) { | 
 |       CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); | 
 |       Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Cond, Cond); | 
 |     } | 
 |     return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), | 
 |                        Op.getOperand(0), Op.getOperand(2), CC, Cond); | 
 |   } | 
 |   case ISD::MEMSET: { | 
 |     SDOperand InFlag; | 
 |     SDOperand Chain = Op.getOperand(0); | 
 |     unsigned Align = | 
 |       (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); | 
 |     if (Align == 0) Align = 1; | 
 |  | 
 |     ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); | 
 |     // If not DWORD aligned, call memset if size is less than the threshold. | 
 |     // It knows how to align to the right boundary first. | 
 |     if ((Align & 3) != 0 && | 
 |         !(I && I->getValue() >= Subtarget->getMinRepStrSizeThreshold())) { | 
 |       MVT::ValueType IntPtr = getPointerTy(); | 
 |       const Type *IntPtrTy = getTargetData().getIntPtrType(); | 
 |       std::vector<std::pair<SDOperand, const Type*> > Args; | 
 |       Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); | 
 |       // Extend the ubyte argument to be an int value for the call. | 
 |       SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2)); | 
 |       Args.push_back(std::make_pair(Val, IntPtrTy)); | 
 |       Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); | 
 |       std::pair<SDOperand,SDOperand> CallResult = | 
 |         LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, | 
 |                     DAG.getExternalSymbol("memset", IntPtr), Args, DAG); | 
 |       return CallResult.second; | 
 |     } | 
 |  | 
 |     MVT::ValueType AVT; | 
 |     SDOperand Count; | 
 |     if (ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2))) { | 
 |       unsigned ValReg; | 
 |       unsigned Val = ValC->getValue() & 255; | 
 |  | 
 |       // If the value is a constant, then we can potentially use larger sets. | 
 |       switch (Align & 3) { | 
 |       case 2:   // WORD aligned | 
 |         AVT = MVT::i16; | 
 |         if (I) | 
 |           Count = DAG.getConstant(I->getValue() / 2, MVT::i32); | 
 |         else | 
 |           Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), | 
 |                               DAG.getConstant(1, MVT::i8)); | 
 |         Val    = (Val << 8) | Val; | 
 |         ValReg = X86::AX; | 
 |         break; | 
 |       case 0:   // DWORD aligned | 
 |         AVT = MVT::i32; | 
 |         if (I) | 
 |           Count = DAG.getConstant(I->getValue() / 4, MVT::i32); | 
 |         else | 
 |           Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), | 
 |                               DAG.getConstant(2, MVT::i8)); | 
 |         Val = (Val << 8)  | Val; | 
 |         Val = (Val << 16) | Val; | 
 |         ValReg = X86::EAX; | 
 |         break; | 
 |       default:  // Byte aligned | 
 |         AVT = MVT::i8; | 
 |         Count = Op.getOperand(3); | 
 |         ValReg = X86::AL; | 
 |         break; | 
 |       } | 
 |  | 
 |       Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), | 
 |                                 InFlag); | 
 |       InFlag = Chain.getValue(1); | 
 |     } else { | 
 |       AVT = MVT::i8; | 
 |       Count  = Op.getOperand(3); | 
 |       Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag); | 
 |       InFlag = Chain.getValue(1); | 
 |     } | 
 |  | 
 |     Chain  = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); | 
 |     InFlag = Chain.getValue(1); | 
 |     Chain  = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); | 
 |     InFlag = Chain.getValue(1); | 
 |  | 
 |     return DAG.getNode(X86ISD::REP_STOS, MVT::Other, Chain, | 
 |                        DAG.getValueType(AVT), InFlag); | 
 |   } | 
 |   case ISD::MEMCPY: { | 
 |     SDOperand Chain = Op.getOperand(0); | 
 |     unsigned Align = | 
 |       (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); | 
 |     if (Align == 0) Align = 1; | 
 |  | 
 |     ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); | 
 |     // If not DWORD aligned, call memcpy if size is less than the threshold. | 
 |     // It knows how to align to the right boundary first. | 
 |     if ((Align & 3) != 0 && | 
 |         !(I && I->getValue() >= Subtarget->getMinRepStrSizeThreshold())) { | 
 |       MVT::ValueType IntPtr = getPointerTy(); | 
