| //===- MethodInlining.cpp - Code to perform method inlining ---------------===// |
| // |
| // This file implements inlining of methods. |
| // |
| // Specifically, this: |
| // * Exports functionality to inline any method call |
| // * Inlines methods that consist of a single basic block |
| // * Is able to inline ANY method call |
| // . Has a smart heuristic for when to inline a method |
| // |
| // Notice that: |
| // * This pass opens up a lot of opportunities for constant propogation. It |
| // is a good idea to to run a constant propogation pass, then a DCE pass |
| // sometime after running this pass. |
| // |
| // TODO: Currently this throws away all of the symbol names in the method being |
| // inlined. This shouldn't happen. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/MethodInlining.h" |
| #include "llvm/Module.h" |
| #include "llvm/Method.h" |
| #include "llvm/Pass.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/iOther.h" |
| #include <algorithm> |
| #include <map> |
| #include <iostream> |
| using std::cerr; |
| |
| #include "llvm/Assembly/Writer.h" |
| |
| // RemapInstruction - Convert the instruction operands from referencing the |
| // current values into those specified by ValueMap. |
| // |
| static inline void RemapInstruction(Instruction *I, |
| std::map<const Value *, Value*> &ValueMap) { |
| |
| for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { |
| const Value *Op = I->getOperand(op); |
| Value *V = ValueMap[Op]; |
| if (!V && (isa<GlobalValue>(Op) || isa<Constant>(Op))) |
| continue; // Globals and constants don't get relocated |
| |
| if (!V) { |
| cerr << "Val = \n" << Op << "Addr = " << (void*)Op; |
| cerr << "\nInst = " << I; |
| } |
| assert(V && "Referenced value not in value map!"); |
| I->setOperand(op, V); |
| } |
| } |
| |
| // InlineMethod - This function forcibly inlines the called method into the |
| // basic block of the caller. This returns false if it is not possible to |
| // inline this call. The program is still in a well defined state if this |
| // occurs though. |
| // |
| // Note that this only does one level of inlining. For example, if the |
| // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now |
| // exists in the instruction stream. Similiarly this will inline a recursive |
| // method by one level. |
| // |
| bool InlineMethod(BasicBlock::iterator CIIt) { |
| assert(isa<CallInst>(*CIIt) && "InlineMethod only works on CallInst nodes!"); |
| assert((*CIIt)->getParent() && "Instruction not embedded in basic block!"); |
| assert((*CIIt)->getParent()->getParent() && "Instruction not in method!"); |
| |
| CallInst *CI = cast<CallInst>(*CIIt); |
| const Method *CalledMeth = CI->getCalledMethod(); |
| if (CalledMeth == 0 || // Can't inline external method or indirect call! |
| CalledMeth->isExternal()) return false; |
| |
| //cerr << "Inlining " << CalledMeth->getName() << " into " |
| // << CurrentMeth->getName() << "\n"; |
| |
| BasicBlock *OrigBB = CI->getParent(); |
| |
| // Call splitBasicBlock - The original basic block now ends at the instruction |
| // immediately before the call. The original basic block now ends with an |
| // unconditional branch to NewBB, and NewBB starts with the call instruction. |
| // |
| BasicBlock *NewBB = OrigBB->splitBasicBlock(CIIt); |
| NewBB->setName("InlinedFunctionReturnNode"); |
| |
| // Remove (unlink) the CallInst from the start of the new basic block. |
| NewBB->getInstList().remove(CI); |
| |
| // If we have a return value generated by this call, convert it into a PHI |
| // node that gets values from each of the old RET instructions in the original |
| // method. |
| // |
| PHINode *PHI = 0; |
| if (CalledMeth->getReturnType() != Type::VoidTy) { |
| PHI = new PHINode(CalledMeth->getReturnType(), CI->getName()); |
| |
| // The PHI node should go at the front of the new basic block to merge all |
| // possible incoming values. |
| // |
| NewBB->getInstList().push_front(PHI); |
| |
| // Anything that used the result of the function call should now use the PHI |
| // node as their operand. |
| // |
| CI->replaceAllUsesWith(PHI); |
| } |
| |
| // Keep a mapping between the original method's values and the new duplicated |
| // code's values. This includes all of: Method arguments, instruction values, |
| // constant pool entries, and basic blocks. |
| // |
| std::map<const Value *, Value*> ValueMap; |
| |
| // Add the method arguments to the mapping: (start counting at 1 to skip the |
| // method reference itself) |
| // |
| Method::ArgumentListType::const_iterator PTI = |
| CalledMeth->getArgumentList().begin(); |
| for (unsigned a = 1, E = CI->getNumOperands(); a != E; ++a, ++PTI) |
| ValueMap[*PTI] = CI->getOperand(a); |
| |
| ValueMap[NewBB] = NewBB; // Returns get converted to reference NewBB |
| |
| // Loop over all of the basic blocks in the method, inlining them as |
| // appropriate. Keep track of the first basic block of the method... |
| // |
| for (Method::const_iterator BI = CalledMeth->begin(); |
