| //===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===// |
| // |
| // This file implements sparse conditional constant propogation and merging: |
| // |
| // Specifically, this: |
| // * Assumes values are constant unless proven otherwise |
| // * Assumes BasicBlocks are dead unless proven otherwise |
| // * Proves values to be constant, and replaces them with constants |
| // . Proves conditional branches constant, and unconditionalizes them |
| // * Folds multiple identical constants in the constant pool together |
| // |
| // Notice that: |
| // * This pass has a habit of making definitions be dead. It is a good idea |
| // to to run a DCE pass sometime after running this pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/ConstantProp.h" |
| #include "llvm/Transforms/Scalar/ConstantHandling.h" |
| #include "llvm/Method.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/ConstantVals.h" |
| #include "llvm/InstrTypes.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iOther.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "Support/STLExtras.h" |
| #include <algorithm> |
| #include <map> |
| #include <set> |
| #include <iostream> |
| using std::cerr; |
| |
| // InstVal class - This class represents the different lattice values that an |
| // instruction may occupy. It is a simple class with value semantics. The |
| // potential constant value that is pointed to is owned by the constant pool |
| // for the method being optimized. |
| // |
| class InstVal { |
| enum { |
| undefined, // This instruction has no known value |
| constant, // This instruction has a constant value |
| // Range, // This instruction is known to fall within a range |
| overdefined // This instruction has an unknown value |
| } LatticeValue; // The current lattice position |
| Constant *ConstantVal; // If Constant value, the current value |
| public: |
| inline InstVal() : LatticeValue(undefined), ConstantVal(0) {} |
| |
| // markOverdefined - Return true if this is a new status to be in... |
| inline bool markOverdefined() { |
| if (LatticeValue != overdefined) { |
| LatticeValue = overdefined; |
| return true; |
| } |
| return false; |
| } |
| |
| // markConstant - Return true if this is a new status for us... |
| inline bool markConstant(Constant *V) { |
| if (LatticeValue != constant) { |
| LatticeValue = constant; |
| ConstantVal = V; |
| return true; |
| } else { |
| assert(ConstantVal == V && "Marking constant with different value"); |
| } |
| return false; |
| } |
| |
| inline bool isUndefined() const { return LatticeValue == undefined; } |
| inline bool isConstant() const { return LatticeValue == constant; } |
| inline bool isOverdefined() const { return LatticeValue == overdefined; } |
| |
| inline Constant *getConstant() const { return ConstantVal; } |
| }; |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SCCP Class |
| // |
| // This class does all of the work of Sparse Conditional Constant Propogation. |
| // It's public interface consists of a constructor and a doSCCP() method. |
| // |
| class SCCP { |
| Method *M; // The method that we are working on... |
| |
| std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable |
| std::map<Value*, InstVal> ValueState; // The state each value is in... |
| |
| std::vector<Instruction*> InstWorkList;// The instruction work list |
| std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list |
| |
| //===--------------------------------------------------------------------===// |
| // The public interface for this class |
| // |
| public: |
| |
| // SCCP Ctor - Save the method to operate on... |
| inline SCCP(Method *m) : M(m) {} |
| |
| // doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and |
| // return true if the method was modified. |
| bool doSCCP(); |
| |
| //===--------------------------------------------------------------------===// |
| // The implementation of this class |
| // |
| private: |
| |
| // markValueOverdefined - Make a value be marked as "constant". If the value |
| // is not already a constant, add it to the instruction work list so that |
| // the users of the instruction are updated later. |
| // |
| inline bool markConstant(Instruction *I, Constant *V) { |
| //cerr << "markConstant: " << V << " = " << I; |
| if (ValueState[I].markConstant(V)) { |
| InstWorkList.push_back(I); |
| return true; |
| } |
| return false; |
| } |
| |
| // markValueOverdefined - Make a value be marked as "overdefined". If the |
| // value is not already overdefined, add it to the instruction work list so |
| // that the users of the instruction are updated later. |
| // |
| inline bool markOverdefined(Value *V) { |