 |       const Type *IntPtrTy = getTargetData().getIntPtrType(); | 
 |       std::vector<std::pair<SDOperand, const Type*> > Args; | 
 |       Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); | 
 |       Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy)); | 
 |       Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); | 
 |       std::pair<SDOperand,SDOperand> CallResult = | 
 |         LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, | 
 |                     DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG); | 
 |       return CallResult.second; | 
 |     } | 
 |  | 
 |     MVT::ValueType AVT; | 
 |     SDOperand Count; | 
 |     switch (Align & 3) { | 
 |     case 2:   // WORD aligned | 
 |       AVT = MVT::i16; | 
 |       if (I) | 
 |         Count = DAG.getConstant(I->getValue() / 2, MVT::i32); | 
 |       else | 
 |         Count = DAG.getConstant(I->getValue() / 2, MVT::i32); | 
 |       break; | 
 |     case 0:   // DWORD aligned | 
 |       AVT = MVT::i32; | 
 |       if (I) | 
 |         Count = DAG.getConstant(I->getValue() / 4, MVT::i32); | 
 |       else | 
 |         Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), | 
 |                             DAG.getConstant(2, MVT::i8)); | 
 |       break; | 
 |     default:  // Byte aligned | 
 |       AVT = MVT::i8; | 
 |       Count = Op.getOperand(3); | 
 |       break; | 
 |     } | 
 |  | 
 |     SDOperand InFlag; | 
 |     Chain  = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); | 
 |     InFlag = Chain.getValue(1); | 
 |     Chain  = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); | 
 |     InFlag = Chain.getValue(1); | 
 |     Chain  = DAG.getCopyToReg(Chain, X86::ESI, Op.getOperand(2), InFlag); | 
 |     InFlag = Chain.getValue(1); | 
 |  | 
 |     return DAG.getNode(X86ISD::REP_MOVS, MVT::Other, Chain, | 
 |                        DAG.getValueType(AVT), InFlag); | 
 |   } | 
 |  | 
 |   // ConstantPool, GlobalAddress, and ExternalSymbol are lowered as their | 
 |   // target countpart wrapped in the X86ISD::Wrapper node. Suppose N is | 
 |   // one of the above mentioned nodes. It has to be wrapped because otherwise | 
 |   // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only | 
 |   // be used to form addressing mode. These wrapped nodes will be selected | 
 |   // into MOV32ri. | 
 |   case ISD::ConstantPool: { | 
 |     ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | 
 |     SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), | 
 |                          DAG.getTargetConstantPool(CP->get(), getPointerTy(), | 
 |                                                    CP->getAlignment())); | 
 |     if (getTargetMachine().getSubtarget<X86Subtarget>().isTargetDarwin()) { | 
 |       // With PIC, the address is actually $g + Offset. | 
 |       if (getTargetMachine().getRelocationModel() == Reloc::PIC) | 
 |         Result = DAG.getNode(ISD::ADD, getPointerTy(), | 
 |                 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);     | 
 |     } | 
 |  | 
 |     return Result; | 
 |   } | 
 |   case ISD::GlobalAddress: { | 
 |     GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | 
 |     SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), | 
 |                          DAG.getTargetGlobalAddress(GV, getPointerTy())); | 
 |     if (getTargetMachine(). | 
 |         getSubtarget<X86Subtarget>().isTargetDarwin()) { | 
 |       // With PIC, the address is actually $g + Offset. | 
 |       if (getTargetMachine().getRelocationModel() == Reloc::PIC) | 
 |         Result = DAG.getNode(ISD::ADD, getPointerTy(), | 
 |                     DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); | 
 |  | 
 |       // For Darwin, external and weak symbols are indirect, so we want to load | 
 |       // the value at address GV, not the value of GV itself.  This means that | 
 |       // the GlobalAddress must be in the base or index register of the address, | 
 |       // not the GV offset field. | 
 |       if (getTargetMachine().getRelocationModel() != Reloc::Static && | 
 |           (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || | 
 |            (GV->isExternal() && !GV->hasNotBeenReadFromBytecode()))) | 
 |         Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), | 
 |                              Result, DAG.getSrcValue(NULL)); | 