| BI != CalledMeth->end(); ++BI) { |
| const BasicBlock *BB = *BI; |
| assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?"); |
| |
| // Create a new basic block to copy instructions into! |
| BasicBlock *IBB = new BasicBlock("", NewBB->getParent()); |
| if (BB->hasName()) IBB->setName(BB->getName()+".i"); // .i = inlined once |
| |
| ValueMap[BB] = IBB; // Add basic block mapping. |
| |
| // Make sure to capture the mapping that a return will use... |
| // TODO: This assumes that the RET is returning a value computed in the same |
| // basic block as the return was issued from! |
| // |
| const TerminatorInst *TI = BB->getTerminator(); |
| |
| // Loop over all instructions copying them over... |
| Instruction *NewInst; |
| for (BasicBlock::const_iterator II = BB->begin(); |
| II != (BB->end()-1); ++II) { |
| IBB->getInstList().push_back((NewInst = (*II)->clone())); |
| ValueMap[*II] = NewInst; // Add instruction map to value. |
| if ((*II)->hasName()) |
| NewInst->setName((*II)->getName()+".i"); // .i = inlined once |
| } |
| |
| // Copy over the terminator now... |
| switch (TI->getOpcode()) { |
| case Instruction::Ret: { |
| const ReturnInst *RI = cast<const ReturnInst>(TI); |
| |
| if (PHI) { // The PHI node should include this value! |
| assert(RI->getReturnValue() && "Ret should have value!"); |
| assert(RI->getReturnValue()->getType() == PHI->getType() && |
| "Ret value not consistent in method!"); |
| PHI->addIncoming((Value*)RI->getReturnValue(), cast<BasicBlock>(BB)); |
| } |
| |
| // Add a branch to the code that was after the original Call. |
| IBB->getInstList().push_back(new BranchInst(NewBB)); |
| break; |
| } |
| case Instruction::Br: |
| IBB->getInstList().push_back(TI->clone()); |
| break; |
| |
| default: |
| cerr << "MethodInlining: Don't know how to handle terminator: " << TI; |
| abort(); |
| } |
| } |
| |
| |
| // Loop over all of the instructions in the method, fixing up operand |
| // references as we go. This uses ValueMap to do all the hard work. |
| // |
| for (Method::const_iterator BI = CalledMeth->begin(); |
| BI != CalledMeth->end(); ++BI) { |
| const BasicBlock *BB = *BI; |
| BasicBlock *NBB = (BasicBlock*)ValueMap[BB]; |
| |
| // Loop over all instructions, fixing each one as we find it... |
| // |
| for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); II++) |
| RemapInstruction(*II, ValueMap); |
| } |
| |
| if (PHI) RemapInstruction(PHI, ValueMap); // Fix the PHI node also... |
| |
| // Change the branch that used to go to NewBB to branch to the first basic |
| // block of the inlined method. |
| // |
| TerminatorInst *Br = OrigBB->getTerminator(); |
| assert(Br && Br->getOpcode() == Instruction::Br && |
| "splitBasicBlock broken!"); |
| Br->setOperand(0, ValueMap[CalledMeth->front()]); |
| |
| // Since we are now done with the CallInst, we can finally delete it. |
| delete CI; |
| return true; |
| } |
| |
| bool InlineMethod(CallInst *CI) { |
| assert(CI->getParent() && "CallInst not embeded in BasicBlock!"); |
| BasicBlock *PBB = CI->getParent(); |
| |
| BasicBlock::iterator CallIt = find(PBB->begin(), PBB->end(), CI); |
| |
| assert(CallIt != PBB->end() && |
| "CallInst has parent that doesn't contain CallInst?!?"); |
| return InlineMethod(CallIt); |
| } |
| |
| static inline bool ShouldInlineMethod(const CallInst *CI, const Method *M) { |
| assert(CI->getParent() && CI->getParent()->getParent() && |
| "Call not embedded into a method!"); |
| |
| // Don't inline a recursive call. |
| if (CI->getParent()->getParent() == M) return false; |
| |
| // Don't inline something too big. This is a really crappy heuristic |
| if (M->size() > 3) return false; |
| |
| // Don't inline into something too big. This is a **really** crappy heuristic |
| if (CI->getParent()->getParent()->size() > 10) return false; |
| |
| // Go ahead and try just about anything else. |
| return true; |
| } |
| |
| |
| static inline bool DoMethodInlining(BasicBlock *BB) { |
| for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { |
| if (CallInst *CI = dyn_cast<CallInst>(*I)) { |
| // Check to see if we should inline this method |
| Method *M = CI->getCalledMethod(); |
| if (M && ShouldInlineMethod(CI, M)) |
| return InlineMethod(I); |
| } |
| } |
| return false; |
| } |
| |
| // doMethodInlining - Use a heuristic based approach to inline methods that |
| // seem to look good. |
| // |
| static bool doMethodInlining(Method *M) { |
| bool Changed = false; |
| |
| // Loop through now and inline instructions a basic block at a time... |
| for (Method::iterator I = M->begin(); I != M->end(); ) |
| if (DoMethodInlining(*I)) { |
| Changed = true; |
| // Iterator is now invalidated by new basic blocks inserted |
| I = M->begin(); |
| } else { |
| ++I; |
| } |
| |
| return Changed; |
| } |
| |
| namespace { |
| struct MethodInlining : public MethodPass { |
| virtual bool runOnMethod(Method *M) { |
| return doMethodInlining(M); |
| } |
| }; |
| } |
| |
| Pass *createMethodInliningPass() { return new MethodInlining(); } |