| if (ValueState[V].markOverdefined()) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| //cerr << "markOverdefined: " << V; |
| InstWorkList.push_back(I); // Only instructions go on the work list |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| // getValueState - Return the InstVal object that corresponds to the value. |
| // This function is neccesary because not all values should start out in the |
| // underdefined state... MethodArgument's should be overdefined, and constants |
| // should be marked as constants. If a value is not known to be an |
| // Instruction object, then use this accessor to get its value from the map. |
| // |
| inline InstVal &getValueState(Value *V) { |
| std::map<Value*, InstVal>::iterator I = ValueState.find(V); |
| if (I != ValueState.end()) return I->second; // Common case, in the map |
| |
| if (Constant *CPV = dyn_cast<Constant>(V)) { // Constants are constant |
| ValueState[CPV].markConstant(CPV); |
| } else if (isa<MethodArgument>(V)) { // MethodArgs are overdefined |
| ValueState[V].markOverdefined(); |
| } |
| // All others are underdefined by default... |
| return ValueState[V]; |
| } |
| |
| // markExecutable - Mark a basic block as executable, adding it to the BB |
| // work list if it is not already executable... |
| // |
| void markExecutable(BasicBlock *BB) { |
| if (BBExecutable.count(BB)) return; |
| //cerr << "Marking BB Executable: " << BB; |
| BBExecutable.insert(BB); // Basic block is executable! |
| BBWorkList.push_back(BB); // Add the block to the work list! |
| } |
| |
| |
| // UpdateInstruction - Something changed in this instruction... Either an |
| // operand made a transition, or the instruction is newly executable. Change |
| // the value type of I to reflect these changes if appropriate. |
| // |
| void UpdateInstruction(Instruction *I); |
| |
| // OperandChangedState - This method is invoked on all of the users of an |
| // instruction that was just changed state somehow.... Based on this |
| // information, we need to update the specified user of this instruction. |
| // |
| void OperandChangedState(User *U); |
| }; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SCCP Class Implementation |
| |
| |
| // doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and |
| // return true if the method was modified. |
| // |
| bool SCCP::doSCCP() { |
| // Mark the first block of the method as being executable... |
| markExecutable(M->front()); |
| |
| // Process the work lists until their are empty! |
| while (!BBWorkList.empty() || !InstWorkList.empty()) { |
| // Process the instruction work list... |
| while (!InstWorkList.empty()) { |
| Instruction *I = InstWorkList.back(); |
| InstWorkList.pop_back(); |
| |
| //cerr << "\nPopped off I-WL: " << I; |
| |
| |
| // "I" got into the work list because it either made the transition from |
| // bottom to constant, or to Overdefined. |
| // |
| // Update all of the users of this instruction's value... |
| // |
| for_each(I->use_begin(), I->use_end(), |
| bind_obj(this, &SCCP::OperandChangedState)); |
| } |
| |
| // Process the basic block work list... |
| while (!BBWorkList.empty()) { |
| BasicBlock *BB = BBWorkList.back(); |
| BBWorkList.pop_back(); |
| |
| //cerr << "\nPopped off BBWL: " << BB; |
| |
| // If this block only has a single successor, mark it as executable as |
| // well... if not, terminate the do loop. |
| // |
| if (BB->getTerminator()->getNumSuccessors() == 1) |
| markExecutable(BB->getTerminator()->getSuccessor(0)); |
| |
| // Loop over all of the instructions and notify them that they are newly |
| // executable... |
| for_each(BB->begin(), BB->end(), |
| bind_obj(this, &SCCP::UpdateInstruction)); |
| } |
| } |
| |
| #if 0 |
| for (Method::iterator BBI = M->begin(), BBEnd = M->end(); BBI != BBEnd; ++BBI) |
| if (!BBExecutable.count(*BBI)) |
| cerr << "BasicBlock Dead:" << *BBI; |
| #endif |
| |
| |
| // Iterate over all of the instructions in a method, replacing them with |
| // constants if we have found them to be of constant values. |
| // |
| bool MadeChanges = false; |
| for (Method::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) { |
| BasicBlock *BB = *MI; |
| for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { |
| Instruction *Inst = *BI; |
| InstVal &IV = ValueState[Inst]; |
| if (IV.isConstant()) { |
| Constant *Const = IV.getConstant(); |
| // cerr << "Constant: " << Inst << " is: " << Const; |
| |
| // Replaces all of the uses of a variable with uses of the constant. |
| Inst->replaceAllUsesWith(Const); |
| |
| // Remove the operator from the list of definitions... |
| BB->getInstList().remove(BI); |
| |
| // The new constant inherits the old name of the operator... |
| if (Inst->hasName() && !Const->hasName()) |