 |     } | 
 |  | 
 |     return Result; | 
 |   } | 
 |   case ISD::ExternalSymbol: { | 
 |     const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); | 
 |     SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), | 
 |                          DAG.getTargetExternalSymbol(Sym, getPointerTy())); | 
 |     if (getTargetMachine(). | 
 |         getSubtarget<X86Subtarget>().isTargetDarwin()) { | 
 |       // With PIC, the address is actually $g + Offset. | 
 |       if (getTargetMachine().getRelocationModel() == Reloc::PIC) | 
 |         Result = DAG.getNode(ISD::ADD, getPointerTy(), | 
 |                     DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); | 
 |     } | 
 |  | 
 |     return Result; | 
 |   } | 
 |   case ISD::VASTART: { | 
 |     // vastart just stores the address of the VarArgsFrameIndex slot into the | 
 |     // memory location argument. | 
 |     // FIXME: Replace MVT::i32 with PointerTy | 
 |     SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); | 
 |     return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,  | 
 |                        Op.getOperand(1), Op.getOperand(2)); | 
 |   } | 
 |   case ISD::RET: { | 
 |     SDOperand Copy; | 
 |      | 
 |     switch(Op.getNumOperands()) { | 
 |     default: | 
 |       assert(0 && "Do not know how to return this many arguments!"); | 
 |       abort(); | 
 |     case 1:  | 
 |       return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0), | 
 |                          DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); | 
 |     case 2: { | 
 |       MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); | 
 |       if (MVT::isInteger(ArgVT)) | 
 |         Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EAX, Op.getOperand(1), | 
 |                                 SDOperand()); | 
 |       else if (!X86ScalarSSE) { | 
 |         std::vector<MVT::ValueType> Tys; | 
 |         Tys.push_back(MVT::Other); | 
 |         Tys.push_back(MVT::Flag); | 
 |         std::vector<SDOperand> Ops; | 
 |         Ops.push_back(Op.getOperand(0)); | 
 |         Ops.push_back(Op.getOperand(1)); | 
 |         Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); | 
 |       } else { | 
 |         SDOperand MemLoc; | 
 |         SDOperand Chain = Op.getOperand(0); | 
 |         SDOperand Value = Op.getOperand(1); | 
 |  | 
 |         if (Value.getOpcode() == ISD::LOAD && | 
 |             (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) { | 
 |           Chain  = Value.getOperand(0); | 
 |           MemLoc = Value.getOperand(1); | 
 |         } else { | 
 |           // Spill the value to memory and reload it into top of stack. | 
 |           unsigned Size = MVT::getSizeInBits(ArgVT)/8; | 
 |           MachineFunction &MF = DAG.getMachineFunction(); | 
 |           int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); | 
 |           MemLoc = DAG.getFrameIndex(SSFI, getPointerTy()); | 
 |           Chain = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0),  | 
 |                               Value, MemLoc, DAG.getSrcValue(0)); | 
 |         } | 
 |         std::vector<MVT::ValueType> Tys; | 
 |         Tys.push_back(MVT::f64); | 
 |         Tys.push_back(MVT::Other); | 
 |         std::vector<SDOperand> Ops; | 
 |         Ops.push_back(Chain); | 
 |         Ops.push_back(MemLoc); | 
 |         Ops.push_back(DAG.getValueType(ArgVT)); | 
 |         Copy = DAG.getNode(X86ISD::FLD, Tys, Ops); | 
 |         Tys.clear(); | 
 |         Tys.push_back(MVT::Other); | 
 |         Tys.push_back(MVT::Flag); | 
 |         Ops.clear(); | 
 |         Ops.push_back(Copy.getValue(1)); | 
 |         Ops.push_back(Copy); | 
 |         Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case 3: | 
 |       Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EDX, Op.getOperand(2),  | 
 |                               SDOperand()); | 
 |       Copy = DAG.getCopyToReg(Copy, X86::EAX,Op.getOperand(1),Copy.getValue(1)); | 
 |       break; | 
 |     } | 
 |     return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, | 
 |                        Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16), | 
 |                        Copy.getValue(1)); | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
 |   switch (Opcode) { | 
 |   default: return NULL; | 
 |   case X86ISD::SHLD:               return "X86ISD::SHLD"; | 
 |   case X86ISD::SHRD:               return "X86ISD::SHRD"; | 
 |   case X86ISD::FAND:               return "X86ISD::FAND"; | 
 |   case X86ISD::FXOR:               return "X86ISD::FXOR"; | 
 |   case X86ISD::FILD:               return "X86ISD::FILD"; | 
 |   case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG"; | 
 |   case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; | 
 |   case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; | 
 |   case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; | 
 |   case X86ISD::FLD:                return "X86ISD::FLD"; | 
 |   case X86ISD::FST:                return "X86ISD::FST"; | 
 |   case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT"; | 
 |   case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT"; | 
 |   case X86ISD::CALL:               return "X86ISD::CALL"; | 
 |   case X86ISD::TAILCALL:           return "X86ISD::TAILCALL"; | 
 |   case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG"; | 
 |   case X86ISD::CMP:                return "X86ISD::CMP"; | 
 |   case X86ISD::TEST:               return "X86ISD::TEST"; | 
 |   case X86ISD::SETCC:              return "X86ISD::SETCC"; | 
 |   case X86ISD::CMOV:               return "X86ISD::CMOV"; | 
 |   case X86ISD::BRCOND:             return "X86ISD::BRCOND"; | 
 |   case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG"; | 
 |   case X86ISD::REP_STOS:           return "X86ISD::RET_STOS"; | 
 |   case X86ISD::REP_MOVS:           return "X86ISD::RET_MOVS"; | 
 |   case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK"; | 
 |   case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg"; | 
 |   case X86ISD::Wrapper:            return "X86ISD::Wrapper"; | 
 |   } | 
 | } | 
 |  | 
 | void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, | 
 |                                                        uint64_t Mask, | 
 |                                                        uint64_t &KnownZero,  | 
 |                                                        uint64_t &KnownOne, | 
 |                                                        unsigned Depth) const { | 
 |  | 
 |   unsigned Opc = Op.getOpcode(); | 
 |   KnownZero = KnownOne = 0;   // Don't know anything. | 
 |  | 
 |   switch (Opc) { | 
 |   default: | 
 |     assert(Opc >= ISD::BUILTIN_OP_END && "Expected a target specific node"); | 
 |     break; | 
 |   case X86ISD::SETCC:  | 
 |     KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | std::vector<unsigned> X86TargetLowering:: | 
 | getRegClassForInlineAsmConstraint(const std::string &Constraint, | 
 |                                   MVT::ValueType VT) const { | 
 |   if (Constraint.size() == 1) { | 
 |     // FIXME: not handling fp-stack yet! | 
 |     // FIXME: not handling MMX registers yet ('y' constraint). | 
 |     switch (Constraint[0]) {      // GCC X86 Constraint Letters | 
 |     default: break;  // Unknown constriant letter | 
 |     case 'r':   // GENERAL_REGS | 
 |     case 'R':   // LEGACY_REGS | 
 |       return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX, | 
 |                                    X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0); | 
 |     case 'l':   // INDEX_REGS | 
 |       return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX, | 
 |                                    X86::ESI, X86::EDI, X86::EBP, 0); | 
 |     case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode) | 
 |     case 'Q':   // Q_REGS | 
 |       return make_vector<unsigned>(X86::EAX, X86::EBX, X86::ECX, X86::EDX, 0); | 
 |     case 'x':   // SSE_REGS if SSE1 allowed | 
 |       if (Subtarget->hasSSE1()) | 
 |         return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
 |                                      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, | 
 |                                      0); | 
 |       return std::vector<unsigned>(); | 
 |     case 'Y':   // SSE_REGS if SSE2 allowed | 
 |       if (Subtarget->hasSSE2()) | 
 |         return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, | 
 |                                      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, | 
 |                                      0); | 
 |       return std::vector<unsigned>(); | 
 |     } | 
 |   } | 
 |    | 
 |   return std::vector<unsigned>(); | 
 | } |