| Const->setName(Inst->getName(), M->getSymbolTableSure()); |
| |
| // Delete the operator now... |
| delete Inst; |
| |
| // Hey, we just changed something! |
| MadeChanges = true; |
| } else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Inst)) { |
| MadeChanges |= ConstantFoldTerminator(TI); |
| } |
| |
| ++BI; |
| } |
| } |
| |
| // Merge identical constants last: this is important because we may have just |
| // introduced constants that already exist, and we don't want to pollute later |
| // stages with extraneous constants. |
| // |
| return MadeChanges; |
| } |
| |
| |
| // UpdateInstruction - Something changed in this instruction... Either an |
| // operand made a transition, or the instruction is newly executable. Change |
| // the value type of I to reflect these changes if appropriate. This method |
| // makes sure to do the following actions: |
| // |
| // 1. If a phi node merges two constants in, and has conflicting value coming |
| // from different branches, or if the PHI node merges in an overdefined |
| // value, then the PHI node becomes overdefined. |
| // 2. If a phi node merges only constants in, and they all agree on value, the |
| // PHI node becomes a constant value equal to that. |
| // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant |
| // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined |
| // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined |
| // 6. If a conditional branch has a value that is constant, make the selected |
| // destination executable |
| // 7. If a conditional branch has a value that is overdefined, make all |
| // successors executable. |
| // |
| void SCCP::UpdateInstruction(Instruction *I) { |
| InstVal &IValue = ValueState[I]; |
| if (IValue.isOverdefined()) |
| return; // If already overdefined, we aren't going to effect anything |
| |
| switch (I->getOpcode()) { |
| //===-----------------------------------------------------------------===// |
| // Handle PHI nodes... |
| // |
| case Instruction::PHINode: { |
| PHINode *PN = cast<PHINode>(I); |
| unsigned NumValues = PN->getNumIncomingValues(), i; |
| InstVal *OperandIV = 0; |
| |
| // Look at all of the executable operands of the PHI node. If any of them |
| // are overdefined, the PHI becomes overdefined as well. If they are all |
| // constant, and they agree with each other, the PHI becomes the identical |
| // constant. If they are constant and don't agree, the PHI is overdefined. |
| // If there are no executable operands, the PHI remains undefined. |
| // |
| for (i = 0; i < NumValues; ++i) { |
| if (BBExecutable.count(PN->getIncomingBlock(i))) { |
| InstVal &IV = getValueState(PN->getIncomingValue(i)); |
| if (IV.isUndefined()) continue; // Doesn't influence PHI node. |
| if (IV.isOverdefined()) { // PHI node becomes overdefined! |
| markOverdefined(PN); |
| return; |
| } |
| |
| if (OperandIV == 0) { // Grab the first value... |
| OperandIV = &IV; |
| } else { // Another value is being merged in! |
| // There is already a reachable operand. If we conflict with it, |
| // then the PHI node becomes overdefined. If we agree with it, we |
| // can continue on. |
| |
| // Check to see if there are two different constants merging... |
| if (IV.getConstant() != OperandIV->getConstant()) { |
| // Yes there is. This means the PHI node is not constant. |
| // You must be overdefined poor PHI. |
| // |
| markOverdefined(I); // The PHI node now becomes overdefined |
| return; // I'm done analyzing you |
| } |
| } |
| } |
| } |
| |
| // If we exited the loop, this means that the PHI node only has constant |
| // arguments that agree with each other(and OperandIV is a pointer to one |
| // of their InstVal's) or OperandIV is null because there are no defined |
| // incoming arguments. If this is the case, the PHI remains undefined. |
| // |
| if (OperandIV) { |
| assert(OperandIV->isConstant() && "Should only be here for constants!"); |
| markConstant(I, OperandIV->getConstant()); // Aquire operand value |
| } |
| return; |
| } |
| |
| //===-----------------------------------------------------------------===// |
| // Handle instructions that unconditionally provide overdefined values... |
| // |
| case Instruction::Malloc: |
| case Instruction::Free: |
| case Instruction::Alloca: |
| case Instruction::Load: |
| case Instruction::Store: |
| // TODO: getfield |
| case Instruction::Call: |
| case Instruction::Invoke: |
| markOverdefined(I); // Memory and call's are all overdefined |
| return; |
| |
| //===-----------------------------------------------------------------===// |
| // Handle Terminator instructions... |
| // |
| case Instruction::Ret: return; // Method return doesn't affect anything |
| case Instruction::Br: { // Handle conditional branches... |
| BranchInst *BI = cast<BranchInst>(I); |
| if (BI->isUnconditional()) |
| return; // Unconditional branches are already handled! |
| |
| InstVal &BCValue = getValueState(BI->getCondition()); |
| if (BCValue.isOverdefined()) { |
| // Overdefined condition variables mean the branch could go either way. |
| markExecutable(BI->getSuccessor(0)); |
| markExecutable(BI->getSuccessor(1)); |
| } else if (BCValue.isConstant()) { |
| // Constant condition variables mean the branch can only go a single way. |
| ConstantBool *CPB = cast<ConstantBool>(BCValue.getConstant()); |
| if (CPB->getValue()) // If the branch condition is TRUE... |
| markExecutable(BI->getSuccessor(0)); |
| else // Else if the br cond is FALSE... |
| markExecutable(BI->getSuccessor(1)); |
| } |
| return; |
| } |
| |
| case Instruction::Switch: { |
| SwitchInst *SI = cast<SwitchInst>(I); |
| InstVal &SCValue = getValueState(SI->getCondition()); |
| if (SCValue.isOverdefined()) { // Overdefined condition? All dests are exe |
| for(unsigned i = 0; BasicBlock *Succ = SI->getSuccessor(i); ++i) |
| markExecutable(Succ); |
| } else if (SCValue.isConstant()) { |
| Constant *CPV = SCValue.getConstant(); |
| // Make sure to skip the "default value" which isn't a value |
| for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { |
| if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... |
| markExecutable(SI->getSuccessor(i)); |
| return; |
| } |
| } |
| |
| // Constant value not equal to any of the branches... must execute |
| // default branch then... |
| markExecutable(SI->getDefaultDest()); |
| } |
| return; |
| } |
| |
| default: break; // Handle math operators as groups. |
| } // end switch(I->getOpcode()) |
| |
| |
| //===-------------------------------------------------------------------===// |
| // Handle Unary instructions... |
| // Also treated as unary here, are cast instructions and getelementptr |
| // instructions on struct* operands. |
| // |
| if (isa<UnaryOperator>(I) || isa<CastInst>(I) || |
| (isa<GetElementPtrInst>(I) && |
| cast<GetElementPtrInst>(I)->isStructSelector())) { |
| |
| Value *V = I->getOperand(0); |
| InstVal &VState = getValueState(V); |
| if (VState.isOverdefined()) { // Inherit overdefinedness of operand |
| markOverdefined(I); |
| } else if (VState.isConstant()) { // Propogate constant value |
| Constant *Result = isa<CastInst>(I) |
| ? ConstantFoldCastInstruction(VState.getConstant(), I->getType()) |
| : ConstantFoldUnaryInstruction(I->getOpcode(), VState.getConstant()); |
| |
| if (Result) { |
| // This instruction constant folds! |
| markConstant(I, Result); |
| } else { |
| markOverdefined(I); // Don't know how to fold this instruction. :( |
| } |
| } |
| return; |
| } |
| |
| //===-----------------------------------------------------------------===// |
| // Handle Binary instructions... |
| // |
| if (isa<BinaryOperator>(I) || isa<ShiftInst>(I)) { |
| Value *V1 = I->getOperand(0); |
| Value *V2 = I->getOperand(1); |
| |
| InstVal &V1State = getValueState(V1); |
| InstVal &V2State = getValueState(V2); |
| if (V1State.isOverdefined() || V2State.isOverdefined()) { |
| markOverdefined(I); |
| } else if (V1State.isConstant() && V2State.isConstant()) { |
| Constant *Result = |
| ConstantFoldBinaryInstruction(I->getOpcode(), |
| V1State.getConstant(), |
| V2State.getConstant()); |
| if (Result) { |
| // This instruction constant folds! |
| markConstant(I, Result); |
| } else { |
| markOverdefined(I); // Don't know how to fold this instruction. :( |
| } |
| } |
| return; |
| } |
| |
| // Shouldn't get here... either the switch statement or one of the group |
| // handlers should have kicked in... |
| // |
| cerr << "SCCP: Don't know how to handle: " << I; |
| markOverdefined(I); // Just in case |
| } |
| |
| |
| |
| // OperandChangedState - This method is invoked on all of the users of an |
| // instruction that was just changed state somehow.... Based on this |
| // information, we need to update the specified user of this instruction. |
| // |
| void SCCP::OperandChangedState(User *U) { |
| // Only instructions use other variable values! |
| Instruction *I = cast<Instruction>(U); |
| if (!BBExecutable.count(I->getParent())) return; // Inst not executable yet! |
| |
| UpdateInstruction(I); |
| } |
| |
| namespace { |
| // SCCPPass - Use Sparse Conditional Constant Propogation |
| // to prove whether a value is constant and whether blocks are used. |
| // |
| struct SCCPPass : public MethodPass { |
| inline bool runOnMethod(Method *M) { |
| SCCP S(M); |
| return S.doSCCP(); |
| } |
| }; |
| } |
| |
| Pass *createSCCPPass() { |
| return new SCCPPass(); |
| } |